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1. Introduction

One of the most contested debates in phonology concerns identifying factors that affect typology.
Two lines of thought emerge in this discussion: Analytic Bias (AB) and Channel Bias (CB) approaches
(Moreton, 2008). The AB approach claims that cognitive biases in learning influence the typology,
while the CB approach assumes phonetic precursors and transmission of language affect the typology
(Moreton, 2008).

Both approaches are supported by empirical evidence. Phonological processes that are typologically
rare have been shown to be more difficult to learn or their learning requires more input data (e.g. Wilson,
2006; White, 2014, and many others; for a survey, see Moreton & Pater, 2012a,b). On the other hand,
processes that result from phonologization of phonetically motivated sound changes with clear phonetic
precursors are also typologically more frequent (Blevins, 2004).

While an increasing body of work acknowledges that both AB and CB influence the typology
(Moreton, 2008), very few attempts have been made to model the two approaches together: research
either focuses on one or the other factor (Blevins, 2004; Kiparsky, 2006; Wilson, 2006; White, 2017,
i.a.). This paper aims to fill this gap and proposes a model of phonological typology that models both
AB and CB influences together. I argue that this unified model performs better in deriving the surface
typology and has an advantage over the current “split” models in that it encodes not only that some
processes are rare and others more frequent, but also why such typological differences arise.

The first step in the direction of the new typological model are quantitative models of the two
sub-components: AB and CB. While several attempts have been made to quantify and model learning of
phonology (AB; Wilson, 2006; White, 2017), quantitative approaches to CB have received less attention.
The most recent attempt in Cathcart (2015) is computationally too demanding and fails to provide
implementable quantitative results. In the first part of this paper, I present and expand on a new model of
typology within the CB approach that introduces the concept of Historical Probabilities of Alternations
(P,) (from Begus, 2016). In the second part, I propose a model of typology that admits both CB and
AB and employs the Maximum entropy probability distribution over candidates (Goldwater & Johnson,
2003) to derive typological probabilities. The new model of typology combines Historical Probabilities
of Alternations introduced here with the learnability metric adapted from Wilson (2006) and unifies them
in a MaxEnt-compatible framework.

2. Typology within CB
2.1. Problems

One of the most widely discussed objections to the CB approach is raised in Kiparsky (2006, 2008).
Kiparsky (2006) invokes final voicing as a process that is never attested as part of a productive synchronic
grammar (cf. Yu, 2004), yet he identifies at least five diachronic scenarios that would yield final voicing.
He concludes that CB is not capable of deriving this systematic gap in typology, which means that AB
has to be responsible for it.

It is true that current models of typology within CB are insufficient. The most common line of
thought in deriving the typology within CB has been to assume that rare sound changes produce rare
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alternations (Blevins, 2004). Moreton (2008) attempts to quantify phonetic precursors with the goal of
reaching a more transparent phonetic metric for disambiguating sound changes, but this approach has
problems, too (Yu, 2011). As will be shown in this paper, the results of sound changes operating in
combination and phonetic precursors do not always align, which makes the quantification of phonetic
precursors unsuitable for deriving the typology of all processes (including the unnatural ones). Finally,
Cathcart (2015) attempts to quantify the CB influences on typology by identifying the number of
combinations of sound changes that produce an unnatural alternation or phonotactic restriction such
as final voicing. The number for each combination of sound changes is then compared to the number of
all sound changes given a number permutation and a sample of sound changes. The problem with this
approach is that it is computationally demanding and does not provide outputs that could be used for a
typological model. The model in Cathcart (2015) also fails to distinguish alternations from phonotactic
restrictions and does not establish the minimal number of sound changes required for an unnatural
process to arise (see 2.2).

In the rest of this section, I present and expand on a new model of typology that estimates Historical
Probabilities of Alternations (P,) based on a method that I call Bootstrapping Sound Changes (BSC)
(Begus, 2016). This method outputs results directly implementable in a MaxEnt model of phonological
typology, proposed in section 4.

2.2. Minimal Sound Change Requirement

Before we turn to estimating Historical Probabilities of Alternations (P,), some key concepts,
developed in Begus (2016), need to be clarified.

First, Begu§ (2016) proposes a new subdivision of natural and unnatural processes. I argue that
what has traditionally been labeled as “unnatural” should be further divided into “unmotivated” and
“unnatural”. In other words, natural processes are those that operate in line with Universal Phonetic
Tendencies (UPT). UPTs are defined as universal phonetic pressures that are typologically common,
phonetically motivated, and operate passively across languages (for a detailed definition, see Begus,
2016; Begus & Nazarov, 2017). Unmotivated processes are those that lack phonetic motivation.
Unnatural processes not only lack phonetic motivation, but also operate directly against some UPT.
For example, final devoicing, post-nasal voicing, and intervocalic voicing are UPTSs; final voicing, post-
nasal devoicing, and intervocalic devoicing are unnatural processes, because they operate against these
UPTs.

Table 1 lists unnatural processes and the languages in which they appear which were identified by
surveys of unnatural alternations and sound changes (Begus, 2016) and unnatural phonotactic restrictions
(Begus & Nazarov, 2017) that target the feature [£voice].

Table 1: Unnatural processes and languages in which they appear.

Unnatural alternations
& sound changes

Post-nasal devoicing Yaghnobi Xromov (1972, 1987)
Tswana and Shekgalagari Solé et al. (2010)
Makhuwa and Bube Janson (1991/1992)
Janssens (1993)
Konyagi Merrill (2016a,b)
Sicilian and Calabrian (south Italian dial.) Rohlfs (1949)

Murik, Buginese, and Land Dayak (Austronesian)  Blust (2013)

Unnatural phonotactics
Intervocalic devoicing Berawan (and Kiput) Blust (2005, 2013)
Post-obstruent stop voicing Tarma Quechua Adelaar (1977)

A diachronic treatment of post-nasal devoicing in all the languages identified in Table 1 reveals a
common pattern: in all cases, post-nasal devoicing results from a combination of three natural sound
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changes. More precisely, all unnatural alternations undergo what I term a Blurring Process (in Begus,
2016):

@)) Blurring Process

a. A set of segments enters complementary distribution.
b. A sound change occurs that operates on the changed/unchanged subset of those segments.
c.  Another sound change occurs that blurs the original complementary distribution.

Depending on whether the second sound change targets the changed or unchanged subset of
segments, I identify two diachronic developments within the Blurring Process: Blurring Cycle
(unchanged) and Blurring Chain (changed) (from Begus, 2016). Let A > B / X represent a natural
sound change. The three sound changes of the Blurring Cycle and the Blurring Chain and the resulting
unnatural sound change B > A / X are schematized in (2).

2) Two subtypes of the Blurring Process

Blurring Cycle Blurring Chain
B>C/-X B>C/X
B> A C>D

C>B D>A
B>A/X B>A/X

As is argued in Begu$ (2016) and Begu$ & Nazarov (2017), all cases of post-nasal devoicing in
Table 1 result from the Blurring Cycle; the Blurring Chain on the other hand, yields the phonotactic
restriction against intervocalic voiced stops in Berawan and the restriction against clusters that agree in
voicing in Tarma Quechua.

The Blurring Process further allows us to establish the Minimal Sound Change Requirement
(MSCR; Begus, 2016). Not only does the typological study of unnatural alternations show that they
always arise through a combination of three natural sound changes, Begus (2016) also provides a formal
proof that unnatural alternations always require a minimum of three sound changes.

Let us define a sound change as a change in one feature in a given environment (Picard, 1994). We
assume that a sound change can only operate in a phonetically natural direction (Garrett, 2014, pace
Blust, 2005). This means that, if A > B / X is a natural process (a UPT), B > A / X cannot operate
as a single sound change. We could imagine a scenario in which two sound changes would produce an
unnatural result: B > C/ X and C > A. Note, however, that C and A in the second hypothetical sound
change (C > A) differ in two features: ¢; that distinguishes A and B and ¢, that distinguishes B and
C and ¢; # ¢». Because sound change is defined as a change in one feature in a given environment
(Picard, 1994), we cannot get C > A (where A and C differ in two features) with a single sound change;
therefore, unnatural alternations can only arise through a combination of at least three sound changes.
This requirement is summarized in ((3)).

3) Minimal Sound Change Requirement (MSCR; Begus, 2016)
Natural processes arise through a single sound change. A minimum of two sound changes have to
operate in combination for an unmotivated process to arise. A minimum of three sound changes
have to operate in combination for an unnatural process to arise.

The Blurring Process and MSCR provide grounds for deriving typology within the CB. I propose
that for each synchronic alternation (A), we can calculate its Historical Probability (P,) based on the
number of sound changes (S) required for the alternation A to arise and their respective probabilities
(Begus, 2016).

The MSCR already predicts that natural alternations are more frequent than unmotivated ones, which
in turn are more frequent than unnatural alternations by virtue of the number of sound changes they

! That relescoping (Wang, 1968) — or, in other words, combinations of sound changes — can produce unmotivated
results has long been known. In this paper, I propose that for unnatural alternations we need a special type of
combination of sound changes: the Blurring Process.
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require: the probability of a single sound change occurring is higher than the probability of three sound
changes occurring in combination, all else being equal.

This distribution of probabilities of alternations according to the MSCR, however, does not yet
provide quantitative means for our typological model. Historical Probabilities of Alternations are
estimated not only based on the number of sound changes, but also based on their respective probabilities.
Estimating probabilities of sound changes, however, is not a trivial task.

Begus (2016) outlines a method for estimating probabilities of alternations using the statistical
technique of bootstrapping (Efron, 1979) and surveys of sound changes. We can estimate probabilities
of individual sound changes by comparing the number of languages with a sound change S; and the
number of all languages in a given survey.

“)

number of languages with sound change S
number of languages surveyed

Py(S1) =

The probability P, (S;) equals the historical probability of an alternation A; when A; requires only
Si to arise. If, on the other hand, alternation A; requires more than one sound change, we estimate
the joint probabilities of each sound change required, dividing by n! if the ordering of sound changes
matters.

o)
P(S1)P(S2)-...-P(Sy)

n!

P(A)) =

This method of estimating Historical Probabilities is called Bootstrapping Sound Changes (BSC)
and requires some crucial assumptions. First, samples of sound changes (surveys) are ideally
well-balanced and representative. Second, we assume that sound changes in combination operate
independently of each other. This is not problematic: there is no reason to believe that the operation of
one sound change affects the probability of the operation of another sound change. More problematic is
the additional assumption that sound changes are independent of the synchronic phonemic inventories on
which they operate. The dependency of sound change and phonemic inventories is at least to some degree
captured by the fact that we always estimate probabilities of sound changes in a given environment. For
practical purposes, we can currently disregard dependency of sound change and phonemic environment
until more comprehensive surveys of sound changes are available.”

There are several advantages of BSC that, to my knowledge, are not available under any other
quantitative approach to typology within CB. We can now (i) estimate the Historical Probability of any
synchronic alternation (even unattested alternations), (ii) compare the Historical Probabilities of two or
more alternations and perform inferential statistics on the comparison, (iii) predict whether an alternation
is expected to be attested in a given sample, and (iv) identify historically equiprobable alternations.
Finally, estimated Historical Probabilities can be directly implemented in a typological model within the
MaxEnt framework.

2.3. An example

Let us take as an example the natural process of post-nasal voicing (PNV) and its unnatural
counterpart post-nasal devoicing (PND). In a survey of consonantal sound changes in Kiimmel (2007),
there are approximately 41 languages (out of approximately 200 languages surveyed in total) in which
PNV operated as a sound change. On the other hand, there are 56 languages with intervocalic
fricativization of voiced stops, 11 with intervocalic devoicing of voiced stops, and 37 languages with
intervocalic occlusion of voiceless fricatives to stops (the three sound changes of the Blurring Cycle that
are required for PND to arise).

2 If more comprehensive surveys of sound changes were available, an appropriate process for estimating
probabilities based on rates of sound changes that includes the temporal dimension would be the Poisson Stochastic
Process (see Begus, 2016). For practical purposes, we can disregard the temporal dimension and estimate Historical
Probabilities with BSC.
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We estimate P, (PNV) and P, (PND) using the boot package (Canty & Ripley, 2016; Davison &
Hinkley, 1997) in R statistical software (R Core Team, 2016) with 10,000 bootstrap replicates. BSC
yields the following estimates with 95% adjusted bootstrap percentile (BC,) intervals:

(6) a. P,(PNV)=20.5%, BC, CI =[15%, 26%]
b. P,(PND) = 0.047%, BC, CI = [0.018%, 0.12%]

The Historical Probabilities in (6) show that CB is capable of deriving the typology: it predicts
PND is less frequent compared to its natural counterpart PNV. Moreover, BSC predicts that PND will
be attested once in a given sample: we can compare P, (PND) with the probability of a process being
attested once in a given sample P(T(l)o)' The difference between the two probabilities is not significant
(the 95% BC, CI of the difference being [-0.35%, 2.10%]), which means that we expect PND to be
attested. PND is in fact attested once in the survey in Kiimmel (2007). BSC also allows comparison
between PND and other unnatural alternations, such as final voicing (FV) or intervocalic devoicing (IVD),
two processes that are believed to be unattested. The difference between the first two is significant:
P, (PND) is significantly higher than P, (FV) (95% BC, CI of the difference being [0.01%, 0.09%]).
Figure 1 shows distributions of the three unnatural processes, PND, IVD, and FV.
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Figure 1: Bootstrap distribution of Historical Probabilities of final voicing (FV), intervocalic devoicing
(IVD), and post-nasal devoicing (PND) with 95% BC, confidence intervals (with 21 bootstraps
removed).

These and other applications of BSC are, however, beyond the scope of this paper. The following
sections focus on the implementation of Historical Probabilities in a MaxEnt model of typology.

3. Typology within AB

Numerous studies experimentally confirm that some alternations are underlearned (for a survey, see
Moreton & Pater, 2012a,b). Learnability differences are encoded in MaxEnt models of phonological
learning in two similar ways: Wilson (2006) differentiates variance (0?), while White (2017)
differentiates weights (u) in the regularization term (prior) of different constraints to encode that
some processes require more input data to be learnt. These prior variances or weights are determined
independently from P-map related perceptual distance measures in both Wilson (2006) and White (2017).

The evidence for AB is strongest when testing featurally more vs. less complex alternations
(structural bias, Moreton & Pater, 2012a,b). While structurally complex alternations are consistently
underlearned, much less robust results are obtained when testing alternations that target a single feature
value where one direction is phonetically natural and typologically common and the other is unnatural
and rare (substantive bias; Moreton & Pater, 2012a,b). In fact, two studies specifically tested the
learnability of PND and IVD compared to their natural counterparts (PNV and intervocalic voicing)
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and found no significant difference between the natural/unnatural pairs (Seidl et al., 2007; Do et al.,
2016).°

These natural/unnatural pairs of alternations pose a problem for the AB approach to phonology.
Typologically, unnatural alternations are considerably rarer (7.6% vs. approximately 0.4% for PNV
vs. PND, based on Locke, 1983, reported in Hayes & Stivers, 2000, and our survey), yet artificial
grammar learning experiments seem to yield negative results: unnatural processes do not seem to be
underlearned compared to their natural counterparts. In modeling terms, this means that we cannot
assume different 62 in the prior of the natural (e.g. *NT) and unnatural (e.g.*ND) constraints: both
should have equal o2. Even if we assume o7 is determined by P-map (Steriade, 2001) related metrics
(as is assumed in Wilson, 2006 and White, 2017), we would not expect differences in prior variance
between *NT and *ND, at least not under the symmetric P-map approach where A(T, D)/N__ = A(D,
T)/N__.
The discrepancy between artificial grammar learning experiments that test the learnability of natural
vs. unnatural processes on the one hand and the typology on the other hand suggests that a model
that combines AB and CB influences on typology will perform better than the current “split” models.
The next section outlines a new model that combines the MaxEnt approach to modeling learning (and
consequently AB) as proposed in Wilson (2006) with the new model of typology within the CB, proposed
in section 2 above and in Begus (2016).

4. A new model of typology

The ability to derive typological predictions has long been a strength of constraint-based Optimality
Theory (OT) and OT-related theories (Prince & Smolensky, 1993/2004). Typological predictions are
primarily achieved by restraining constraint inventory (CON): most versions of OT disallow phonetically
unnatural constraints in CON. Under this approach, the natural constraint *NT is part of the CON, while
the unnatural constraint *ND is not (cf. Hyman, 2001). This means that for the input /ND/, the output
candidate [NT] is harmonically bounded because it violates both the markedness *NT constraint as well
as the faithfulness IDENT-IO(voice) constraint. In other words, the mapping /ND/ — [NT] (PND) is
predicted to be impossible. This, however, is an undesired prediction. PND has been confirmed as a
productive synchronic alternation in Tswana and Shekgalagari (Coetzee & Pretorius, 2010). Thus, OT
with CON restricted to natural constraints undergenerates.

Restricting CON poses problems for the derivation of not only categorical alternations, but also
of gradient processes. While classical OT is suitable for deriving categorical processes, gradient
phenomena are usually modeled with Harmonic Grammar or related frameworks that operate with
weighted constraints (Legendre et al., 2006; Pater, 2008, 2009; Coetzee & Pater, 2008). Begu$ &
Nazarov (2017) identify a typological prediction of Harmonic Grammar and related frameworks that
has so far gone largely unnoticed: “HG with restricted CON predicts that the probability of the natural
feature value in a given environment is always equal or greater than the probability of the unnatural value
in a given environment” (Begu§ & Nazarov, 2017). This generalization is called the “Natural Gradience
Bias” (NGB). Begus & Nazarov (2017) present two synchronic gradient phonotactic restrictions that
violate NGB: phonotactic restrictions that operate in the unnatural direction where the unnatural feature
value is significantly more frequent than the natural one in a given environment.

The cases of unnatural alternations or phonotactic restrictions from Table 1 point to the fact that
both the Classical OT as well as HG and related frameworks undergenerate under the restricted CON
approach. However, to simply relax the CON and admit all constraints is not a viable solution either:
this would result in the loss of all predictive power of the OT and HG family of frameworks. Instead, a
model of typology should derive all attested processes, but at the same time encode that some processes
are rare and others more frequent.

The new model of typology proposed here admits all constraints, natural, unmotivated, and
unnatural, in the CON in order to avoid undergeneration. The model outputs typological probabilities
over candidates for given inputs: a MaxEnt-compatible framework. To encode that some processes are

3 Recently, a study testing the generalization of final vs. initial voicing contrast also yielded negative results: there
were no differences between the more natural word-initial voicing contrast and the unnatural word-final voicing
contrast (Glewwe, 2017).



110

rare due to learning biases, we adopt Wilson’s (2006) model of differentiating variance () in the prior
of different constraints. To encode that some processes are rare due to the number of sound changes
they require and their respective probabilities (CB), we introduce “Historical Weights” (w,) of different
constraints. Differences in Historical Weights between different faithfulness and markedness constraints
can be directly calculated from estimated Historical Probabilities using the BSC, as shown in ((7)).

(1) Awy = —log (1)

Let us take for example the case of PNV and PND. Typologically, there exists a considerable
difference between the two: 15 languages of 197 surveyed in Locke (1983) (reported in Hayes & Stivers,
2000) feature PNV as a synchronic alternation. On the other hand, only two related languages known to
me, Tswana and Shekgalagari, feature PND as a productive synchronic alternation.*

Artificial grammar learning experiments suggest that the two processes, PNV and PND, are equally
learnable (Do et al., 2016). Further experiments are warranted, but currently we have to assume that prior
o2 for both *NT and *ND constraints should be equal. Equal prior 62 for the two constraints should
also be assumed under the symmetric P-map assumption.

The difference in Historical Weights between faithfulness IDENT-1O(voice) and markedness *NT
and *ND constraints can be calculated using the Historical Probabilities in (6) and the formula in (7).

(8) a.  Awy(*NT, IDENT-IO(voi)) = 1.36
b.  Aw,(*ND, IDENT-IO(voi)) = 7.66

Because the prior variance of the two markedness constraints has to be equal, we can disregard the
influence of AB on the typology and use Historical Weights to encode that the mapping /NT/ — [ND] is
typologically much more frequent than the mapping /ND/ — [NT].

Table 2: Tableaux for inputs /NT/ and /ND/ that show the MaxEnt probability distribution over
candidates in a typological model.

/NT/ IDENT-10 *NT H, P, Typol.
wy =10 | wy =8.64
a. [NT] —1 —10 795 .924
b. [ND] -1 —8.64 205 .076
/ND/ IDENT-10 *ND H, P, Typol.
wy =10 | w, =234
a. [ND] —1 —10 | 99953 | ~.996
b. [NT] —1 —2.34 | .00047 | ~.004

To be sure, learners have no access to Historical Weights: when we model phonological learning,
Historical Weights should be disregarded completely; only prior variance should determine differences
in learning of different processes (in Wilson’s 2006 terms). However, when we model typology, both
prior variance and Historical Weights should affect the outcome.

The combined typological model thus encodes that PND and PNV are equally learnable, but one
has a higher Historical Probability. Both are derivable, but PND is correctly predicted to be much less
frequent. Table 2 illustrates how Historical Weights affect the Historical Probabilities over candidates
for given inputs in a MaxEnt-compatible model of typology. The table also shows that Historical
Probabilities closely match the observed typology (based on the survey in Locke, 1983 and my estimates
of the typological frequency of PND).

For every synchronic alternation and its typological distribution, we now can and should calculate
its Historical Probability (CB part) based on the proposed BSC, and its 6> (AB part) which should
ideally be calculated on the basis of learnability experiments. As already mentioned in section 1, there

4 Tt is difficult to establish how many languages were included in my survey of post-nasal devoicing, which is why
I estimate it at approximately 500 languages.



111

is a good amount of overlap between the two: processes that are more complex are underlearned in
artificial grammar learning experiments (e.g. saltation, White, 2014), but they also have lower Historical
Probabilities, because complex alternations require more sound changes to arise. In fact, one could argue
that AB and CB are not independent and that frequencies of sound changes are primarily influenced by
learnability (AB) (cf. Kiparsky, 1995, 2008). Unnatural alternations, as defined in Begu$ (2016) and in
section 2.2 above, however, offer a crucial basis for disambiguating AB and CB. Even under the radical
assumption that frequencies of sound changes are primarily influenced by learnability, the Channel Bias
crucially has to influence frequencies of unnatural alternations (as defined above), precisely because
they arise through a combination of sound changes — the Blurring Process. In other words, even if
individual sound changes are influenced by learnability, the combination of sound changes comprising
the Blurring Process itself is not, which means that unnatural alternations provide a valuable resource
for disambiguating AB and CB (as is shown in the new typological model in Table 2 above).

5. Future directions

The proposed model of typology within CB that operates with Historical Probabilities and the BSC
is most accurate with large and representative samples of sound changes. The first next step in improving
the model is to expand surveys of sound changes.

In addition to solving the problem of undergeneration while retaining typological predictions, the
model of typology proposed in this paper bears the potential to solve the Too Many / Too Few Solutions
(TMTES) problem (Steriade, 2001). For some markedness constraints, there exist several different repair
strategies, whereas other markedness constraints seem to allow only one repair strategy (or rely on one
strategy considerably more frequently than others). The new model of typology is able to encode such
distributions: greater differences in Historical Weights between markedness constraints and different
faithfulness constraints that correspond to these markedness constraints result in a strong preference
for a single repair strategy, while at the same time allowing for other repair strategies (with much
lower frequencies). Smaller differences in Historical Weights, on the other hand, mean that more
repair strategies will be available and that they will tend to be more equiprobable. Perhaps the two
most famous cases illustrating the Too Many / Too Few Solution problem are repairs of the markedness
constraints *NT and *D#. Pater (1999) shows that languages exhibit a variety of strategies for repairing
the markedness constraint *NT, including deletion, nasalization, and voicing. On the other hand, in the
majority of languages that show an alternation in word-final voiced stops, the repair strategy is that of
devoicing. Steriade (2001) proposes a P-map solution, claiming that perceptual distance between voiced
and voiceless stops is smallest in word-final position (smaller than the perceptual distance between
voiced stops and any other segment). Recently, however, a synchronic system that repairs *D# with
nasalization has been reported in Noon (Merrill, 2015). Final nasalization in Noon arises through
a combination of sound changes. Begu§ & Nazarov (2017) also suggest that other reports of final
nasalization (in Blust, 2016) arise as by-products of the Blurring Chain. Initial investigation into the
TMTES problem thus shows that Historical Weights (or CB) affect the typology of repair strategies
(TMTES) as well. The relationship between Historical Weights (CB) and prior variance (AB) when
deriving the typology of repair strategies should be explored further.

Finally, the paper leaves open the question of what determines the prior variance of different
constraints and how exactly it affects the typology (cf. Staubs, 2014): it is possible that some constraints
are innate and others acquired (cf. Tesar & Smolensky, 1993; Hayes, 1999), which would influence o2,
Other possible inputs for 62 include the P-map (Wilson, 2006) or a structural complexity metric (Pater
& Moreton, 2012); the relationship between the two should also be explored further.
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