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1 Where are phonological generalizations captured?
As noted by Halle (1962) and Chomsky and Halle (1965), speakers of a language judge
some nonce forms as nonexistent but possible – that is, as accidental gaps – and other
nonce forms as nonexistent and impossible – that is, as systematic gaps. In English,
for example, forms such as gæ̃n and gæd are accidental gaps, while gæ̃d and gæn

are systematic gaps. Capturing this distinction in speaker’s judgments is a central task
of phonological theory. Since the judgments of speakers regarding nonce forms differ
between languages, this task also involves accounting for how the relevant knowledge
is acquired.

Early generative approaches accounted for systematic gaps through a combination
of two factors: constraints on underlying representations in the lexicon;1 and phonolog-
ical rules. In the example above, an early generative account might use the following
constraint on URs as the basis for capturing the distribution of nasalization in English:

(1) Constraint on URs in English: No nasal vowels in the lexicon

With (1) in place, a phonological rule can complete the picture by nasalizing pre-
nasal vowels. The accidental gæ̃d and gæd could be added to English with the URs
/gæn/ and /gæd/; the nasalizing rule would then turn the former into its surface form.
For gæ̃d and gæn the situation is different: since nasalization is not stored in the lex-
icon of English, the nasalization in gæ̃d must follow from rule application, but the
nasalization rule does not apply to vowels that are not prenasal; for gæn, on the other
hand, obligatory nasalization would ensure that this surface form cannot appear. Both
gaps are thus correctly treated as systematic.

Contrasting with this view, Optimality Theory (Prince and Smolensky, 1993, OT)
has been guided by the idea that phonological generalizations are captured not in the
lexicon but rather on the surface or in the mapping from URs to surface forms. In the
∗Acknowldgments: To be added.
1Halle (1959, 1962) proposed to capture the relevant generalizations through rules that apply to URs.

Stanley (1967) argued that these should be constraints rather than rules. In the generative tradition these
became known as morpheme-structure constraints. We use constraints on URs as a cover term for rules or
constraints of this kind.
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example above, markedness constraints – as toy examples, ∗ãd and ∗an – would penal-
ize nasal non-prenasal vowels and oral prenasal ones. Ranking these constraints higher
than the relevant faithfulness constraints would ensure that even URs with inappropri-
ately nasalized vowels will surface correctly, thus correctly ruling out gæn and gæ̃d as
systematic gaps. The accidental gaps gæ̃n and gæd, on the other hand, can be added
to the lexicon with URs that are identical to the surface forms.

Differently from rule-based phonology, then, where capturing the distinction be-
tween accidental and systematic gaps makes central use of constraints on URs such as
(1) above, OT can capture the distinction without such constraints.2 The ability of OT
to distinguish between accidental and systematic gaps without recourse to constraints
on URs suggests that perhaps constraints on URs are never used. This stronger view is
often referred to as Richness of the Base, and it is a central tenet of OT:

(2) Richness of the Base (ROTB; Prince and Smolensky 1993, p. 191,Smolensky
1996, p. 3):
a. All systematic language variation is in the ranking of the constraints.
b. In particular, there are no language-specific constraints on URs.

Our goal in this note is to re-open the question of whether OT requires constraints
on URs and offer a learnability argument supporting an affirmative answer, thus argu-
ing against ROTB. We start, in section 2, by examining the extant literature on learning
in OT. The relevant works adopt the representational principle of ROTB, often in com-
bination with two learning principles that are inspired by it. One of these learning
principles is sometimes also referred to as ROTB, but to avoid confusion we will call it
by a different name, Imagine, and reserve the term ROTB for the representational prin-
ciple in (2). The second learning principle is known as Lexicon Optimization (LO). We
argue that approaches based on Imagine and LO are untenable: they all overgeneralize
(by treating some systematic gaps as accidental), undergeneralize (by treating some
accidental gaps as systematic), or both. In section 3 we discuss a different approach to
learning, compression-based learning, that does not assume Imagine or LO and that is
the only approach currently available that can handle the data in principle without over-
or undergeneralization. In section 4 we show that compression-based learning learns
certain naturally-occurring patterns but crucially only if it rejects ROTB and employs
language-specific constraints on URs.

2 Imagine and LO, and why they should be abandoned
As mentioned, the representational principle of ROTB is often combined with two
learning principles, Imagine and LO. Our main focus in this paper is ROTB, and we

2In certain cases, constraints on URs in rule-based phonology seem to conspire with phonological rules
to enforce what looks like a unitary surface effect (see Chomsky and Halle 1968, p. 382). This fragmentation
of explanation – the duplication problem of Kenstowicz and Kisseberth (1977, p. 136) – has been taken to
be a challenge to rule-based phonology and an argument in favor of OT. Below we will argue that constraints
on URs should be brought back into phonological theory. In the cases we will discuss, however, we will see
no fragmentation between such constraints and other mechanisms, and we will not attempt to re-evaluate the
duplication problem.
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will present a learnability argument against it. Before we do that, though, we will need
to isolate it from the two learning principles, which is what we do in the present section.
Specifically, we will argue that both learning principles are untenable.

2.1 ROTB, Imagine, and LO
The first learning principle, Imagine (Smolensky 1996, Tesar and Smolensky 1998),
encourages the learner to look for a constraint ranking that yields the observed data not
just given one lexicon but given many other hypothetical URs:3

(3) Imagine: Prefer constraint rankings that make the observed data typical not just
given a particular lexicon but with respect to every imaginable UR.

The motivation for Imagine, as discussed by Smolensky (1996) and Tesar and Smolen-
sky (1998) (attributing the original idea to Alan Prince), is the need to make the gram-
mar restrictive. Considering the observed data in view of just one lexicon is too easy:
the learner can get away with positing URs that are identical to the surface forms along
with the identity mapping, implemented by ranking faithfulness above markedness
(F ≫ M). This would allow the learner to ignore the entire sound pattern of the
language. In English, for example, this approach would treat the absence of clicks or
of rt onsets as accidents of the lexicon. Nothing will force the learner to state these
generalizations in the ranking of the constraints. Speakers of English know that clicks
and rt onsets are impossible in their language – mip and trEiv, for example, are pos-
sible English words, but òip and rtEiv are not – so the lazy F ≫ M option must be
blocked.

Imagine has been offered as the remedy. By considering not just one lexicon but
all forms, the learner now has to ensure that clicks and rt onsets will never surface,
not even if they are present underlyingly. This, in turn, forces the learner to state
the relevant generalizations within the ranking of the constraints. In English, for ex-
ample, constraints against clicks and rt onsets will now be ranked above faithfulness
constraints.

The letter of Imagine has proven to be difficult to implement directly within standard
OT, leading to a variety of approaches that aim at capturing the spirit of the principle:
an initial ranking of M≫F (Smolensky 1996, Tesar and Smolensky 1998) from which
a search for a consistent ranking begins; a more sustained bias for M≫F (Hayes 2004,
Prince and Tesar 2004) throughout the search for a consistent ranking; Maximum Like-
lihood (Jarosz 2006); and others. While differing among themselves in various ways,
these implementations pattern together with respect to the arguments that we will dis-
cuss below. We will thus group them together and refer to them as Imagine-based
learners.

The second learning principle, Lexicon Optimization (LO; Prince and Smolensky
1993, p. 209, Inkelas 1995, Smolensky 1996), encourages the learner to do as little
work as possible in guessing the URs of surface forms. Given a surface form and a

3As mentioned, the literature sometimes uses ROTB to refer to Imagine. The two are very different
creatures, however, and though we will end up concluding that both are incorrect, we will be careful to keep
them separate in our discussion.
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particular constraint ranking, there can be many different URs that would yield that
surface form. Of these potential URs, LO instructs the learner to guess the one with
the least significant violations of constraints – the UR that yields the most harmonic
mapping, to use common OT parlance. When a morpheme has different surface forms
as part of a paradigm with alternations, Inkelas (1995) proposes an extension of LO
that considers the entire paradigm and guesses a UR that is most harmonic with respect
to the entire paradigm (specifically, by incurring the fewest violations of most highly
ranked constraints).

(4) Lexicon Optimization: In the face of multiple potential URs that yield the same
surface form, choose the most harmonic one.4

LO tells the learner to choose URs that are as close as possible to the observed
surface forms. For a morpheme that does not participate in an alternation, a UR that is
identical to the surface form will always be maximally harmonic: URs are not subject
to any markedness constraints in OT, and identity between UR and surface form can
incur no faithfulness violation. An LO learner will therefore be justified in choosing
the surface form as its own UR whenever no alternation is involved.5

Imagine and LO are natural companions to ROTB. ROTB allows any possible UR
to be stored in principle, even URs that are very different from anything seen so far
in the language. Imagine takes advantage of this and reasons hypothetically about dif-
ferent URs to obtain a restrictive constraint ranking. And LO takes advantage of the
same property to store URs with as little modification as is necessary. Despite this
naturalness, Imagine and LO fail as learning principles, as we now show.

2.2 Imagine overfits the data: the problem of accidental gaps
Imagine-based learners seek to capture as many generalizations as possible in the con-
straint ranking. This leads to an overly restrictive grammar, where accidental gaps are
treated as systematic and restrictiveness is limited only by the possible representations
provided by UG. We demonstrate this with two examples.

2.2.1 A simple example

Suppose UG makes available all markedness constraints of the general form ∗X1 . . . X j

(maybe up to a certain length). In the data, many sequences of this form will usually
be missing (in particular, any such sequence that is longer than the longest word in the
data). Imagine-based approaches will lead to the ranking of any constraint of the form
∗X1 . . . X j corresponding to a gap above all faithfulness constraints. Halle (1962)’s
example of T >oUd, a nonexistent but possible English word, makes this point using a

4Prince and Smolensky (1993, pp. 219–210) also consider a different condition, Minimal Lexical Redun-
dancy, and also a constraint called ∗Spec that penalizes all underlying material.

5Depending on the choice of faithfulness constraints and of representations, it is sometimes possible for
a non-identical UR to be as harmonic as an identical one. For example, if no faithfulness constraint penalizes
adding a feature to an underspecified form, /ða/, with a nasal that is unspecified for place of articulation,
and /ma/, where place is specified as labial, are both optimal URs for a non-alternating [ma]. See Krämer
(2005) for discussion. This observation does not affect the arguments against LO presented below.
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short sequence of segments: if an Imagine-learner has a constraint such as ∗T >oUd, it
will rank the markedness constraint (which is never violated in the data) high enough
to make it treat the gap, incorrectly, as systematic rather than accidental.

A possible response to Halle’s example is that it simply teaches us that ∗T >oUd< Con.
We are not aware of a principled reason to exclude ∗T >oUd from Con, but to clarify this
matter – and to tighten the argument from T >oUd against Imagine – we would need to
find another language in which T >oUd is an impossible word (and not because of other,
independent constraints). We are not currently familiar with a language that can make
this point using T >oUd, but we believe that the same point can be made using a slightly
more complex case, to which we now turn.

2.2.2 A more complex example

Constraints of the form ∗sCiVCi are active in English, e.g., ∗skVk, ∗slVl, ∗sNVN where
N is a nasal consonant. In Hebrew, sNVN and skVk are accidental gaps: (a) sN and
sK are permissible onset clusters (sni f ‘branch’, skira ‘survey’); (b) NVN and kVk are
attested word endings (minun ‘dosage’, zakuk ‘needs’); (c) there are also a few words
of the form sCVC (sxax ‘cover’, slil ‘coil’); (d) but no word of the form sNVN, skVk.
An Imagine-based learner will rank the relevant markedness constraints – including
those that correspond to accidental gaps – above all faithfulness constraints, leading to
the gaps being treated incorrectly as systematic.6,7

2.2.3 A note on phonotactic grammars

Before leaving Imagine-based learners, we wish to briefly consider a different constraint-
based approach to the challenge of accidental and systematic gaps. This alternative
approach is the phonotactic grammars and learning procedure of Hayes and Wilson
(2008). While their approach is explicitly non-OT, it could be used to complement an
OT grammar – in fact, Hayes and Wilson themselves suggest such an architecture (p.
424). In a combined architecture, Hayes and Wilson’s phonotactic component might
take care of separating accidental from non-accidental gaps, after which Imagine can
take over and acquire the remaining phonological knowledge.

Unfortunately, this combined architecture will probably not work, since Hayes and
Wilson (2008)’s approach suffers from the exact same problem of overfitting as Imag-
ine-based learners. Their algorithm (p. 394) combines heuristics for selecting con-

6A more realistic (but possibly less relevant) example is due to Zimmer (1969), who notes that Turkish
speakers apply only some of these generalizations (e.g., vowel harmony) and not others (e.g., labial attrac-
tion) to novel words. See Becker et al. (2011) for additional evidence supporting this point. Though: this
line of work focuses on statistical tendencies rather than absolute generalizations.

7Adam Albright (p.c.) raises the following direction for an Imagine-based account of sCiVCi, following
Coetzee (2008). For Coetzee, the ∗sCiVCi constraints are not primitive but rather obtained through constraint
conjunction of a general ∗sC and specific non-repetition constraints such as ∗tVt, ∗kVk, and ∗pV p. The
choice to form the relevant constraint conjunctions is moreover taken to follow from the statistics of the
violation of the constituent constraints in the data. It is conceivable, then, that English – but not Hebrew –
will have statistics that induce the formation of the relevant constraint conjunctions, which could account
for the difference between the two languages with respect to sC1VC1-shaped gaps. Since this direction
assumes various mechanisms that are as yet unspecified (in particular, the criterion for forming constraint
conjunction), we do not discuss it further here.

5



straints for a MaxEnt grammar with weight training aimed at maximizing the likeli-
hood of the data. Maximizing the likelihood will of course try to overfit the data, so
the only hope of the learner is that the heuristics for constraint selection will prevent
it from adding constraints like ∗T >oUd. The heuristics, however, all but guarantee that
constraints like ∗T >oUd will be added. The algorithm proceeds from high precision (that
is, few exceptions) to lower precision, adding the constraints at that level of precision
(by decreasing order of generality, according to their two-step definition of generality,
pp. 393–4). ∗T >oUd has no exceptions in English, so if it can be represented and if the
search is not stopped too soon, it will be added.8 Not surprisingly, perhaps, Hayes and
Wilson’s algorithm acquires both meaningful-looking patterns and what seem to be ar-
bitrary patterns, as the authors themselves note (pp. 419–20). Hayes and White (2013)
run the same learner on English data and provide experimental evidence that only the
meaningful-looking patterns are active in speakers’ knowledge; it remains to be seen
whether this distinction corresponds to that between overfitted and non-overfitted pat-
terns based on a more balanced learning criterion (Bayes, MDL, etc.). As far as we can
tell, then, using Hayes and Wilson (2008)’s approach for phonotactics alongside – or
instead of – an Imagine-based OT learner provides no defense against overfitting.

2.3 LO
2.3.1 Learners should not optimize

Recall that, in the absence of alternations, LO will always be satisfied by a UR that is
identical to the surface form. Alderete and Tesar (2002) note that this makes LO an
obstacle to learning phonological patterns such as the stress patterns in Mohawk, Sela-
yarese, and Yimas. In these languages, the URs differ from their corresponding surface
forms with respect to stress assignment. Significantly, however, the learner cannot rely
on alternations to point to the discrepancies in these languages. This amounts to a
direct challenge to LO.

To illustrate, consider the schematic stress typology in the following table, and in
particular the stress pattern in Language B:

Name Type Lexicon
Lg. A Lexical stress pákat pakát pákit pakı́t pı́kat pikát pı́kit pikı́t
Lg. B Stress-epenthesis pakát pákit pakı́t pikát pı́kit pikı́t
Lg. C Final stress pakát pakı́t pikát pikı́t

Languages A and C are straightforward: the former has lexical stress and the latter
final stress, and in both cases the URs could be identical to the surface forms (for
Language A, this will have to be the case; for Language C this is assumed to be the
case by adherents of LO, but considerations such as transparency may lead to URs

8Concretely, Halle’s ∗T >oUd happens to be just a little bit too long for Hayes and Wilson’s representations:
they admit segmental constraints of up to three feature vectors, but one of those vectors has to be degenerate;
we take it, however, that this restriction is imposed to ensure reasonably fast convergence on the original
hardware used by the authors and not due to more principled considerations. Moreover, we can replicate the
argument with Tom, a slight modification of Halle’s example that is also a possible but not actual English
word. Differently from T >oUd, for which T2d (‘thud’) is an actual English word, no vocalic variant of T >oUb

is an English word. Consequently, Hayes and Wilson (2008)’s learner has no principled barrier to learning
the problematic constraint ∗TVb.
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that are underspecified for stress assignment, as discussed above). Language B is more
problematic: it has final stress in general, but when the final vowel is [i], stress can be
penultimate. A standard analysis would take B to have final stress, treating unstressed
final [i] as epenthetic. Arguing for a stress-epenthesis account of B would require,
among other things, testing the prediction that speakers reject as impossible words
forms such as pákat with penultimate stress and without a final [i]. Assuming that
this prediction is borne out, B constitutes a major challenge for Imagine-LO learners.
The relevant URs do not have the final [i] appearing on the surface, and there is no
alternation to provide the crucial evidence for non-identity. Learners based on Imagine
and LO thus converge on an overly inclusive analysis of B as a lexical-stress language
(e.g., predicting that an impossible ∗pákat would be a possible word).9

Again, a phonotactic front-end along the lines of Hayes and Wilson (2008) will be
of no help. In the present case, such a component might miss the relevant generalization
about final stress since it is not surface-true (whether it will or will not depends on the
statistical distribution of epenthesis in the language and on the specific parameters of
the phonotactic learner). And even if it does acquire the relevant constraint, it will
be demoted during the Imagine-LO stage, as discussed above, and language B will be
incorrectly taken to have lexical stress

2.3.2 Learners do not optimize

There is no clear evidence to date regarding the inferences that children make regard-
ing URs during phonological acquisition. To the extent that these URs can be probed
at later stages, however, they are the exact opposite of what LO predicts. This point
has been made by Vaux (2005) and Nevins and Vaux (2007), who present a variety of
cases in which URs differ from surface forms even in the absence of supporting alter-
nations.10 For example, Nevins and Vaux note that when speakers of languages like
German and Russian that have final devoicing are presented with a nonce word such
as mik, they will sometimes posit the unfaithful UR mig. This is entirely surprising
from the perspective of LO. It is equally puzzling from the perspective of other abso-
lute principles of UR induction, such as McCarthy (2005)’s Free Ride Principle, which
tells learners who have observed an alternation and used it to obtain a non-faithful UR
in some cases to do the same in all cases: for such learners, mig will be posited as
the UR for mik not just sometimes but always. Again, the empirical pattern is more
nuanced, showing unfaithful URs posited in some cases but not in all of them.11

In the mik∼mig case, one can try to devise an account that relies on the devoicing
of other words in order to inform the unfaithful UR posited by speakers. As Nevins
and Vaux note, however, speakers sometimes posit unfaithful URs not just when some

9It might be possible to construct an account of Language B that relies on a phonetic difference between
regular and epenthetic vowels (cf. Gouskova and Hall 2009 and Hall 2013). For Yimas, on which Language
B is modeled, we know of no basis for an alternative explanation along phonetic lines, but we note that
settling this matter would require a more thorough investigation than we are offering here.

10See also Harrison and Kaun (2000, 2001), Ernestus and Baayen (2003), and Krämer (2012).
11Nevins and Vaux suggest that the proportion of unfaithful URs that speakers posit will correspond not

to an absolute rule such as LO but rather to the frequency of the relevant alternation (in this case, final
devoicing) in the language.
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related form participates in an alternation but also when such information is unavail-
able. They consider the case of rhotics in Spanish, which can be realized as r or R

word-medially but only as r word-initially. When induced to move a word-initial r to a
word-medial position as part of a language game, speakers sometimes realized it as r,
in line with a faithful UR, but sometimes as R, suggesting an unfaithful UR.

3 Compression-based learning
As we have just seen, Imagine and LO face significant empirical challenges while ar-
guments supporting them are thin. An impediment to abandoning Imagine and LO,
even in the face of these challenges, has been the absence of a plausible algorithm that
would work in their absence. To our knowledge, there is exactly one approach in the
literature that offers a handle on both the over-generalization problem and the under-
generalization problem. This approach, which we will refer to as compression-based
learning, aims at balancing the complexity (or probability) of the grammar with that
of the grammar’s account of the data. Specific implementations of compression-based
learning sometimes follow the principle of Minimum-Description Length (MDL; Ris-
sanen 1978) and sometimes the closely-related idea of Bayesian reasoning. The roots
of both are in the pioneering work of Solomonoff (1964), and other early work in-
cludes Wallace and Boulton (1968) and Horning (1969). Compression-based learning
has been used for grammar induction in the works of Berwick (1982), Rissanen and
Ristad (1994), Stolcke (1994), Brent and Cartwright (1996), Chen (1996), Grünwald
(1996), de Marcken (1996), Osborne and Briscoe (1997), Brent (1999), Clark (2001),
Goldsmith (2001), Onnis et al. (2002), Zuidema (2003), Dowman (2007), and Chang
(2008), among others.

Recently, we have proposed a compression-based learner for OT in Rasin and
Katzir (2014), and it is this learner that we will use in our argument against ROTB
and in favor of constraints on URs. Following the principle of MDL, the learner at-
tempts to minimize the overall description of the data, measured in bits. The overall
description is broken down into G, the encoding of the grammar (which, for OT, in-
cludes both the lexicon and the constraints), and D|G, the description of the data D
given the grammar. The combination of grammar and data is schematized in Figure 1
(modified from Rasin and Katzir 2014).

0101011010101001010︸                         ︷︷                         ︸
Lexicon

10101010010︸           ︷︷           ︸
Constraints︸                                            ︷︷                                            ︸

G

10100010110101︸                ︷︷                ︸
D|G

Figure 1: Schematic view of an OT grammar and the data it encodes. The grammar G
consists of both lexicon and constraints. The data D are represented not directly but as
encoded by G. The overall description of the data is the combination of G and D|G.

As discussed in Rasin and Katzir (2014), the length of G, |G|, corresponds to the
informal notion of economy, familiar from the evaluation metric of Chomsky and Halle
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(1968): a grammar that requires fewer bits to encode is generally a simpler, less stip-
ulative grammar. Meanwhile, the length of D|G, |D|G|, corresponds to restrictive-
ness, the goal of Imagine: a grammar that requires fewer bits to encode the data is
a grammar that considers the data typical and deviations from the data surprising. Cru-
cially, compression-based learning dictates the simultaneous balancing of economy
and restrictiveness: the learner attempts to minimize the overall description length,
|G| + |D|G|, rather than prioritizing one factor over the other. This balancing of econ-
omy and restrictiveness is exactly what protects compression-based learners from both
over-generalization and under-generalization.

Compression-based learning is a very general approach.12 It is not tied to the
specifics of OT, and it is independent of the question of ROTB. This generality will
allow us to combine compression-based learning with two versions of OT – one that
assumes ROTB and one that does not – and compare their predictions on two patterns
that occur in natural languages. We show that the version without ROTB successfully
learns the patterns, but the version that assumes it fails. The failure of the version
while assuming ROTB will not be accidental: as we will see, constraints on URs are
indispensable for compression-based learning of these patterns. Since compression-
based learning is the only approach currently available that addresses the challenges of
over-generalization and under-generalization, this will amount to an argument against
ROTB.

4 The argument against ROTB

4.1 Simulation I: Aspiration in English
Our first demonstration that compression-based learning must abandon ROTB comes
from a simplified version of aspiration in English. In this dataset, stops are aspirated
exactly when they are prevocalic.13 A compression-based learner can learn correctly
that prevocalic stops are aspirated by removing instances of aspiration from the lexicon
(e.g., /kat/ → [khat]) and ranking the constraints accordingly. Crucially, however, it
will only learn to block ∗ath and ∗khikht if it can systematically ban aspiration from the
lexicon, thus implementing a constraint on URs along the lines of (1) above:

(5) Constraint on URs in English: No aspirated consonants in the lexicon

To see why a constraint-based learner needs something like (5) to block aspira-
tion outside of prevocal environments, suppose the learner allowed aspiration to be
represented underlyingly in principle. This would mean that the final grammar would
have to rule out forms such as ath, kikht, etc. through the input-output mapping. But
the learner has no reason to learn to block such forms through the input-output map-
ping: in the actual lexicon, as just mentioned, the URs are stored without aspiration;

12See Katzir (2014) for an argument that the MDL version of compression-based learning is available
to the learner by virtue of having a theory of competence, which makes this approach a fully general null
hypothesis.

13The aspiration pattern could in principle be handled by Imagine-LO learners or by phonotactic learners.
This, however, would be irrelevant to our argument: as discussed above, such learners fail by both over- and
under-generalizing and so are out of the game by now.
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and without instances of underlying aspiration, a constraint that ensures that aspiration
does not surface in illicit positions will serve no compressional purpose. In particular,
such a constraint will not make the data more likely (or easier to describe) given the
grammar; consequently, it will fail to make the hypothesis preferred over an alternative
hypothesis that does not ban instances of aspiration from surfacing in illicit positions.

On the other hand, a constraint on URs such as (5) has the potential to add com-
pressional value. In particular, suppose that (5) is implemented by removing aspiration
from the inventory of primitives used for URs. All things being equal, removing a pos-
sible segment from the underlying inventory makes it slightly easier to specify the re-
maining segments, some of which may now cost fewer bits than before. Consequently,
the lexicon will now be encoded with fewer bits, thus providing compressional justi-
fication for adopting (5). And as in rule-based phonology, adopting (5) ensures that
surface forms like ath and kikht will be blocked: due to (5), /ath/ and /kikht/ are no
longer possible URs; and such URs are the only potential source for surface aspiration
in inappropriate contexts. In other words, the impossibility of storing aspiration in the
lexicon, with its compressional justification discussed above, means that the learner
has correctly learned to block bad aspiration.

The simulation results summarized here support this conclusion.14 The data avail-
able to the learner, with a sample in (6), are generated from a small segmental inventory
subject to the condition that aspiration can only appear prevocalically; aspiration is ex-
pressed as a separate segment, [h]. In its initial state, summarized in (6b), the learner
allows all segments, including aspiration, to appear in the lexicon. The markedness
constraint ∗[+stop][−cons], which penalizes unaspirated prevocalic stops is initially
outranked by the two faithfulness constraints, thus failing to enforce aspiration in the
relevant position. At the end of the simulation, summarized in (6c), ∗[+stop][−cons]
outranks the faithfulness constraints, thus enforcing prevocalic aspiration. More im-
portantly, the final segmental inventory is without [h]: aspiration has been eliminated
from the lexicon – a constraint on URs – ensuring that inappropriately aspirated seg-
ments will not be possible words in the language. When the learner is not allowed to
eliminate aspiration from the lexicon, this last step cannot take place.

(6) a. Data: {khik, thatk, khakhiat, . . . }
b. Initial state:
Σ = {a, i, t, k,h }; Lex: {khik, thatk, khakhiat, . . . }
Con: Faith≫Max[+asp]≫∗[+stop][−cons]

c. Final state:
Σ = {a, i, t, k} (no [h]); Lex: {kik, tatk, kakiat, . . . }
Con: ∗[+stop][−cons]≫Faith≫Max[+asp]

4.2 Simulation II: Yimas stress-epenthesis interaction
Our second demonstration that compression-based learning should abandon ROTB
comes from a simplified version of the interaction of stress and epenthesis in Yimas, a
pattern we have already seen in 2.3.1 above. Recall that stress in Yimas is grammatical,

14See Rasin and Katzir (2014) for a detailed presentation of the learner and various simulations.
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but predicting its exact location is complicated by vowel epenthesis. The compression-
based learner succeeds in learning the stress pattern only if it can systematically ban
underlying stress from the lexicon.

In the dataset summarized in (8a), stress in bisyllabic words is initial but can be sec-
ond if the first vowel is [i]; as with the aspiration dataset, stress is represented as a sep-
arate segment, [′]. The interaction between stress and epenthesis is captured through
the relative ranking of several constraints, central among them HeadDep, which pe-
nalizes stress on epenthetic vowels; MainLeft, which penalizes stress shifts from the
first syllable; and ∗CC, which penalizes consonant clusters (and can thus justify vowel
epenthesis).15 In the initial state, summarized in (8b), stress is still part of the seg-
mental inventory in which the lexicon is written, and the constraint ranking fails to
capture the basic pattern.16 Compression leads to a short lexicon where stress and the
relevant instances of [i] are systematically absent and the grammar inserts them in the
right positions. Removing stress from the alphabet, as stated in (7), is driven by fur-
ther compression – as with aspiration in English, the remaining underlying elements
become slightly easier to specify, leading to compressional gains in the lexicon – and
ensures that ungrammatical outputs (e.g., ∗katú) are blocked. As with the aspiration
dataset, preventing the learner from eliminating stress from the lexicon makes this last
step impossible.

(7) Constraint on URs in Yimas: No stress marking in the lexicon

(8) a. Data: {tı́, púk, kátu, kúit, pı́kat, tipú, kipúk}
b. Initial state:
Σ = {t, p, k, a, i, u,′ }
Lex: {tı́, púk, kátu, kúit, pı́kat, tipú, kipúk}
Con: Faith≫Dep≫MainLeft≫∗CC≫HeadDep (simplified)

c. Final state:
Σ = {t, p, k, a, i, u} (no [′])
Lex: {ti, puk, katu, kuit, pikat, tpu, kpuk}
Con: HeadDep≫∗CC≫Dep≫MainLeft≫Faith

5 Discussion
OT dispensed with constraints on URs for reasons of theoretical simplicity: a single-
component architecture seemed more appealing than a dual-component one; output
constraints unified constraints on URs and the input-output mapping. The present work
brings learnability to bear on the question of whether constraints on URs are needed –
specifically, to argue that they are. We first looked at Imagine and LO, the two learn-
ing principles that are used in the literature on learning in OT, and noted that they both

15The constraints used in the following simulation are taken from the literature (see, e.g., Alderete and
Tesar 2002 and Jarosz 2009). We do not wish to defend this choice here, only to show how representations
used in OT accounts of stress-epenthesis interaction can be learned using compression, but only if we admit
constraints on URs.

16Specifically, we chose an initial ranking that is far away from the target one: faithfulness outranks
markedness, and the relative ranking of the markedness constraints is the opposite of the correct ranking.
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over-generalize and under-generalize. We pointed out that the only learning framework
currently available that can handle learning in OT without running into these problems
is compression-based learning. Since compression-based learning is a fully general
approach, we could combine it with two OT architectures – one with CURs and one
without – and use the predictions to choose between the two. We showed that learning
empirically-attested patterns such as aspiration in English and stress-epenthesis inter-
action in Yimas requires CURs. Since compression-based learning is both cognitively
plausible and the only current working approach for OT learning, this amounted to an
argument in favor of constraints on URs and against the OT principle of ROTB.
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