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1 Background

The numeric symbol “0” has two distinct guises. First of all, it is a place
holder in the representation of large numbers. For example, in “103”, it
indicates that there is nothing in the second column, helping us to distinguish
“103” from “13”, “1030”, etc. The other use of “0” is as a number itself, the
number between “-1” and “1”. Although quite a few ancient civilisations (but
famously not the Ancient Egyptian, Greek and Roman ones) had positional
number systems with punctuation marks that act like place-holder “0”, the
concept of “0” as a number itself only first arose in the seventh century CE,
in India. This concept of a “0” number then very slowly spread worldwide.
For instance, only by the 17th century, the concept had become common in
Europe (e.g. Kaplan, 1999).

Compared to other numbers, “0” is thus a relative latecomer. Naturally,
this means that the word for the number “0” is similarly a relatively recent
addition to the language families of the world. Given its late arrival, we can
obviously do very well with a language that lacks a word like “zero”. One
would expect that the only thing that changes once such a word is included,
is that we can then express the newly formed numerical concept. It allows
us to state scientific generalisations dependent on that concept. Newton’s
first law of motion (the law of inertia), for instance, could now be stated as
in (1).

(1) The acceleration of an object is zero if and only if the resultant force
on the object is zero too.
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In non-mathematical contexts, it may seem that “zero” brings nothing new
to the language. It amounts to simply another way of saying “no”. Take (2):

(2) There are zero emails in my inbox.

Here, “zero” indicates the number of emails in the speaker’s inbox. But, of
course, saying that this number is 0 is no different from saying that there
are “no” such emails. In non-scientific natural language, it may seem, there
is little use for a word for “zero”, given the linguistic possibility of combin-
ing existential claims with negation to express the absence of stuff. Perhaps
then, ‘zero’ in examples like (2) is a synonymous – maybe, more emphatic –
alternative to ‘no’. In this paper, we will argue that such a characterisation
is wrong. “Zero” and “no” are semantically and pragmatically distinct. In
particular, we will argue that words for “0” are proper numerals, just like
“one” and “thirteen”. Our conclusion will be that the meaning of “zero” is,
quite simply, “0”, even in cases like (2). Additionally, we will show that the
existence of a zero numeral has profound consequences for linguistic seman-
tics. We will ultimately conclude that the fact that languages allow ascription
of zero quantity to an entity provides evidence that linguistic semantics has
access to what at first sight may seem like an ontological oddity: an entity
with zero quantity. In other words, we will show that studying “zero” can
inform us about the underlying semantic ontology of natural language.1

This work is structured as follows. In section 2, we will provide arguments
against a quantifier analysis of “zero”. We will conclude that “zero” is a
numeral and provide a detailed semantic analysis in sections 3 and 4. In
particular, we will give an analysis of the limited ability of “zero” to license
negative polarity items. We will end this article with a discussion of the
wider semantic consequences of our analysis, in particular of our proposal to

1In this article, we will only discuss English “zero”. The word for 0 seems to behave as
a member of the numeral class consistently across languages. That said, we know of two
languages for which it has been reported that the zero numeral is unavailable in prenominal
position. These languages are Western Armenian (as reported in Bale and Khanjian 2014)
and Hungarian (as reported in Csirmaz and Szabolcsi 2012).

We believe this rare ban to be purely syntactic. In these languages, “zero” is perfectly
acceptable in arithmetic contexts such as “Zero plus two is two”, for which, it has been
argued, an atomic type d semantics is required of numerals (Rothstein, 2016). If “zero”
can have a meaning of type d or 〈e, t〉, as we will argue below, then, compositionally,
nothing prevents “zero” from combining with a noun (with or without a mediating head
like many, introduced below). However, an argument position in an arithmetic statement
and a modificational position inside a DP are clearly different syntactic environments, for
which a syntactically different version of the numeral might have to be available – and
in different languages “zero” may be subject to different syntactic requirements of the
modificational position.
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allow for the existence of a zero quantity entity.

2 “Zero” is not a quantifier

While it is clear that “zero” at times refers to the numerical concept “0”, as
in “division by zero”, it is tempting to think that there is a distinct second
use of “zero” which is purely quantificational. That is “zero emails” is simply
synonymous to “no emails”, albeit perhaps a bit more emphatic due to the
choice of the more marked (less frequent) “zero” over “no”.

It would be relatively straightforward to account for “zero” in this way if
we think of it as a generalised quantifier: a relation between sets. Whereas
“no A B” expresses that the intersection between A and B is empty, “zero A
B” equivalently expresses that the intersection between A and B has cardinal-
ity 0. Given such an account, we would expect not to find any non-pragmatic
differences. As we will show next, however, those predictions are wrong.

2.1 Distributional differences

If “no” and “zero” are equivalent generalised quantifiers, then we would ex-
pect them to have a similar distribution. It turns out, however, that in many
respects, “zero” behaves syntactically like a numeral, not like a quantifier.
A first indication of this is that, like other numerals, it allows NP ellipsis.
In contrast, “no” disallows such ellipsis. Only the full DP “none” can be
anaphoric to cars in (3).

(3) a. John owns four cars. Bill owns zero (*ones).
b. John owns four cars. Bill owns thirteen (*ones).
c. John owns four cars. Bill owns *no / none.

Measure nouns like “litre” and “metre” combine with numerals, and also
with “zero”. Yet, they are infelicitous with “no”:

(4) There are { zero / thirteen / ??no } litres of milk in the fridge.

Ratio expressions like “DP per N” only allow a very specific class of DPs,
especially numeral ones: “they sold { a hundred / *all } tickets per week”.
“Zero” pairs with numerals, not with “no”. For instance:

(5) This drink contains { zero / thirteen / *no } grams of sugar per bottle.

Another environment that is suitable for numerals, also related to ratios, are
ratio comparatives. Here, once more “zero” behaves like other numerals and
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not like “no”. The same goes for multiplicatives, as in (7).

(6) This table is { zero / thirteen / ??no } times longer than that one.

(7) John visited his grandmother { zero / thirteen / ??no } times.

In terms of distribution, then, “zero” appears to behave like a normal nu-
meral. Although we take this to be suggestive of a non-quantificational na-
ture to “zero”, it could of course in principle be that, although “zero” and
“no” are semantically equivalent, they differ starkly in their syntactic require-
ments. That is, in order to show that a quantificational analysis is on the
wrong track, we will have to show that “zero” and “no” differ in important
semantic respects. As we will show next, they do.

2.2 Polarity and NPI licensing

“Zero” and “no” are obviously negative expressions. They differ, however,
with respect to the nature of their negativity. In subject position, negative
quantifiers trigger positive tag questions, just like sentential negation does,
as shown in the following contrasts.

(8) John doesn’t love her, does he/*doesn’t he?

(9) John loves her, doesn’t he/*does he?

(10) No students love her, do they/*don’t they?

(11) Most students love her, *do they/don’t they?

“Zero”, however, pairs with positive quantifiers like “most”, not with “no”,
as was previously noticed by De Clercq (2011).2

(12) Zero people love her, *do they/dont they?

This datum suggests that, in subject position, “zero” contributes a different
semantics of negation than “no”. This is confirmed by the inability of “zero”
to license NPIs. In (14), we show this for the strong NPI “in years”.

(13) No student has visited me in years.

2This is perhaps reminiscent of pairs like “not quite all” and “almost all”, which al-
though similar in meaning differ in terms of their negativity (Horn, 2002; Nouwen, 2010).

(i) Not quite all students love her, do they/*don’t they?

(ii) Almost all students love her, *do they/don’t they?
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(14) *Zero students have visited me in years.

The judgements reported in the literature regarding weak NPIs are not to-
tally consistent. However, what is consistently reported is that there is a
clear contrast between ‘no’ and ‘zero’ in licensing weak NPIs. For instance,
Gajewski (2011) reports the contrast between (15) and (16), giving (15) a
question mark.

(15) No student ever said anything.

(16) ?Zero students said anything.

Zeijlstra (2007) thinks the contrast is clearer and gives (17), a totally parallel
example, a star:

(17) *Zero students bought any car.

If both “no” and “zero” are equivalent negative quantifiers, it is hard to
see how their licensing of tag questions and NPIs can be so different. We
take this fact alone to be sufficient to dismiss an analysis of “zero” as a
negative quantifier. In the next subsection, we will show one further semantic
difference: the scope of negation for “zero” is more flexible than that of “no”.3

2.3 Split scope

In some languages, negative indefinites give rise to split scope (Jacobs, 1980;
Rullmann, 1995; de Swart, 2000; Penka and Zeijlstra, 2005; Abels and Mart́ı,
2010; Penka, 2011). For instance, Dutch “geen” appears to be able to split
into negation and existential quantification, stranding a third operator in the
middle.

(18) Je
you

hoeft
must-npi

geen
geen

stropdas
tie

te
to

dragen.
wear

‘You do not have to wear a tie.’

3There are other polarity-related phenomena that distinguish ‘zero’ from ‘no’ – such as
negative inversion and licensing, (i) and (ii), respectively, as reported in Gajewski (2011).

(i) On no/*zero occasion(s) did he mention my help. (Deprez, 1999)

(ii) No/*Zero students but Bill came. (Moltmann, 1995)

These observations buttress our point that ‘zero’ differs from ‘no’ in terms of polarity. In
the rest of the paper we will focus on NPI licensing as a representative case for polarity
phenomena.
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In English, a similar effect with “no” can be observed in examples like (19)
(Potts, 2000).

(19) The company need fire no employees.
‘It is not the case that the co. is obligated to fire an employee.’

However, as observed by Potts (2000), in English the phenomenon is much
more limited than in other Germanic languages. When the negative polar
modal “need” in (19) is replaced by the neutral “to have to”, no split scope
arises:

(20) The company has to fire no employees.
#‘It’s not the case that the company has to fire an employee.’

Strikingly, however, the version with “zero” does have a split reading.

(21) The company has to fire zero employees.
‘It’s not the case that the company has to fire an employee.’

In summary, the negative force of “zero” differs from that of “no” in two
important respects: (i) it is weaker in the sense that it does not license
sentence negation phenomena like positive tag questions and NPIs; (ii) it is
more flexible in that it can split and scopally interact with other operators.
In the remainder of this article, we will show that these properties follow
once we assume that the semantics of “zero” is parallel to that of (other)
numerals.

3 Numeral semantics

Numerals are not quantificational determiners in the classical generalised
quantifier sense. In particular, it is often remarked that numerals lack quan-
tificational force, as evidenced by minimal pairs like (22) and (23), from Link
(1987).

(22) Three men lifted the piano.

(23) Three men can lift the piano.

While (22) has existential force, (23) is a generic statement about the lifting
capacities of groups of three men. The semantics for the numeral “three”,
then, should be void of existential force, since that existential force must
come from the particular environment that is present in (22) and absent in
(23).
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Most contemporary semantic analyses of numerals assume that numerals
only have indirect quantificational force. We will ultimately propose a se-
mantics of “zero” that is entirely parallel to such existing proposals for other
numerals. Before we can do this, we will need to be very clear about the
underlying assumptions that exist in the literature.

3.1 Non-quantificational views on numeral semantics

We will discuss three prominent views from the literature that are more
or less closely related in the sense that the semantics they propose for the
numeral lacks quantificational force.

3.1.1 The modificational view

On the first analysis, which could be called the modificational view, numerals
are like intersective adjectives, they denote properties (for instance, Roth-
stein, 2016). On this view, the semantics of (22) and (23) first of all concerns
the intersection between three properties: being men, lifting or being able
to lift the table and being 3. This means that at their core they involve the
open propositions in (24) and (25), respectively,

(24) #x = 3 ∧ ∗man(x) ∧ ∗lift-the-piano(x)

(25) #x = 3 ∧ ∗man(x) ∧ ♦∗lift-the-piano(x)

Here, the cardinality information is given as a property of the variable x:
#x = 3 says that x is a group consisting of three atomic entities. If x has
this property of being 3-many, then x must obviously be an complex entity,
a so-called plural individual. This is why the predicates man and lift-the-
piano are lifted to properties of plurals, using the ∗ operator. (See below).

For the respective existential and generic force, external quantifiers are
introduced to yield (26) and (27), respectively.

(26) ∃x[#x = 3 ∧ ∗man(x) ∧ ∗lift-the-piano(x)]

(27) Genx[#x = 3 ∧ ∗man(x) ∧ ♦∗lift-the-piano(x)]

(We will not have much to say about how this quantificational force comes
about, and in what follows, we ignore generic uses completely.) The modifi-
cational view derives these meanings by analysing numerals as denoting sets
of equally sized individuals. For instance:

(28) [[three]] = λx.#x = 3
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This says that “three” denotes the set of all complex entities that consist of
exactly 3 atoms. Just like the combination of a noun and an (intersective)
adjective like “yellow” is interpreted as the intersection between their two
extensions, numeral-noun combinations are interpreted via intersection, too.

(29) [[three men]] = λx.#x = 3 ∧ ∗man

According to (29), “three men” is a set denoting indefinite. It is subject to
whatever future compositional operations other indefinites are subject too,
like gaining existential force from elsewhere.

3.1.2 The degree type view

On a closely related view, numerals do not express properties, but rather
directly express cardinalities (Hackl, 2000). For instance:

(30) [[three]] = 3

The connection between the noun phrase and the numeral is mediated by a
silent counting quantifier “many”. We will follow Hackl (2000) and many
others in assuming that many simultaneously allows the numeral to express
the cardinality of something and introduces existential force.4

(31) [[many]] = λn.λA.λB.∃x[#x = n ∧ ∗A(x) ∧ ∗B(x)]

This says that silent many expresses a determiner that takes a number and
two properties and returns the proposition that there exists a group of that
number that has both properties. For instance, “three men lifted the piano”
is analysed as [[[three many] men] lifted the piano], resulting in:

(32) ∃x[#x = n ∧ ∗man(x) ∧ ∗lift-the-piano(x)]

This result is exactly the same as what we arrived at via the modificational
account. Importantly, the result represents an at least reading for the nu-
meral: (32) says that for some group of three it is the case that this group
consists of piano-lifting men, but it does not exclude the possibility that
more men lifted the piano. This is a welcome prediction, since “three men
lifted the piano” is consistent with more men doing so, as evidenced by the
contrast between (33) and (34):

(33) Three men lifted the piano, if not more.

4This means that special arrangements are in order to account for the generic readings.
While it is easy to sever the quantificational force from the cardinality function, the proper
account of generic readings is far from straightforward. See Buccola (2017) for discussion.
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(34) Exactly three men lifted the piano, #if not more.

This is not to say that “three” is not regularly interpreted to mean exactly
three. One would have to posit some additional mechanism, like that of a
scalar implicature (see below), to strengthen (32) into such a reading.

3.1.3 The de-Fregean view

The third account of numeral semantics we discuss goes in the opposite di-
rection. It takes the exactly reading as basic and derives the at least reading
evidenced in (33) via an extra mechanism. Kennedy’s so-called de-Fregean
account (2015) also makes use of the counting quantifier many, but rather
than having numerals denote numbers directly, they denote quantifiers over
numbers. If we take cardinalities to be of the type of degrees, d, then numer-
als are not simply of that type, but rather of type 〈〈d, t〉, t〉. On this account,
“three” expresses a property of sets of numbers: it is true only of those sets
of numbers that have 3 as their maximum.

(35) [[three]] = λP.max(P ) = 3

Since many takes a number as its argument and numerals provide a degree
quantifier, the numeral will have to raise, leaving behind a trace of type
d. For our running example, “Three men carried the piano”, we get the
structure in (36) and the interpretation in (37).

(36) [ three [ λi [ [ [ ti many ] men ] carried the piano ] ] ]

(37) max(λi.∃x[#x = i ∧ ∗men(x) ∧ ∗lift-the-piano(x)]) = 3

Here, the maximality operator looks at a set that collects those numbers i
such that there are at least i men lifting the piano. In a world in which
exactly three men (each) carried the piano, this set is going to be {1,2,3}.
The maximum will then be 3 and the sentence is correctly predicted to be
true. In case there are more men lifting the piano, the maximum will be
higher and the sentence is predicted to be false. This means that (37) is the
exactly reading of the numeral. Kennedy’s route to derive the at least reading
involves type shifting the degree quantifier λP.max(P ) = 3 to the degree
denoting 3. From there, the at least reading is derived straightforwardly in
combination with many, just like it was in the account that takes the degree
meaning as basic. Note that this account, like the two accounts described
above, does not encode quantification over individuals in the semantics of a
numeral – it is part of the meaning of many, like in the degree type view.
Two differences between this analysis and the other two are that, 1) the
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semantics of statements with numerals under this account is a statement
about a set of degree intervals – in particular, a set of intervals that share a
particular maximum; 2) the exactly meaning is basic and not derived from
the at-least reading. These two differences will be important for ‘zero’.

3.2 Numerals and plurality

Because in all these views the cardinality information provided by a numeral
is thought to be the property of an entity (as in #x = n), the semantics
of numerals is intrinsically related to semantic plurality. Clearly, singular
entities cannot have the property “thirteen”, only plural entities, i.e. so-
called pluralities, can. Because our argument will be that “zero” is important
to semantic plurality, it is worthwhile to be a bit more specific about the
assumptions on semantic plurality.5

Pluralities are made of atoms. In particular, if a and b are two atomic
entities, then there exists a plural entity a t b, the plurality that consists of
nothing but a and b, or, the sum of a and b. In general, for any set of entities
X, there exists an entity tX whose parts are the elements of X as well as
their parts, while nothing else is part of that individual. So, t{john,mary}
is johntmary and t{john tmary, sue, ann} is john tmary t sue t ann.

Following Link (1983), we write ∗ for the operator that allows us to map
any set to the set of all pluralities that can be built from the elements of this
set.

(38) ∗Z = {tX | X ⊆ Z & X 6= ∅}.

5Note that what we are interested in is the relation between “zero” and semantic plu-
rality. There are some very interesting questions regarding morphosyntactic plurality that
are outside the scope of this article. One such issue is the cross-linguistic variation in
number marking on a noun that “zero” combines with. In languages that have different
number marking on the noun depending on the numeric value on the numeral (singular
with 1, plural with the rest), “zero” patterns with numerals higher than 1. An example
of such language is English, and the majority of Indo-European (we don’t have complete
data). Why does number marking with “zero” in these languages pattern with higher nu-
merals rather than with “one”? We believe that this is not a semantic issue. Semantically
speaking, both the nominal and the VP predicate in sentences with numerals are plural,
as seen from our denotations throughout the paper. The inevitability of semantic plurali-
sation for statements about cardinality makes morphological marking of plurality logical
– but also excessive. In English-like languages, numerals more often than not require the
noun to be marked for plural, which makes numeral “one” an odd exception that requires
explanation. In other languages, however – one example being Turkish – nouns are sys-
tematically morphologically singular in combination with numerals. In such languages,
“zero” also combines with a singular noun. For a defence of a syntactic agreement view
on number marking on nouns with numerals, see, for example, Krifka (2003).
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a b c d

a t b a t c b t c b t d a t d c t d

a t b t c a t b t d a t c t d b t c t d

a t b t c t d

⊥Figure 1: The set of pluralities ∗{a, b, c, d}

This operation is illustrated in figure 1. The arcs between the nodes corre-
spond to inclusion, @, when read from bottom to top. So, a @ a t b, and
a t b @ a t b t c.6

The operation ∗ is essential to explain how predicates that are incompat-
ible with group action can nevertheless combine with plural arguments. For
instance, breathing is a property of atoms only and so, one would expect that
its extension only contains atoms, this in contrast to collective predicates
like “to meet”. However, if “to breathe” is true only of atoms, how come
we can truthfully state that “John and Mary are breathing”? The answer
is that in this case the predicate is pluralised using ∗. If B is the set of
breathing atoms, and if that set includes both John and Mary, then ∗B will
include john t mary. “John and Mary are breathing” is true if and only if
the plurality john tmary is indeed a member of ∗B.

Once we have plural individuals in this way, we can also express numerical
properties. In figure 1, there are four layers. The bottom layer is the layer
of atoms, entities of cardinality 1. The layer above that has the pluralities
of cardinality 2, and so forth.

The definition we provided for ∗ is the one commonly assumed in the
literature. It explicitly excludes the sum of the empty set. Formally, this
makes the resulting structure a so-called semi-lattice.

The sum of the empty set is an individual that has no proper parts. It is
the bottom element in a full lattice.7 We will write this element as ⊥ and,

6Moreover, not shows in the diagram, a @ a t b t c. That is to say, the t relation is
transitive.

7The crucial property of semi-lattices is that for any two individuals in the semi-lattice,

11



a b c d

a t b a t c b t c b t d a t d c t d

a t b t c a t b t d a t c t d b t c t d

a t b t c t d

⊥

Figure 2: The set of pluralities ×{a, b, c, d}

so, t∅ = ⊥. Correspondingly, we could have suggested a way of forming
pluralities from a set Z that includes the sum of the empty subset of Z. We
will write this operation as ×:

(39) ×Z = {tX | X ⊆ Z}

This operation yields the full lattice in figure 2, which is exactly the same
as the semi-lattice in figure 1 except that it has this extra element, which
turns out to be a proper part of any other entity in the structure. Crucially
for our argument, while the semi-lattice in figure 1 only allows us to express
cardinalities of 1 or more, the full lattice of figure 2 contains an entity of
cardinality 0 as well.

For most scholars, the choice between a semi-lattice domain and one in
the shape of a full lattice is purely cosmetic: since the bottom element has
no obvious use, it is easier to do without it. As Landman (1991) explains:

the sum of these individuals is also in the lattice. To qualify as a full rather than a semi-
lattice, the mirror image operation to summation, u or meet, should also always result
in individuals in the lattice. The meet operation returns what two individuals have in
common: it is the biggest entity that is part of both individuals. For instance, (atb)ub = b.
For a set of atoms Z, ∗Z is not a full lattice, though, because the meet of two distinct
atoms is not in ∗Z. The meet of two distinct atoms, a u b, is precisely ⊥, since this is the
biggest element that is a part of both a and b. In other words, to go from a semi-lattice
structure to a full lattice structure, one has to assume the existence of a bottom element.
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“In a full [lattice] we have this 0 element. In all the important definitions,
we want to apply our concepts to singular or plural individuals, excluding
0. This means that we have to add exclusion clauses (x 6= 0) to all of them.
Assuming from the start that 0 is not there, will make the definitions simpler
and more readable.” (p. 302).

A straightforward illustration of the consequences of including ⊥ comes
from bare plurals. Intuitively, a sentence like (40) should receive an analysis
along the lines of (41).

(40) There are typos in the text.

(41) ∃x[∗typo(x) ∧ ∗in-the-text(x)]

This simply says that the text is not without typos. But what would happen
if we applied × instead of ∗, as in (42)?

(42) ∃x[×typo(x) ∧ ×in-the-text(x)]

It turns out that this is a tautology. The reason for this is that for any
predicate P , it is true that ×P (⊥). This is because the empty set is a subset
of the extension of P no matter what that extension is. Consequently, ⊥, the
sum of ∅, is a member of the extension of ×P , no matter what P denotes. It
follows that there will always be an x such that ×typo(x)∧×in-the-text(x),
just take x = ⊥.

3.3 Numeral “zero”

If we want to maintain that “zero” is numeral, a significant dilemma emerges.
On the one hand, if we maintain the dominant choice in the literature of
adopting ∗, we have no hope of doing justice to “zero”, since it expresses
0 cardinality, a concept that is not defined in the semi-lattice obtained by
applying ∗. On the other hand, if we go against the grain and adopt ×, then
it turns out that sentences with “zero” inherit the problem we just observed
for bare plurals: we wrongly predict them to be tautological (and, as we will
see below, other problematic cases of the same kind can be found).

We first illustrate this dilemma using the degree denoting account of
numerals. On such an account, we would interpret “zero” as in (43).

(43) [[zero]] = 0

In combination with many, it yields the determiner meaning in (44):

(44) λA.λB.∃x[#x = 0 ∧ ∗A(x) ∧ ∗B(x)]
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Given this, “zero students passed the test” is assigned the truth-conditions
in (45).

(45) ∃x[#x = 0 ∧ ∗student(x) ∧ ∗pass-the-test(x)]

This is a contradiction. Since on the assumption that there is no ⊥, there is
no entity with zero quantity, and any proposition of the form ∃x[#x = 0 ∧ϕ]
is contradictory. This is, of course, an unwelcome result. We can very well
imagine what it is like for it to be true that zero students passed.

Using a full lattice, the result is not much better, however.

(46) ∃x[#x = 0 ∧ ×student(x) ∧ ×pass-the-test(x)]

No matter what the extensions of student and pass-the-test is, the full lattices
formed by applying × to them is always going to contain ⊥. So, (46) is always
true: just take x = ⊥.

Note that the modificational view, on which “zero” would denote the
property of having 0 cardinality (λx.#x = 0) fares just as badly, simply
because it would also assign (45) or (46) to “zero students passed the test”.8

“Zero” creates a problem for the degree quantifier account (Kennedy,
2015) as well, although this problem comes about in a somewhat different
way. On that view, the sentence ‘Zero students passed the test’ would yield
(47) or (48).

(47) max(λi.∃x[#x = i ∧ ∗student ∧ ∗pass-the-test]) = 0

(48) max(λi.∃x[#x = i ∧ ×student ∧ ×pass-the-test]) = 0

In a world with no students passing the test, the set operated on by the maxi-
mality operator in (47) differs from that in (48). The former is the empty set.
Since there is no student passing the test, there is also no number such that
at least so many students passed the test. Assuming maximality is unde-
fined for the empty set, the sentence is wrongly predicted to be semantically
ill-formed.

In contrast, (48) yields the right truth-conditions.9 In a world without

8On this account, failing to include ⊥ means that “zero” denotes the empty set. If we
do include it, it denotes {⊥}.

9One could suggest that instead of changing ∗ for × one could change the max function
for a function that is defined on the empty set and returns 0 in such case. Such a function
indeed exists: this would be the supremum function sup. Changing max for sup could
give us 0 without introducing ⊥, because of the way it is defined: sup({}) = 0. However,
introducing sup as part of meaning of numerals in the place of max will cause problems
elsewhere. Consider the following scenario: You are allowed to take any amount of luggage
on the flight as long as it’s under 20kg, in other words, the allowance is an open interval
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passing students, there is exactly one entity that is a student and passed the
test, namely ⊥. That entity has cardinality zero, and, so, the maximality
operator will be applied to the set {0}, the maximum of which is 0. In any
other kind of world, there will be entities that are students who passed the
test of higher cardinality, and so the sentence is correctly predicted to be
false in such worlds.

As they stand, things are not promising: While in section 2, we presented
arguments that “zero” is not a quantifier, we now have seen that giving “zero”
a numeral semantics creates a myriad of problems. On the modifier and
degree approaches, only non-informative readings are generated. Under an
exactly analysis using the degree quantifier meaning for numerals, semantic
ill-formedness is wrongly predicted, unless we assume the existence of the
bottom element. It is not clear what consequences such an assumption has.
As we will show next, however, once we take exactly readings of numerals
into account and derive them from at least readings, things start falling into
place.

4 Proposal for “zero”

As we will argue now, the dilemma posed by numerical accounts can be
resolved once we take into account the fact that numerals alternate between
at least and exactly readings, and once we allow the exactly reading to be
derived from the at least one. In fact, in this section we will show that the
numeral analysis precisely predicts the way “zero” is of different polarity
than “no”.

4.1 Tautological semantics and exhaustification

Recall that on an at least reading account of numerals (both on the modifi-
cational and the degree-denoting account), (49) can be given the semantics
in (50).

(49) Zero many students passed the test.

(50) ∃x[#x = 0 & ×student(x) & ×pass-the-test(x)]

[0,20). The claim ‘You are allowed to bring 20kg of luggage’ would still be false, even
though sup[0, 20) = 20. This is clearly an unwelcome result.

Another possibility would be to stipulate that max(∅) = 0 and leave the max function
otherwise unaltered. Using such a stipulation, (47) then expresses the correct truth-
conditions, just like (48) does. However, it also inherits the issues we discuss below.
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As we explained, as it stands this is a trivial statement: it irrespective of
how many students passed, since the bottom element is true of any predica-
tion ×P . This means it is an at-least meaning, compatible with there being
a y s.t. #y > 0 & ×student(y) & ×pass-the-test(y). And, so, in other
words, (50) says that zero or more students passed the test.

Like with other numerals, however, an exactly meaning can be derived
from the at-least meaning by exhaustification. Here, and in what follows,
we will assume that this meaning comes about via a silent operator exh.
Nothing much depends on this assumption, however. We could have equally
assumed that the exhaustification effect is not represented syntactically and
is a pragmatic quantity implicature.

Since at sentence-level “zero” means “zero or more”, other numerals offer
stronger statements (“one or more”, “two or more” etc.). Exhaustification
denies all such stronger statements (the meaning component added by ex-
haustification is underlined):

(51) [[exh Zero student passed]] =
∃xe[ #x = 0 & ×student(x) & ×pass-the-test(x) &

¬∃ye [#y > 0 & ×student(x) & ×pass-the-test(x)] ]

This now states that there are zero or more students that passed the test,
but that there are not more than 0. In other words, the number of passing
students is exactly 0: everyone failed.

Unlike other numerals, “zero” invokes exhaustification obligatorily. This
is for purely pragmatic reasons. Quite simply, statements with “zero” are
semantically defective without exhaustification. On our syntactic view on
exhaustification, interpretation of a sentence with “zero” always yields two
meanings, a defective one derived without exh and a non-defective one with
exh. That latter meaning will always be the only one to surface (provided
it is not itself defective for independent reasons).

In contrast to other scalar implicatures, the “not more than 0” component
of exhaustified “zero” does not disappear in embedded contexts. While (52)
strongly implicates that John does not take both sugar or milk, (53) does
not just mean that nobody takes both sugar and milk. Instead, it means the
stronger nobody takes either. This is standard behaviour for scalar terms.
Weak scalar terms, like disjunction, trigger implicatures to make them more
informative. Yet, in certain embedded positions, like in the scope of negation,
for instance, their weak semantics ends up being very strong because of the
scale reversal introduced by the higher operator. Weak scalar terms are
strong in downward entailing context and this is why they fail to trigger
implicatures in such contexts.
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(52) John takes sugar or milk.

(53) Nobody takes sugar or milk.

(54) Nobody read zero books.

The example in (54) differs from (53) in that the exactly implicature is still in
place, even though “zero” is in the scope of a downward entailing operator.
This is simply because in contrast to other scalar terms, the semantics of
“zero” is not more informative in downward entailing contexts. For instance,
the negation of a tautology is just as defective as the tautology itself.

Crucially, having exhaustification rescue the defective semantics of “zero”
does not mean that “zero” effectively means the same as “exactly zero”. This
is because the exhaustification effect will in some cases happen at a distance.
In fact, we have already seen an example of this, when we discussed split
scope in section 2. For (55), we observed it had a reading paraphrasable
as the company does not have to fire any employees. We obtain this reading
straightforwardly, by exhaustifying at the top level, above the modal verb, as
in (56). Here, once more, the first conjunct (the non-exhaustified semantics)
is tautological. It is the exhausification effect, the second conjunct, that
shapes the meaning of this statement.

(55) The company has to fire zero employees.

(56) �∃x[#x = 0 ∧ ×employee(x) ∧ ×fire(theC, x)] ∧
¬�∃x[#x > 0 ∧ ×employee(x) ∧ ×fire(theC, x)]

Our observation for (55) is parallel to any similar examples with any other
numerals, like for instance, (57).

(57) The company has to fire three employees.

On its most salient reading, this means that the company needs to fire three
or more employees, but that there is no requirement to fire more. Of course,
here too, this is accounted for straightforwardly in terms of a sentence-level
scalar implicature. In other words, “zero” yields split scope readings just like
other bare numerals do.

As we reported in section 2, (58) differs from (55) in that is fails to yield
a split scope reading.

(58) The company has to fire no employees.

This is to be expected given that “no” is the end point of a scale and, thus, no
exhaustification effects can occur. The fact that in other languages (Dutch
and German, for instance) parallel examples to (58)do give rise to split scope,
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means that there must be more than one split scope phenomenon.
Note that split scope readings can be captured under the degree quantifier

analysis without our current assumption that the exactly meaning is derived
from at least meaning – simply by quantifier raising of the numeral above the
modal verb:

(59) [[The company has to fire three many employees]] =
[[three]](λn.�∃x[#x = n ∧ ×employee(x) ∧ ×fire(theC, x)]) =
max(λn.�∃x[#x = n ∧ ×employee(x) ∧ ×fire(theC, x)]) = 3

These truth-conditions capture the split-scope reading – the lack of obligation
to fire more than three employees, a reading derived in this case without the
combination of at least meaning and scalar implicature.

As such, all three approaches to the semantics of numerals now allow us to
derive the right truth-conditions while at the same time offering an account
for the split scope readings with “zero”. However, as we will now see, there
is a crucial difference between at least and exactly-semantics-based analyses.
This difference concerns one of major differences between “zero” and “no”:
polarity.

4.2 “Zero” and negative polarity items

As we observed in section 2, “zero” appears not to be able to license negative
polarity items, in contrast to “no”. As we will explain in this section, with
adopting an at least semantics for “zero” and other numerals provides a
way to approach this contrast. Under that view we adopted above, “zero”
differs semantically from “no” in that its negative effect comes about via
exhaustification. As we will show, this difference can indeed account for
the differences in NPI licensing – unlike the exactly-based degree quantifier
semantics. Let us first introduce our assumptions.

Traditionally, NPIs are thought to be licensed in downward entailing (DE)
environments (Ladusaw, 1979). We follow Gajewski (2011) in assuming that
an NPI is licensed when the environment it occurs in is DE. Assuming an
exhaustification operator as we have done above, this licensing condition has
two parts:

(60) Two licensing conditions for NPIs (Gajewski, 2011)

Given a structure [α exh [β . . . [γ NPI ] . . .]]:
Condition 1: the environment γ is DE in β
Condition 2: the environment γ is DE in α
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These two conditions are needed to account for differences between weak
NPIs (for instance, “any”) and strong NPIs (for instance, “either”, “to lift a
finger”).

(61) a. Weak NPIs are subject to Condition 1.
b. Strong NPIs are subject to both Condition 1 and Condition 2.

To illustrate, consider the case of “few”. “Few” licenses weak NPIs, as in
(62), but not strong ones, (63).

(62) Few students read any books by Auster.

(63) *Few students visited me in years.

“Few” is downward entailing in its second argument. If it is true that “few”
students read City of Glass, then it will also be true that “few” students
read City of Glass twice. For any statement “few A B” there is a stronger
alternative statement “no A B”, though. This means that the exhaustified
meaning of “few A B” will make it false that “no A B”. In other words, after
exhaustification “few” is no longer downward entailing. If nobody read City
of Glass twice, then “few students read City of Glass” is true on the non-
exhaustified and false on the exhaustified reading. In terms of Gajewski’s
licensing conditions this means the following (assuming no polarity reversal
intervenes between “few” and the NPI:

(64) [α exh [β Few NP . . . [γ NPI ] . . .]]

a. γ is DE in β
b. γ is not DE in α

Given the distinction in licensing conditions between weak and strong NPIs
stated in (61), this setup now correctly predicts that “few” licenses weak,
but not strong NPIs.

If we apply this approach to “zero”, we are not immediately going to
be successful. Given our at least+exh semantics, “zero” creates the follow-
ing entailment patterns. (Again we are assuming nothing affecting polarity
intervenes between “zero” and the NPI.)

(65) [α exh [β Zero NP . . . [γ NPI ] . . .]]

a. γ is DE in α
b. γ is DE in β

“Zero” is clearly downward entailing after exhaustification. If exactly 0 stu-
dents read City of Glass, then exactly 0 students read it twice. The non-
exhaustified version is a bit trickier. On our approach, “zero” has a defective
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semantics. Any statement of the form “zero A B” is – without exhaustifica-
tion – a tautology. In other words, “zero A B” is a tautology, but “zero A
C” is also a tautology, irrespective of our choices of A, B, and C. Let > be
the tautological proposition, the proposition that is always true. Obviously,
> entails >. Now choose B and C such that the extension of C is proper
subset of that of B. Since “zero A B” and “zero A C” both express >, they
entail each other. Since the extension of C is contained in that of B, “zero”
must be both downward entailing and upward entailing.

Given the situation in (65), we wrongly predict “zero” to license both
kinds of NPIs. It is well-known, however, that the requirement of being in
a downward entailing environment is at times too lax. In quite a few places
in the literature, it is suggested that not only should NPI environments be
downward entailing, they should also not be upward entailing (Progovac, 1993;
Lahiri, 1998; Gajewski and Hsieh, 2014; Barker, 2017). One illustration of
this comes from singular definite descriptions. Since definite descriptions
are presuppositional, the relevant notion of entailment we need is so-called
Strawson entailment (Von Fintel, 1999). A premise Strawson-entails a con-
clusion, if the premise together with the presuppositions of the conclusion
entail the conclusion. Given such a definition, the restrictor argument of a
singular definite description is Strawson DE, as illustrated in (66).

(66) The student read City of Glass. premise

There is a unique and salient happy student. presupposition of conclusion

The happy student read City of Glass. conclusion

Given the above setup, it would now be predicted that definite descriptions
license (at least weak) NPIs. They do not:

(67) *The student that attended any class read City of Glass.

However, the restrictor argument is not just downward but also upward en-
tailing (Lahiri, 1998).

(68) The happy student read City of Glass. premise

There is a unique and salient student. presupposition of conclusion

The student read City of Glass. conclusion

Given such observations, we can revise our earlier statement of NPI licens-
ing conditions, replacing downward entailingness by non-trivial downward
entailingness (NTDE), i.e. being downward, and not upward entailing.

(69) Two licensing conditions for NPIs (revised)
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Given a structure [α exh [β . . . [γ NPI ] . . .]]:
Condition 1: the environment γ is non-trivially DE in β
Condition 2: the environment γ is non-trivially DE in α

If we now return to “zero”, we see the following:

(70) [α exh [β Zero NP . . . [γ NPI ] . . .]]

a. γ is NTDE in α
b. γ is DE but not NTDE in β

In other words, the case of “zero” is exactly the opposite of the case of
“few”. Whereas the latter met condition 1 but not condition 2, “zero” meets
condition 2 but not 1. Since both kinds of NPIs are subject to condition 1,
we now correctly predict that “zero” licenses no NPIs of any kind.

Our account of the lack of NPI licensing by “zero” is dependent on our
assumption that numerals comes with an at least semantics, which is turned
into an exactly meaning by the additional operation of exhaustification. If
we had assumed that the exactly meaning is basic, then we would have had
no account of the NPI licensing contrast between ‘zero’ and ‘no’, since “zero”
is non-trivially downward entailing on that reading.

In other words, two crucial ingredients have allowed us to explain the
polarity profiles of “zero”: (i) the at least semantics of numerals; (ii) the
inclusion of ⊥ in the domain of entities.10 The first of these is relatively
uncontroversial. The second, as we have hinted above, is potentially prob-
lematic. For that reason, we now turn to the consequences of that second
assumption.11

10A relatively simple modification would turn the degree quantifier analysis into an
at least analysis for numerals, by adopting the semantics λP.max(P ) ≥ n for numeral n
instead of λP.max(P ) = n. However, such a move would go against the motivation behind
at least approaches to numeral semantics. On the modificational and degree account that
we introduced in sections 3.1.1 and 3.1.2 the lower bounded semantics is built from the
combination of exactly cardinality function #x = n and existential quantification. This
allows these approaches to account for exactly readings of numerals in predicative position,
as in “We are three”, where existential quantification is absent. The same holds for other
contexts in other non-existential contexts, like for instance “the three boys”. A lower-
bounded degree quantifier analysis would leave these cases unaccounted for.

11Although we believe that the contrast between NPIs with ‘zero’ and ‘no’ is solid,
occasional examples of strong NPIs with ‘zero’ can be found, usually with heavy stress on
‘zero’. (We thank Daniel Lassiter for pointing out such examples to us.)

(i) Yes, you heard us right, ZERO payments until July 2016!

It could be that “zero” with heavy stress is at times reanalysed as “exactly zero”, without
the need of an additional exhaustification operator.
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5 The bottom entity and triviality

With the assumption of the existence of a 0 quantity bottom entity, the
at least semantics of “zero” becomes trivial. As we argued above, the ob-
served polarity behaviour of “zero” follows from how this triviality is over-
come. Even thought, semantically, statements with “zero” are tautological,
the scalar inferences they generate are not.

However, whereas we argued that triviality is a core part of how “zero”
works, the inclusion of ⊥ leads to triviality much more generally. We need
to now make the case that our proposal does not cause spurious triviality
outside the domain of 0 numerals.

The first case to consider is that of bare plurals. If we simply interpret
them as existential statements, using ∃, then triviality emerges. For instance,
(71) when interpreted as (72) is predicted to be a tautology.

(71) There are typos in the manuscript.

(72) ∃x[×typo(x) ∧ ×in-the-manuscript(x)]

Since ⊥ is in the extension of any predicate pluralised with ×, any statement
of the form ∃x[×P (x)] will be true in any model.

We do not think this is a particularly serious problem. Since × renders
∃ no longer truly existential, we simply need a new, properly existential
quantifier, combining ∃ with non-emptiness. Call this operator E, defined as
in (73). The form in (74) is now the proper analysis of (71)

(73) Ex[ϕ] :⇔ ∃x[#x > 0 ∧ ϕ]

(74) Ex[×typo(x) ∧ ×in-the-manuscript(x)]

Importantly, whatever is responsible for introducing the existential entail-
ment represented in (74), it will have to be different from the mechanism
that introduces existential quantificational force for numerals. Obviously, if
we were to use E as the existential force of “zero”, statements with “zero”
would be predicted to be unsalvageable contradictions. If we want to main-
tain the assumption that there is only one kind of existential closure for all
indefinite-like DPs, including numeral-noun combinations and bare plurals,
then we would have to assume that the latter come with an empty determiner
that contributes the exclusion of the bottom element.

It is important to point out, however, that it is not the case that ⊥ is
semantically excluded from the interpretation from all expressions, except
for numerals. A plural definite description “the X” will refer to ⊥ in worlds
in which the extension of X is empty. So, (75) is predicted to be true in a
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situation without Australian students.

(75) The Australian students left the room.

This surely seems like an odd prediction to make and it is therefore tempting
to conclude that the definite article must somehow semantically exclude the
empty entity. Landman (2011), however, argues that in these cases ⊥ is
excluded pragmatically via domain restriction. The definite description in a
sentence like (75) is analysed along the lines of (76), where A is the set of
Australians, S is the set of students and C is the contextual set of entities.

(76) that unique x ∈ tA∩tS ∩C such that there is no y in the same set
such that x is a part of y

Landman now suggests that C may or may not include the bottom entity.
The interpretation of (75) is only non-trivial in case it does not. A pragmatic
principle may help steer clear of tautological readings. Landman proposes
the following maxim:

(77) Avoid Triviality: A contingent statement is better than a trivial
one. (Landman, 2011, p. 14)

If the avoidance of triviality is pragmatic in nature, then we should be able
to observe trivial readings in certain context. Landman mentions a few cases
like that. In (78), he describes the relevant context as “Suppose I stand
trial for fraud, and I say [(78-a)] to the judge, but add sotto voce [(78-b)] to
you:”12

(78) a. Your honor, the persons who have come to me during 2004 with
a winning lottery ticket have gotten a prize.

b. Fortunately, I was on a polar expedition the whole year.
(Landman, 2011, ex. 2)

Note in particular the contrast to (79), which is fully infelicitous, as is to be
expected on the assumption that the singular restricts the domain to atoms
and, thus, semantically excludes the bottom entity.

(79) a. Your honor, the person who has come to me during 2004 with
a winning lottery ticket has gotten a prize.

b. Fortunately, I was on a polar expedition the whole year.

12Gajewski and Hsieh (2014) tentatively follow Landman’s suggestion that plural definite
descriptions include the bottom entity in their domain to account for the licensing of NPIs
in the restrictor of plural definites.
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(Landman, 2011, ex. 9)

Inclusion of the bottom element in the denotation of plural predicates
has effect on one more class of expressions: downward monotone degree
quantifiers – expressions like “fewer than ten”. These expressions, quite
like bare numerals under Kennedy’s (2015) analysis, denote sets of degree
intervals. For instance, [[fewer than ten]] takes a property of numbers as its
argument and states that there is no number ≥ 10 that has this property:

(80) [[fewer than ten]] = λP〈d,t〉.max(P ) < 10

(81) [[Fewer than ten many students passed the test]] =
max(λi.∃x[#x = i ∧ ×student ∧ ×pass-the-test]) < 10

Something that hasn’t been noticed before is that unless we assume the
bottom element, “fewer than ten” will not be downward monotone – the
sentence “Fewer than ten students passed the test” will fail to come out true
in a situation where no students passed the test. In such a situation, the
bottom element will be the only element in the intersection of ×student and
×pass-the-test. Then, the interval defined in (81) will contain one number
– namely, 0. 0 is indeed smaller than 10, and thus the sentence will come out
true under the ⊥ assumption, as desired. Without ⊥ (i.e., using ∗ instead of
×), the situation with no students passing the test will not make the sentence
in (81) true and will make “fewer than ten” non-downward-monotone – not
supporting downward scalar inferences. The same reasoning holds for all
downward monotone degree quantifiers without existential entailment – with
or without existential implicatures: “fewer than”, “at most”, “few”, etc.

As we have argued, the inclusion of ⊥ in the domain of entities, although
unorthodox, is not as problematic as it looked at first sight. In fact, it may
be that analyses of numerals and modified numerals cannot do without this
assumption.

We have assumed that ⊥ enters into the semantics via semantic plurali-
sation. All our examples were distributive, however, and, so, there is a clear
alternative way of introducing the bottom element, not via pluralisation, but
rather via some overt distributivity operator.13 As (Buccola and Spector,
2016) show, the exact mechanism behind the creation of the full lattice is
worthwhile future research. They observe that collective predicates, unlike
distributive ones, come with an existential entailment – and therefore, there
is a contrast between examples with modified numerals such (82-a), with
distributive predicates, and those like (82-b), with collective predicates:

13On quite a few accounts, distributivity is pluralisation. See, however, the discussion
in Scha and Winter (2014) and Nouwen (2016).
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(82) a. Fewer than 100 students passed the test.
b. Fewer than 100 soldiers surrounded the castle.

According to them, only the latter, but not the former, entails that at least
one (non-empty) individual satisfies the VP predicate. Distributive predi-
cates thus seem to have ⊥ in their denotation, while collective predicates
seem to lack it.

If this is indeed the case the following dilemma emerges: either a bottom
element is, as we suggested in this paper, an inherent part of the denotation
of all plural predicates (formed by ×) that is somehow removed from the
denotation of collective ones – or plural predicates systematically lack ⊥
in the denotation (and are thus formed by ∗), and then it is added by a
distributivity operator that is distinct from a pluralisation operator.

To resolve this dilemma, one has to look for cases that require the presence
of the bottom element – but do not involve distributive predicates. “Zero”
can provide exactly the case needed. If sentences with “zero” and collective
predicates are well-formed and can be judged true in a scenario where no
(group) individual satisfies the collective predicate, this could be seen as
argument against introducing ⊥ by the distributivity operator:

(83) Zero soldiers surrounded the castle.

Unfortunately, the judgements concerning such cases are not clear to us, and,
for that reason, we leave this dilemma for future work.

6 Conclusion

We have conducted the first in-depth study of the semantics of “zero”. As we
have hinted at in several places above, the semantic literature has occasionally
touched upon the relevance of “zero” to matters of negation and polarity
licensing. We have built on some of the observations already present in
the literature, and have offered a predictive account of these that is fully
conservative in the sense that we give “zero” a numeral semantics, just like
other number words. In addition, we have shown that “zero” is not just
relevant to matters of negation, but also to plurality and, in particular, to
assumptions about semantic ontology.
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