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Abstract
The standard grammatical theory of scalar implicature, as envisioned by

Chierchia (2004), Fox (2007), and Chierchia, Fox, and Spector (2012), posits
that scalar implicatures are derived in grammar, as a matter semantics, rather
than pragmatically, as an implicature rooted in Grice’s maxim of quantity.
Ignorance inferences, by contrast, e.g. those associated with plain disjunctive
sentences, are derived pragmatically, as quantity implicatures. More generally,
the standard theory predicts that for any utterance S and any relevant proposi-
tion φ which isn’t entailed, and whose negation isn’t entailed, by S, S gives rise
to an inference of speaker ignorance about φ. We argue that this prediction is
wrong: it fails to explain the contrast in ignorance inferences associated with
at least (which obligatorily implies ignorance) vs. more than (which doesn’t)
(Geurts and Nouwen 2007; Nouwen 2010, 2015). The problem is that, without
stipulating restrictions on which propositions are relevant, the theory overgen-
erates ignorance inferences across the board. We argue that the solution is to
close relevance under belief (if φ is relevant, then it’s also relevant whether
the speaker believes φ). This move has the effect that ignorance inferences,
like scalar implicatures, can only be derived in grammar, via a covert belief
operator of the sort proposed by Meyer (2013) and discussed further by Fox
(2016). The maxim of quantity, we show, then no longer enriches the meaning
of an utterance, per se, but rather acts as a filter on what can be relevant in
an utterance context. In particular, certain alternatives (of certain utterances)
are shown to be incapable of being relevant in any context where the maxim
of quantity is active — a property we dub obligatory irrelevance. We argue
that obligatory irrelevance provides the key to understanding the contrast in
ignorance inferences exhibited by at least vs. more than. We also argue that
translating our proposal into neo-Gricean terms, if at all possible, would yield
a conceptually less appealing and empirically less adequate theory.
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1 Introduction

The last few decades of research in semantics and pragmatics have brought forth a
great debate concerning the status of scalar implicatures, namely whether they’re
derived on the basis of pragmatic reasoning or rather in grammar, as a matter of
semantics proper. The debate revolves chiefly around the nature of Grice’s maxim
of quantity in confrontation with the so-called symmetry problem. Roughly speaking,
the symmetry problem is that one cannot both maintain a basic, virtually truistic
version of the maxim of quantity and also derive scalar implicatures pragmatically:
given an utterance S, for any relevant alternative S′ of S that one would like
to pragmatically derive a scalar inference about (namely, not S′), S′ has a so-
called symmetric partner (S and not S′), presumably also relevant, which preempts
deriving a scalar inference about S′; one cannot derive a scalar inference about
both alternatives without contradicting S, and so instead, one predicts speaker
ignorance about each alternative. This problem has led to two broad strands of
research, which solve the problem in different ways. The neo-Gricean approach
rejects the basic formulation of the maxim of quantity, replacing it with a version
that makes reference to formally defined alternatives, e.g. Horn scales (Horn 1972)
or structurally defined alternatives (Katzir 2007), so that S and not S′ is no longer
an alternative of S, thus breaking symmetry. The grammatical approach maintains
the basic maxim of quantity by concluding that scalar implicatures are computed
in grammar, with a covert grammatical exhaustification device, exh, which (much
like the non-basic maxim of quantity on the neo-Gricean approach) is sensitive to
formal alternatives.

Focusing just on the standard grammatical approach as developed by Chierchia
(2004), Fox (2007), Chierchia, Fox, and Spector (2012), and Fox (2014), while
scalar implicatures are only derived in grammar, ignorance inferences, e.g. those
associated with plain (unembedded) disjunctive sentences, are predicted to arise
only pragmatically. Not only that, but ignorance inferences are expected to be
quite pervasive, for the following reason: given an utterance S, if S′ is a relevant
alternative of S such that S doesn’t entail S′ nor the negation of S′ (that is, S doesn’t
settle S′), then the maxim of quantity licenses the inference that the speaker doesn’t
have the belief that S′ is true; but on standard assumptions about relevance, not
S′ is also relevant, and since S doesn’t settle S′, S doesn’t settle not S′ either, so S
also licenses the inference that the speaker doesn’t have the belief that not S′ is
true (i.e. that S′ is false). In other words, the speaker doesn’t have a belief one
way or the other about the truth of S′: she’s ignorant about S′. The result is that,
for any relevant alternative S′ of an utterance S which S doesn’t settle, the maxim
of quantity licenses an inference of speaker ignorance about S′. This result is
essentially a variant of the symmetry problem, though it’s not as clear that it’s a
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problem in this context; without evidence to the contrary, it doesn’t seem unnatural
or undesirable.

However, a consequence of this theory is the following: two semantically equiv-
alent sentences ought to give rise to exactly the same ignorance inferences, since
they entail (hence settle) all the same propositions. In the wake of work by Geurts
and Nouwen (2007), Büring (2008), Nouwen (2010), Mayr (2013), and Schwarz
(2016), there’s quite compelling evidence that this prediction is wrong: numerals
modified by more than and at least appear to be semantically interdefinable (more
than n seems semantically equivalent to at least n + 1), yet they give rise to distinct
ignorance inferences. Specifically, sentences with (unembedded) at least n obligato-
rily imply speaker ignorance about the exact number in question, while sentences
with more than n don’t. More generally, there’s a class of expressions (dubbed
class B by Nouwen (2010)) that obligatorily imply ignorance (when unembedded),
and another class (class A) that don’t. Prima facie, this class A/B distinction is
unexpected under the grammatical view sketched above. Or, put more positively,
this paradigm provides the perfect testing ground for formally developing and,
when necessary, amending this view.

Our goal is threefold: to develop a formally precise version of the grammatical
account that successfully captures the class A/B distinction, to argue that it provides
important insight into this distinction and into the nature of the computation of
ignorance inferences more generally, and to show that translating our proposal
into neo-Gricean terms, if at all possible, leads to a conceptually less appealing and
empirically less adequate theory.

We begin by laying out the empirical data we wish to capture (§2). We then
develop a formally explicit semantic-pragmatic framework (§3) that has as a
consequence the generalization that for any relevant proposition φ that an uttered
sentence S doesn’t settle, the maxim of quantity licenses the inference that the
speaker is ignorant about φ (§4). (As far as we know, ours is the first formally
explicit theory of this kind.)

We then show why this account fails to predict the class A/B distinction (§5).
In short, because the set of relevant propositions is assumed to be closed under
negation, the theory overgenerates ignorance inferences across the board, for the
reasons already sketched above. Intuitively, the solution is to somehow restrict
what propositions are relevant, but on first glance, the theory appears to provide
no such way beyond pure stipulation about what’s relevant.

We then slightly extend the theory (§6): relevance is now closed under belief (if
φ is relevant, then it’s also relevant whether the speaker believes φ), an amendment
already motivated on independent grounds by Fox (2016). The effect of this
amendment is that ignorance inferences (like scalar implicatures) can now only
be derived in grammar, by way of a covert belief operator (Chierchia 2006; Meyer

3 Draft: July 31, 2017



Brian Buccola and Andreas Haida

2013), not pragmatically. We show that, as a result, the maxim of quantity no
longer derives any additional inferences, i.e. doesn’t enrich the meaning of an
uttered sentence, per se, but rather acts as a filter on which propositions can be
relevant in an utterance context. More specifically, closing relevance under belief
induces a precise condition on when the maxim of quantity can be active: the
maxim of quantity can be active for the interpretation of an uttered sentence S
only if, for every relevant proposition φ, S either settles or entails ignorance about
φ; otherwise, the maxim of quantity yields a contradiction. Thus, if the maxim of
quantity is taken to be active for the interpretation of an uttered sentence S, then
for any proposition φ that S doesn’t settle or entail ignorance about (regardless
of what other propositions are relevant), φ can’t be relevant. We refer to this as
obligatory irrelevance.

What we ultimately derive is that the alternative propositions that previously led
to too many ignorance inferences are now obligatorily irrelevant (given reasonable
assumptions about the formal alternatives that feed exhaustification), while those
that aren’t (those that can be relevant) yield exactly the attested ignorance inferences
(§7).

We end by discussing a couple of issues our theory faces (and how to deal with
them), a number of correct predictions our theory makes, and some advantages
our theory has over a neo-Gricean approach to explaining the full range of data
that we examine (§8).

2 Empirical background

A sentence like (1) is normally understood to convey that Ann owns exactly two
dogs. The classic view of how (1) acquires this meaning, due to Horn (1972), states
that (1) literally means that Ann owns two or more dogs (a ‘one-sided’ meaning,
notated henceforth as “[≥ 2]”), and implicates that it’s not the case that Ann owns
three or more dogs (¬[≥ 3]), which together mean that Ann owns exactly two dogs
(a ‘two-sided’ meaning, [= 2]).

(1) Ann owns two dogs. (↝ ¬[≥ 3])

By contrast, as Krifka (1999) points out, (2) and (3) don’t have two-sided
meanings, even though, on a naive view of how the upper-bound implicature for
(1) arises, one might expect them to: (2) doesn’t implicate that it’s not the case that
Ann owns at least three dogs (hence that she owns exactly two dogs), nor does (3)
implicate that it’s not the case that Ann owns more than three dogs (hence that she
owns exactly three dogs).

(2) Ann owns at least two dogs. (  ¬[≥ 3])
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(3) Ann owns more than two dogs. (  ¬[> 3])

In addition, while (2) obligatorily entails speaker ignorance, (3) does not
(Nouwen 2010, 2015). Specifically, (2) implies that the speaker is ignorant about
whether Ann owns exactly two dogs, and ignorant about whether Ann owns more
than two dogs (Büring 2008; Schwarz 2016). To see this more clearly, consider the
contrast in (4): (4a) is odd because it implies that the speaker doesn’t know how
many dogs she herself owns (a very unlikely epistemic state), while (4b) implies
no such thing.

(4) a. #I own at least two dogs.

b. I own more than two dogs.

Not only do sentences like (3) with more than two not obligatorily imply ig-
norance — we’d like to argue that they cannot be used to imply ignorance. As
evidence for our claim, consider the dialog in (5). A’s final utterance A1 is perfectly
felicitous, while A2 is not, and this can be explained on the basis that B’s response
prompts A to draw the inference that B is ignorant about how many dogs Ann
owns: A1 makes explicit reference to this inference, while A2 conflicts with it.

(5) A. How many dogs does Ann own?

B. Ann owns at least two dogs.

A1. How do you not know? You’re her roommate!

A2. #Why won’t you say exactly how many?

By contrast, the same dialog with more than, (6), behaves in the opposite fashion.
In this case, A’s final response A2 is perfectly felicitous, while A1 is not.1 Here, B’s
response provides only a partial answer to A’s question, without signaling why
a complete, or more informative, answer cannot be provided, and in particular
without signaling ignorance. It feels as though B is dodging the question, or
purposefully being under-informative. For this reason, A can explicitly ask B why
B won’t answer more informatively, as in A2. A1, on the other hand, indicates that
A drew an ignorance inference from B’s response, but since no such an inference
was licensed, A2 is infelicitous.2

1 With the right prosody, the response A1 might be able to convey ignorance, but this would be due to
the combination of an incomplete answer plus special prosody. Our point here is that with normal,
falling intonation, a response with at least implies ignorance, while a response with more than doesn’t.

2 Note in this regard that a response by B that explicitly conveys ignorance, such as Ann owns more
than two dogs, but I’m not sure exactly how many, or I don’t know, but she owns more than two dogs, or Well,
Ann owns more than two dogs, with special prosody (cf. fn. 1), rescues the dialog with A1.
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(6) A. How many dogs does Ann own?

B. Ann owns more than two dogs.

A1. #How do you not know? You’re her roommate!

A2. Why won’t you say exactly how many?

To be clear, (3) is certainly compatible with speaker ignorance; we’re simply
claiming that it cannot imply ignorance.3

Finally, when any of these expressions is embedded under a universal quantifier,
e.g. a universal modal (notated here by “◻”), the resulting sentence has a reading
which involves (what we may describe as) a matrix-level implicature and which
doesn’t imply any ignorance (Fox and Hackl 2006; Geurts and Nouwen 2007; Mayr
2013). For instance, (7a) and (7b) each have a reading that conveys that Bill must
take two or more courses, but need not take more than two courses (i.e. he’s
allowed to take just two). On this, so-called “authoritative reading” (Büring 2008),
the speaker is not ignorant in any way about Bill’s requirements. Similarly, (7c) has
a reading that conveys that Bill must take more than two courses, but need not
take more than three courses (i.e. he’s allowed to take just three).

(7) a. Bill is required to take two courses. (↝ ¬◻[≥ 3])
b. Bill is required to take at least two courses. (↝ ¬◻[≥ 3])
c. Bill is required to take more than two courses. (↝ ¬◻[> 3])

We won’t have anything new to say about these embedded cases. (Our ultimate
theory will predict these inferences for roughly the same reasons that the theories
that precede ours predict them.) The reason we introduce them here is to bolster
the intuition that two, more than two, and at least two can, and do, give rise to scalar
implicatures (hence trigger alternatives), even though we don’t observe any for
unembedded uses of modified numerals like in (2) and (3).

The observations we wish to explain are summarized in Table 1. (We omit the
embedding data because all three expressions behave the same way, and because,
as we’ll point out, our theory describes these facts as well.) Parts of this paradigm
have been successfully explained already. Specifically, Fox and Hackl (2006) provide
an analysis of the scalar implicature contrast between two and more than two, while
Mayr (2013), Kennedy (2013, 2015), and Schwarz (2016), building on insights by

3 We’re not aware that anyone has made this stronger claim before. However, Cummins, Sauerland,
and Solt (2012) do observe that a sentence like More than 100 people got married today doesn’t have
the “weak implicature” that the speaker considers it possible that exactly 101 people got married
today. Hence, it doesn’t imply speaker ignorance about whether exactly 101 people got married
today. However, this is a weaker observation than what we observe here; namely, we claim that such
a sentence also fails to implicate that the speaker is ignorant about whether more than 101 people got
married today. In short, such a sentence implies no ignorance (hence, nor any possibility inference)
at all.
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scalar implicature ignorance inference

two 3 7

at least two 7 3

more than two 7 7

Table 1: Summary of facts for (unembedded) bare numerals, comparative modified
numerals, and superlative modified numerals.

Büring (2008), develop an explanation of the ignorance inference contrast between
at least two and more than two.4 The goal of this article is to ask, and answer, the
following three questions:

1. Can a unified theory be developed that captures the full paradigm in Table 1?

2. Do we learn anything new that we didn’t know before?

3. Does the investigation add anything to the debate concerning the pragmatic
vs. grammatical status of scalar implicatures?

We answer all three questions affirmatively. Specifically, we develop a minimal
extension of the standard grammatical theory of scalar implicature that captures
the full paradigm in Table 1. The minimal extension is that relevance is closed
under belief (if φ is relevant, then it’s also relevant whether the speaker believes φ),
which has the effect that not only scalar implicatures, but also ignorance inferences
are derived only in grammar, as a part of semantics proper. The new thing we
learn is that this theory leads to a principled restriction on what propositions can
be relevant in an utterance context. We finally argue that translating our proposal
into neo-Gricean terms, if possible at all, would yield a conceptually less appealing
and empirically less adequate theory.

3 The standard grammatical theory of scalar implicature

We now lay out the ingredients that form the basis of our theory (in §6, we’ll
extend it in a minimal way), and we illustrate how it works for a textbook example
involving disjunction.

4 Our ultimate account of at least and at most will have much in common with these authors. For two
quite different approaches to the analysis of superlative modifiers, see Coppock and Brochhagen
2013; Cohen and Krifka 2014.
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3.1 The ingredients

We assume a grammatical view of scalar implicature, in which a sentence S may
be parsed as exh S, with a grammaticalized exhaustivity operator, exh. What exh S
means is that S is true and that every innocently excludable (IE) member of alt(S), the
set of relevant formal alternatives of S, is false. Intuitively, a proposition q ∈ alt(S)
is IE (given ⟦S⟧) just in case the negation of q doesn’t contradict ⟦S⟧ and doesn’t
force any disjunction of members of alt(S) to be true, unless that disjunction is
already entailed by ⟦S⟧. The formal semantics of exh is provided in (8).

(8) Definition of exh (Chierchia, Fox, and Spector 2012)

a. ⟦exh S⟧ = ⟦exh⟧ (alt(S))(⟦S⟧).

b. ⟦exh⟧ (A)(p) = p ∧⋀{¬q ∶ q ∈ IE(p, A)}.

c. IE(p, A) =
⋂{M ∶ M is a maximal set of excludable alternatives of A given p}.

d. M ⊆ A is a set of excludable alternatives of A given p iff p ∧⋀{¬q ∶ q ∈ M}
is consistent.

e. M is a maximal set of excludable alternatives of A given p iff M is a set of
excludable alternatives of A given p, and there is no M′ such that M′ ⊆ A,
M ⊂ M′, and M′ is a set of excludable alternatives of A given p.

(9) Exhaustification
exh may attach to any propositional constituent (i.e. any node of type st).

For any context c, the function altc, applied to a sentence S, returns the set
of all propositions that are both relevant in c and denoted by formally derivable
alternatives (in c) of S. More precisely, let altFA

c (S) be the set of formally derivable
alternatives (in c) of S (e.g. as proposed in Katzir 2007), and let relevantc be the set
of all relevant propositions in c. Then:

(10) Alternatives of a sentence (as used by exh)
For any sentence S, altc(S) = {⟦S′⟧ ∶ S′ ∈ altFA

c (S)}∩ relevantc.

We almost always omit the subscript c, like in the definition of exh in (8).
In addition, we assume the following maxim of quality and basic maxim of quantity.

This version of the maxim of quantity is “basic” in the sense that it doesn’t refer to
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formal properties of linguistic expressions, e.g. Horn scales (cf. Fox 2007, 2016).5, 6

Fox (2016) refers to the two maxims together as “virtual truisms”, because we seem
to be aware of them without explicitly being taught them.7

(11) Maxim of Quality
The speaker should only utter sentences that the speaker believes to be true.
(“Tell nothing but the truth.”)

(12) Maxim of Quantity
The speaker should utter a sentence S such that, for every relevant proposition
φ that the speaker believes to be true, S entails φ. (“Tell the whole truth.”)

We make the assumptions in (13) about relevance, which the maxim of quantity
makes reference to. Following standard procedure, we will (at first) simply stipulate
which propositions, together with the closure conditions, generate the full set of
relevant propositions. (Later, we’ll derive on principled grounds that certain
propositions can’t be relevant in a given utterance context.)

(13) Closure conditions of relevance (cf. Fox 2007, endnote 5)

a. If φ and ψ are both relevant, then so is φ ∧ψ.

b. If φ is relevant, then so is ¬φ.

Quantity reasoning will (on the first incarnation of our theory) be tied to the
derivation of ignorance inferences. We characterize ignorance about a proposition
φ as in (14).

(14) Characterization of ignorance
To be ignorant about a proposition φ means to not have the belief that φ and
to not have the belief that ¬φ. (To not have the belief that ¬φ is to consider φ

possible.)

5 This formulation of the maxim of quantity departs slightly from the one in Fox 2007, which only
states what a speaker should do when confronted with two relevant alternatives. (If S1 and S2 are
both relevant and S1 is more informative than S2, then, if the speaker believes that both are true, the
speaker should utter S1 rather than S2.) We think that our formulation is a faithful generalization of
this version to the full set of relevant alternatives and that it corresponds even more closely to the
“oath” (cf. fn. 7). Indeed, it’s very close to what Fox (2014, p. 3) takes to be “the simplest possible
formulation [of the maxim of quantity], namely that it requires a speaker to convey all the relevant
information that she has available.”

6 As stated, this formulation of the maxim of quantity doesn’t require the uttered sentence to be
relevant itself. For instance, in principle it could be a sentence that entails everything relevant that
the speaker believes, as well as some irrelevant things that the speaker believes. We think that such a
sentence would be independently ruled out by the maxim of relation, “Be relevant”. Nevertheless, one
could also slightly revise our definition of the maxim of quantity to say: “The speaker should utter a
sentence S such that S is relevant and . . . ”

7 Fox (2016) points out that the oath one takes in court (“I swear to tell the truth, the whole truth, and
nothing but the truth”) is essentially a reaffirmation of these virtual truisms.
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We adopt an epistemic logic containing the modal operator K, where Kφ means
that the speaker believes the proposition φ. Speaker ignorance about φ therefore
amounts to the conjunction of ¬Kφ and ¬K¬φ. We sometimes write “Iφ” to mean
¬Kφ ∧¬K¬φ.

Formally, we assume an S5 modal logic, which contains the axiom schemata in
(15). The importance of each of these axioms will become clear as the development
of our theory unfolds.8, 9

(15) S5 epistemic modal logic

a. (Kφ ∧K(φ → ψ))→ Kψ distribution axiom (K)

b. Kφ → φ truth axiom (T)

c. Kφ → KKφ positive introspection axiom (4)

d. ¬Kφ → K¬Kφ negative introspection axiom (5)

Finally, following Fox and Hackl 2006, we assume that the scales needed for
natural language semantics are universally dense. This hypothesis isn’t necessary
for the example that follows, but it’s a core ingredient of our overall theory, so for
this reason we introduce it immediately.

(16) Universal density of measurement (UDM) (Fox and Hackl 2006)
Measurement scales needed for natural language semantics are always dense.

3.2 Example: Disjunction

To illustrate, let’s take the classic case of disjunction, as in (17). Intuitively, (17)
licenses both a scalar inference, that Ann doesn’t own both a Boxer and a Collie,
and a pair of ignorance inferences, that the speaker is uncertain whether Ann owns
a Boxer and uncertain whether Ann owns a Collie.

(17) Ann owns a Boxer or a Collie.
LF: exh [S Ann owns a Boxer or (Ann owns) a Collie ]

What we wish to show is that parsing (17) with exh leads to just the right scalar
and ignorance inferences. For the sake of clarity, when we write “(17)”, we refer
to the LF provided below (17), containing exh, and we write “S” to refer to the
complement of exh, also known as the prejacent. The meaning of S is thus b ∨ c,

8 In the context of the initial theory we develop (§3), we take it that this logic appropriately models
the way quantity reasoning works, while for our slightly amended theory (§6), which is radically
grammatical, we take it that this logic appropriately models that component of the mind that governs
grammar and semantics. We don’t necessarily take this logic to be an appropriate model of human
belief or knowledge more generally.

9 Regarding the K axiom, we assume that speakers know certain basic logical validities like (φ∧ψ)→ φ.
This means that from K(φ ∧ψ) we may conclude Kφ on the basis of K.
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the proposition that Ann owns a Boxer or a Collie (or both). We take alt(S) to
be {b ∨ c, b, c, b ∧ c}, since each of these is (the meaning of) a formal alternative of
S (Sauerland 2004) and is presumably relevant. Then the meaning of (17) is the
meaning of S, b ∨ c, plus the conjunction of the negation of all IE alternatives of
S. The conjunctive alternative b ∧ c is IE, but the individual disjunct alternatives
b and c are not IE. Intuitively, this is because negating b would, together with
the meaning of S, entail c; and conversely, negating c would, together with the
meaning of S, entail b. So obviously we cannot negate both b and c (doing so
would contradict the meaning of S), and instead of making an arbitrary choice of
which one to negate, we negate neither. Thus, the overall semantic meaning of (17)
is (b ∨ c)∧¬(b ∧ c).

(18) Semantic meaning of (17):
(b ∨ c)∧¬(b ∧ c)

Next, based on the maxim of quality, a hearer is licensed to infer that the
speaker of (17) believes the semantic content of (17). Thus, (17) licenses the quality
inference K((b ∨ c)∧¬(b ∧ c)).

(19) Quality inference of (17):
K((b ∨ c)∧¬(b ∧ c))

Finally, the maxim of quantity allows us to infer that, for any proposition φ that
is both relevant and not entailed by S, it’s not the case that the speaker believes
φ, i.e. ¬Kφ. Since b and c are each relevant, and since neither of these is entailed
by the semantic meaning of (17), the maxim of quantity licenses the inferences
¬Kb and ¬Kc. Moreover, the closure conditions on relevance ensure that ¬b and
¬c are each relevant as well, and since neither of these is entailed by the semantic
meaning of (17), the maxim of quantity also licenses the inferences ¬K¬b and ¬K¬c.

(20) Quantity inferences of (17):
¬Kb ∧¬K¬b ∧¬Kc ∧¬K¬c

Importantly, the pair of inferences ¬Kb and ¬K¬b together amount to speaker
ignorance about b, as characterized by (14). Likewise, ¬Kc and ¬K¬c characterize
speaker ignorance about c.

Putting together the quality and quantity inferences, we get the complete
semantic and pragmatic meaning of (17) given below.

(21) Semantic and pragmatic meaning of (17):
K((b ∨ c)∧¬(b ∧ c))
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Quality inference

∧ ¬Kb ∧¬K¬b
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Ignorance about b

∧ ¬Kc ∧¬K¬c
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Ignorance about c
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Quantity inferences
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4 A generalization about ignorance as quantity inferences
in the standard theory

The disjunction example is instructive because it allows us to get a sense of how
the various ingredients we assume work together to derive scalar inferences (or
not) and/or to derive ignorance inferences (or not). We saw that the disjunctive
sentence (17), parsed with exh, gives rise to a scalar inference about the conjunctive
alternative, namely ¬(b ∧ c), hence doesn’t imply any speaker ignorance about that
alternative. By contrast, (17) doesn’t give rise to a scalar inference about either
disjunct alternative (b or c), but does give rise to ignorance inferences about them,
due to a certain logical relation between the individual disjunct alternatives and
the disjunction as a whole (namely, they aren’t entailed, nor are their negations),
and to the closure of relevance under negation.

We now characterize more precisely how our procedure of pragmatic reasoning
works, so that we can provide an explicit generalization about exactly when
(about exactly which propositions) we predict ignorance. We’ll see in §5 that the
generalization fails to predict the basic contrast in ignorance between more than
and at least (or the class A/B distinction more generally), which will prompt us to
slightly amend part of our theory in §6.

The deductive procedure in (22) shows that if φ is relevant (in a given context)
and S doesn’t entail φ nor ¬φ, then the maxim of quantity licenses the inference
that the speaker is ignorant about φ.

(22) Pragmatic reasoning procedure (as applied to a negated alternative)
For any context c, uttered sentence S, and proposition φ:

a. relevantc(φ), ⟦S⟧ ⊭ φ, ⟦S⟧ ⊭ ¬φ (assumption)

b. ¬Kφ ((a) + maxim of quantity)

c. relevantc(¬φ) ((a) + closure conditions of relevance)

d. ¬K¬φ ((a) + (c) + maxim of quantity)

e. Iφ ((b) + (d) + def. of ignorance)

If, following Fox 2016, we introduce the notion of settle, given in (23), then we
can restate our generalization as in (24).

(23) Definition of settle
S settles φ just in case ⟦S⟧ ⊧ φ or ⟦S⟧ ⊧ ¬φ.

(24) Generalization about our pragmatic reasoning procedure
For any context c, uttered sentence S, and proposition φ, if the maxim of
quantity is active in c, and if φ is relevant in c and S doesn’t settle φ, then S
gives rise to an inference of speaker ignorance about φ.
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Thus, for example, (17) gives rise to inferences of speaker ignorance about the
individual disjunct alternatives b and c because (17) doesn’t settle either one of
them.

This view of the interplay between semantic content and pragmatic reasoning
is completely in line with the intuitions of Fox (2007) regarding when and how
ignorance arises. However, as we’ll see in the next section, this view, at least given
just our current assumptions, doesn’t seem to have any hope of explaining the
contrast in ignorance between more than and at least. Intuitively, this is because
sentences containing (unembedded) occurrences of these quantifiers, like (2) and
(3), trigger many alternatives that they don’t settle, and yet we don’t perceive
ignorance about all such alternatives.

5 Applying the standard theory to modified numerals: Too
many ignorance inferences

We now apply the theory developed above to sentences with superlative and
comparative modified numerals, like (2) and (3). We find that the theory correctly
handles the lack of scalar implicatures for both cases — something that was explic-
itly doubted by Fox and Hackl (2006) and Mayr (2013). However, the theory also
overgenerates ignorance inferences; specifically, it doesn’t predict the difference in
obligatory ignorance between at least and more than (it predicts ignorance for more
than), and even for at least, it predicts total (rather than partial) ignorance, which
Schwarz (2016) has convincingly argued is incorrect. We discuss some potential
fixes, and why they don’t work. This discussion helps motivate the conservative
amendment that we introduce in §6.

5.1 Comparative modified numerals: More than two

Consider again (3), repeated below, with the assumed LF containing exh.

(3) Ann owns more than two dogs.
LF: exh [S Ann owns more than two dogs ]

Following Fox and Hackl (2006), assume that alt(S) = {[> n] ∶ n ∈ Q+}. Then
the semantic meaning of (3) is the meaning of S, [> 2], plus the conjunction of
the negation of all IE alternatives of S. It turns out that every alternative is IE,
and the reason for this is rather trivial: while there are many sets of excludable
alternatives, there is no maximal set of excludable alternatives, due to density.10 For

10 The adoption of the UDM hypothesis raises the question of what it means for a predicate that
intuitively holds only of integers to apply to non-integers, e.g. what it means to say that Ann owns
(more than) 2.5 dogs. What is important for us is that Ann owns more than 2.5 dogs asymmetrically
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instance, the set of all [> n] alternatives for n ≥ 2.1 is a set of excludable alternatives,
but it’s not maximal because it’s missing, e.g., [> 2.05], and this reasoning can be
applied to any other set of excludable alternatives.11 Since there is no maximal
set of excludable alternatives, we have IE(S, alt(S)) = ⋂∅, which is equal to the
universal set, hence contains all alternatives.12

Since every alternative is IE, exh negates every alternative, and this leads to
a contradiction: for example, following the insight of Fox and Hackl (2006), the
conjunction of the negation of all alternatives in the set {[> n] ∶ n ∈ Q+ ∧ n >
2} is equivalent to ¬[> 2], which contradicts the prejacent of exh. (Even more
strikingly, the prejacent itself is IE, hence is excluded, which immediately derives a
contradiction.)

Since parsing (3) with exh leads to a contradiction, a natural assumption to make
is that this parse is simply unavailable, hence that (3) has a simple LF without any
exh. This would then explain why (3) doesn’t give rise to any scalar implicatures.13

(3) Ann owns more than two dogs.
LF: [Ann owns more than two dogs]

Unfortunately, however, this account, together with our assumptions about
the maxims of quality and quantity and about relevance, predicts that (3) licenses
ignorance inferences, which we argued it can’t. For example, it’s natural to assume
that the proposition that Ann owns more than three dogs, [> 3], is relevant in
a context where (3) is uttered. Since [> 3] is not entailed by (3), the maxim of
quantity licenses the inference ¬K[> 3]. By the closure conditions of relevance, the
proposition ¬[> 3] is relevant, and it’s likewise not entailed by (3). As a result, we
derive ¬K¬[> 3]. The inferences ¬K[> 3] and ¬K¬[> 3] together amount to speaker
ignorance about [> 3]. This is just an explicit instantiation of the generalization in
(24): we derive ignorance about [> 3] because it’s presumably relevant and also not

entails Ann owns more than two dogs and is asymmetrically entailed by Ann owns more than three dogs.
For Fox and Hackl (2006), these entailments are conceived of as consequences within a deductive
system, but they can be made precise in various other ways, as well; see, for instance, Haida and
Trinh 2016; Liebesman 2016.

11 For a more formal proof, see Gajewski 2009.
12 Fox and Hackl (2006), whose paper precedes the work on innocent exclusion by Fox (2007) and

Chierchia, Fox, and Spector (2012), don’t actually define their exh operator in terms of innocent
exclusion, so their exh simply negates every alternative that doesn’t (by itself) contradict the prejacent,
S. We do assume that exh makes reference to innocent exclusion, but since every alternative in
this case is IE, the two versions (mostly) coincide. (“Mostly” because on our account, exh even
excludes alternatives that, by themselves, contradict the prejacent, e.g. [> 1], since they, like every
other alternative, are IE.)

13 Another possibility is that all the alternatives are ‘pruned’ (since not pruning them would derive a
contradiction), thus rendering exh vacuous in this case. We discuss this possibility, and even provide
evidence for a certain version of it (in the context of our amended proposal) in §8. For now, however,
we follow the intuitions of Fox and Hackl (2006) that the rescue strategy is to omit exh.
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settled by (3). The same holds for all propositions of the form [> n] for n > 2.
Moreover, we note that, although we could assume that every proposition [> n],

for n > 2, is irrelevant, which would thereby block the derivation of ignorance
inferences about them, such an assumption would be purely stipulative. Our
ultimate theory will actually force these propositions, for principled reasons, to be
irrelevant, thus deriving the right results in a non-stipulative way.

To recap, the UDM hypothesis successfully blocks the derivation of unattested
scalar implicatures for more than two, but our assumptions about the maxims of
quality and quantity and about relevance generate many ignorance inferences,
provided there are relevant propositions. Given our claim that (3) cannot be used to
convey/imply ignorance (though it’s compatible with the speaker being ignorant),
this is a bad result.

5.2 Superlative modified numerals: At least two

Now consider again (2), repeated below with the assumed LF containing exh.

(2) Ann owns at least two dogs.
LF: exh [S Ann owns at least two dogs ]

Fox and Hackl (2006) are doubtful that their account can be extended to handle
cases like (2). Their worry is surely well founded if the alternatives of S are simply
those obtained by replacing two with other numbers, i.e. if alt(S) = {[≥ n] ∶ n ∈ Q+}.
In this case, the meaning of (2) would be the meaning of S, [≥ 2], plus the
conjunction of the negation of all IE alternatives of S. Every alternative ‘higher’ on
the numerical scale than [≥ 2] would be IE, for the following reason: negating all
alternatives of the form [≥ n], for n > 2, in conjunction with the prejacent, [≥ 2],
entails [= 2], which is not itself an alternative. Put differently, there is only one
maximal set of excludable alternatives, namely {[≥ n] ∶ n ∈ Q+ ∧ n > 2}, so all of its
members are IE. As a result, the meaning of (2) would boil down to just [= 2]— a
bad result, to be sure.

If, however, [= 2] were itself an alternative, then the set above would not be the
only maximal set of excludable alternatives (because [= 2] itself would belong to
another such set), and we might be able to block unwanted scalar implicatures. This
idea, or rather a generalization of this idea, is what Schwarz (2016), following work
by Büring (2008) and Mayr (2013), proposes.14 Specifically, assume that altFA(S) (the

14 Schwarz’s account is cast in neo-Gricean terms, in which primary inferences of the form ¬Kφ are
derived first, and then, if possible, are strengthened to secondary (scalar) inferences of the form
K¬φ (Sauerland 2004). Symmetry effectively entails ignorance at the primary level, thus preempting
strengthening at the secondary level. We derive the same result in our framework, albeit in a reverse
fashion: symmetry renders certain alternatives non-IE, thereby blocking the derivation of scalar
implicatures by exh, which in turn allows for the derivation of ignorance inferences as quantity
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set of formal alternatives of S) is the set of all alternatives obtained from S replacing
at least with exactly (or only) and/or replacing two with any number, and assume that
all such alternatives are relevant. Then alt(S) = {[≥ n] ∶ n ∈ Q+}∪ {[= n] ∶ n ∈ Q+}.15

The semantic meaning of (2) is therefore the meaning of S, [≥ 2], plus the
conjunction of the negation of all IE alternatives of S. Unlike before, the alternatives
of the form [≥ n], for n > 2, are not IE, because excluding any of them would
entail some disjunction of [= n] alternatives to be true. In fact, because of the
introduction of [= n] alternatives, no alternative is IE, as Schwarz (2016) shows.
Take, for instance, the alternative [≥ 4]. Excluding [≥ 4] would, together with the
meaning of the prejacent, [≥ 2], entail the following disjunction of alternatives:
⋁{[= n] ∶ n ∈ Q+ ∧ n ≥ 2∧ n < 4}. Put differently, it’s easy to construct a maximal set
of excludable alternatives that doesn’t contain [≥ 4]: take, for instance, {[= n] ∶ n ∈
Q+ ∧ n ≠ 4}∪ {[≥ n] ∶ n ∈ Q+ ∧ n > 4}. As a result, [≥ 4] is not IE. Similar reasoning
applies to all other alternatives (including the [= n] alternatives).

This result means that exh in (2) is vacuous, hence that (2) has the same semantic
meaning regardless of whether it’s parsed with exh or not. We therefore successfully
replicate Schwarz’s account of the lack of scalar implicatures for (2) within our
own framework, even with the UDM hypothesis.

In addition, our account, like that of Büring (2008) and Schwarz (2016), derives
speaker ignorance about whether Ann owns exactly two dogs and about whether
Ann owns three or more dogs. To see this, assume that the proposition that
Ann owns exactly two dogs, [= 2], is relevant. Since [= 2] is not entailed by (2),
the maxim of quantity licenses the inference ¬K[= 2]. By the closure conditions
of relevance, we also know that ¬[= 2] is relevant, and since this proposition is
likewise not entailed by (2), we derive ¬K¬[= 2]. As a result, we derive ¬K[= 2]
and ¬K¬[= 2], which is to say, speaker ignorance about whether Ann owns exactly
two dogs. By the same reasoning, we also derive ¬K[≥ 3] and ¬K¬[≥ 3]. These two
pairs of inferences are precisely what Büring (2008) and Schwarz (2016) take to be
the complete set of ignorance inferences licensed by (2).

Unfortunately, however, the reasoning outlined above generalizes from [= 2]
and [≥ 3] to every conceivable relevant proposition that isn’t settled by S. That is,
for every proposition [= n], for n ≥ 2, and every proposition [≥ n], for n > 2, we
derive speaker ignorance about that proposition. This is just a consequence of the
generalization stated in (24).

Thus, we derive what Schwarz (2016) calls “total”, rather than “partial”, igno-

implicatures.
15 Schwarz’s account doesn’t involve the UDM, but since we adopt it, our set of alternatives is strictly

larger than his. This doesn’t adversely affect the main result, for now. However, as we show in §6,
adopting the UDM in the context of our amended proposal will have an effect on our analysis of at
least, which will make us depart from Schwarz 2016 and instead put us more in line with Kennedy
2015. We discuss the consequences of this in §8.
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rance. As Schwarz (2016) argues, however, there appears to be no evidence “for
such an implication of total ignorance contributed by at least”, and “more generally,
it appears that the only ignorance implications consistently detectable for at least n
are those about [= n] and [≥ (n + 1)], the propositions expressed by the alternative
statements with only n and at least n+ 1”.16 He supports this claim with the contrast
in (25). As expected, (25a) is odd because the first sentence implies that the speaker
is ignorant about whether the quintet has more than two German members, which
contradicts the entailment of the second sentence that at most two members of
the quintet are German. If the first sentence of (25b) implied total ignorance, then
it, too, would imply that the speaker is ignorant about whether the quintet has
more than two German members, which contradicts the entailment of the second
sentence that at most two members of the quintet are German. Thus, (25b) should
be equally odd. Since it’s perfectly coherent, the first sentence of (25b) must only
convey partial ignorance.

(25) a. #At least two members of the quintet were born in Germany. Exactly
three were born in Canada.

b. At least one member of the quintet was born in Germany. Exactly three
were born in Canada.

We accept Schwarz’s assessment and therefore view the predictions of our
theory so far as incorrect. Moreover, we note that, although we could assume
that every proposition except for [= 2] and [≥ 3] is irrelevant, such an assumption
would be purely stipulative. Our ultimate theory will actually force all these other
propositions, for principled reasons, to be irrelevant, thus deriving the right results
in a non-stipulative way.17

5.3 Interim discussion

Our theory so far correctly predicts the lack of any scalar implicature associated
with unembedded occurrences of at least n and more than n, as in (2) and (3). Density
blocks the derivation of a scalar implicature for more than (e.g. parsing (3) with
exh results in a contradiction, and so only the parse without exh is licit), as first
discussed by Fox and Hackl (2006), while symmetry (even with the assumption of
dense scales) blocks the derivation of scalar implicatures for at least, as discussed
by Schwarz (2016). We take this to be a nice result: Fox and Hackl’s account of more

16 We’ve taken the liberty of replacing Schwarz’s notation by ours in the quotation above.
17 To be more precise, we will derive that [= 2] and [> 2] can be relevant, while all other [= n] and [≥ n]

(and [> n]) alternatives, for n > 2, can’t be relevant, for principled reasons. This result will then yield
speaker ignorance inferences about [= 2] and about [> 2]. We take it that post-semantic granularity
considerations are responsible for the intuition that the speaker is ignorant about [≥ 3] for a sentence
like (2).
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than does extend to at least, in the sense that it’s compatible with a Schwarz-style
analysis of at least, involving symmetric alternatives that block scalar implicatures.

Unfortunately, our predictions regarding ignorance are wrong. We incorrectly
predict that more than licenses ignorance inferences, hence fail to predict the contrast
between at least and more than regarding ignorance, and even in the case of at least,
we derive total rather than partial ignorance. In short, we predict far too many
ignorance inferences across the board. This shortcoming is a symptom of the
generalization in (24): because relevance is closed under negation, it follows that if
an utterance S doesn’t settle a relevant proposition φ, then S gives rise to ignorance
about φ.

Given this problematic result, perhaps the solution to our problem lies in
relaxing the closure conditions of relevance.18 For instance, assume that the set of
relevant alternatives is not closed under negation. This assumption would prevent
the introduction of unwanted symmetry into the equation for every proposition
φ and would therefore block the inference of speaker ignorance about φ, unless
ignorance about φ is already entailed on the basis of other relevant propositions.

For example, for (2), assume that the relevant propositions all have the form
[= n] or [≥ n], for n ∈ Q+. Then we still derive ¬K[= 2] by applying quantity
reasoning to [= 2]. Together with the quality inference of (2), K[≥ 2], this entails
the possibility inference ¬K¬[> 2]. Similarly, we still derive ¬K[> 2] by applying
quantity reasoning to all propositions of the form [≥ n], for n > 2. Together with the
quality inference K[≥ 2], this entails the possibility inference ¬K¬[= 2]. Thus, we
still derive ignorance about [= 2] and about [> 2], because of the logical relations
between the prejacent and the propositions under consideration. However, we
don’t derive ignorance (in the sense of (14)) for any other propositions, such as,
say, [= 7]. For example, we do derive ¬K[= 7], but we don’t derive the possibility
inference ¬K¬[= 7], because, even though we also derive ¬K[> 7], the quality
inference K[≥ 2] and the quantity inference ¬K[> 7] don’t entail ¬K¬[= 7].19

As for (3), assume that the relevant propositions all have the form [= n] and
[> n], for n ∈ Q+. In this case, we correctly don’t derive ignorance about any such
proposition, because now the logical relations between them and the prejacent are
different. For example, let n be any arbitrary number greater than 2. We derive

18 The problem we observe here is essentially a corollary of the symmetry problem (mentioned in §1),
according to which, if S′ is a relevant alternative of S, and no restrictions are placed on alternativehood
other than the closure conditions of relevance, then S and not S′ is also a relevant alternative, and
so no scalar inferences are ever expected to arise. As Fox and Katzir (2011) convincingly argue,
relevance considerations don’t appear to be able to break symmetry. Thus, the line we briefly pursue
here is independently problematic. Nevertheless, we discuss it anyway to show that it still runs into
another problem.

19 As Schwarz (2016) notes, it’s not a problem that we (or he) derive(s) inferences like ¬K[= 7]. Given
that they’re already entailed by ¬K[> 2], they aren’t expected to be directly detectable.
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¬K[= n], but we don’t derive the possibility inference ¬K¬[= n], because there’s no
set of relevant propositions whose exclusion, together with the quality inference
K[> 2], entails ¬K¬[= n]. For instance, we also derive ¬K[> n] (by applying quantity
reasoning to [> n]), but because of density, ¬K[> n] and the quality inference K[> 2]
don’t entail the possibility inference ¬K¬[= n]. Thus, we don’t derive I[= n]. In
a parallel way, we derive ¬K[> n], but we don’t derive the possibility inference
¬K¬[> n], because there’s no set of relevant propositions whose exclusion, together
with the quality inference K[> 2], entails ¬K¬[> n]. Thus, we don’t derive I[> n],
either. In sum, under these assumptions, we don’t derive ignorance about [= n] or
[> n] for any n > 2, which is good news. (Note that the same result would obtain if
we assumed that the only relevant propositions were [> n], and not also [= n], for
n ∈ Q+.)

If this were the end of the story, we’d be in a decent position because we’d
manage to derive the basic contrast between at least and more than: at least n implies
ignorance about [= n] and [> n], as characterized by the notion of ignorance defined
in (14), while more than n doesn’t imply ignorance about any relevant proposition.
However, there are (at least) two serious problems with this line of analysis.

First, the main result (the contrast between at least and more than and the
derivation of partial, rather than total, ignorance for at least) vanishes if we allow
propositions of the form [< n] or [≤ n] to also be relevant. We’d then predict total
ignorance for both more than and at least. For example, let n be any number greater
than 2. Then we could derive both ¬K[> n] and ¬K[< n], which, together with
the quality inference K[≥ 2] for (2), or K[> 2] for (3), would entail the possibility
inference ¬K¬[= n], which would, together with ¬K[= n], amount to ignorance
about [= n]. This reasoning could be applied to any such proposition, thus bringing
us back to total ignorance. Notably, it doesn’t seem promising or insightful to
just stipulate that the [< n] and [≤ n] propositions are irrelevant. (As we discuss
in §8, our ultimate theory will actually force them to be irrelevant due in part to
structural constraints, which we take to be much less stipulative.)

Second, even if we could somehow prevent those ‘negative’ propositions from
being relevant, we would still derive many inferences of the form ¬Kφ, which we
believe to be a problem for (3). For instance, (3) would license the inference ¬K[> 3],
the proposition that the speaker doesn’t have the belief that Ann owns more than
three dogs. We believe that such an inference is unavailable, and building on the
example in (25) by Schwarz (2016), we illustrate our claim with the contrast in (26).
As expected, (26a) is odd, because the first sentence of this sequence implies that
the speaker is uncertain whether the quintet has exactly two German members,
and/or because it implies that the speaker is uncertain whether the quintet has
more than two German members — each of which is derived (in part) on the basis
of the inference ¬K[> 2]. In other words, the inference ¬K[> 2] is responsible for

19 Draft: July 31, 2017



Brian Buccola and Andreas Haida

the oddity of (26a). If (26b) licensed the inference ¬K[> 2], then it should likewise
be judged odd (albeit perhaps not quite as odd as (26a), since the latter entails real
ignorance, in the sense of (14)). However, (26b) is perfectly coherent.

(26) a. #At least two members of the quintet were born in Germany. To be more
precise, exactly three were born in Berlin.

b. More than one member of the quintet was born in Germany. To be more
precise, exactly three were born in Berlin.

6 The missing ingredient: Relevance of belief

Our theory so far correctly predicts the lack of scalar implicatures for comparative
modified numerals like more than two and superlative modified numerals like
at least two. In the case of more than two, density blocks the computation of a
scalar inference: if a sentence like (3) is parsed with exh, then all of its (densely
populated) alternatives are innocently excludable (since, because of density, there
simply is no maximal set of excludable alternatives), but excluding them all leads
to a contradiction; thus, parsing (3) with exh is illicit, just as discussed by Fox and
Hackl (2006). In the case of at least two, symmetry blocks the computation of a
scalar inference: assuming the presence of both at least n and exactly n alternatives,
exh is vacuous because no alternative is innocently excludable (even if density is
assumed), and hence no scalar inference arises, just as described by Schwarz (2016).

However, our theory predicts far too many ignorance inferences. It predicts
that more than n can license ignorance inferences, which we argued against in
§2, and it predicts that at least n licenses total, rather than just partial ignorance,
which Schwarz (2016) convincingly argues against. The reason we predict so many
ignorance inferences is directly tied to the closure conditions of relevance: if φ

is relevant and not settled by S, then the closure conditions of relevance ensure
that ¬φ is likewise relevant, and basic logic ensures that ¬φ is likewise not settled
by S; as a result, the maxim of quantity generates the inferences ¬Kφ and ¬K¬φ,
i.e. speaker ignorance about φ.

We now minimally extend our theory in the following way: we add to our
closure conditions on relevance the condition that if φ is relevant, then so is Kφ.
That is, the speaker’s beliefs about the truth of what is relevant are themselves
relevant. This small adjustment has a few important rippling effects. The first is
that not only scalar implicatures, but also ignorance inferences must be derived in
grammar. The second is that, for grammar to be capable of this, it needs to make
available a grammatical belief operator (Chierchia 2006; Meyer 2013).20 The third

20 Fox (2016) has observed these first two points.
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is that, since scalar implicatures and ignorance inferences can only be derived in
grammar, the maxim of quantity no longer derives additional inferences, i.e. no
longer enriches the meaning of an utterance; rather, it acts as a filter on what can
be relevant, and this crucial result is what solves our problem: certain alternative
propositions are rendered obligatorily irrelevant for principled reasons, which in
turn eliminates unattested ignorance inferences. We now discuss all this in more
detail.

6.1 Closing relevance under belief

We now add to our closure conditions on relevance the condition that if φ is
relevant, then it’s also relevant whether the speaker believes φ.

(27) Closure conditions of relevance (revised)

a. If φ and ψ are both relevant, then so is φ ∧ψ.

b. If φ is relevant, then so is ¬φ.

c. If φ is relevant, then so is Kφ.

This move receives independent motivation from Fox (2016), who observes the
following empirical fact: “Silence is uncooperative.” For example, in the context of
a murder trial, if the lawyer asks the witness, w, “Where was John at the time of the
murder?”, w can’t just look the lawyer in the eye and remain silent. The intuition,
as Fox puts it, is that “if w believes something that bears on John’s whereabouts at
the time of the murder, w is required to say so. If not, w is required to reveal this
lack of opinion.”

A consequence of closing relevance under belief, together with the maxim of
quantity, is that ignorance can only be derived in grammar. We demonstrate this
with the deductive procedure in (28).

(28) Pragmatic reasoning procedure (as applied to K-prefixed alternative)
For any context c, uttered sentence S, and proposition φ:

a. relevantc(φ), ⟦S⟧ ⊭ φ, ⟦S⟧ ⊭ ¬φ (assumption)

b. ¬Kφ ((a) + maxim of quantity)

c. relevantc(¬φ) ((a) + closure conditions of relevance)

d. ¬K¬φ ((a) + (c) + maxim of quantity)

e. relevantc(¬Kφ) ((a) + closure conditions of relevance)

f. relevantc(¬K¬φ) ((a) + closure conditions of relevance)

g. ⟦S⟧ ⊧ ¬Kφ ∧¬K¬φ or ⟦S⟧ ⊭ ¬Kφ ∧¬K¬φ (tautology)

h. Case 1: ⟦S⟧ ⊧ ¬Kφ ∧¬K¬φ

⟦S⟧ ⊧ Iφ (above line + def. of ignorance)
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i. Case 2: ⟦S⟧ ⊭ ¬Kφ ∧¬K¬φ

Subcase 1: ⟦S⟧ ⊭ ¬Kφ

¬K¬Kφ ((e) + above line + maxim of quantity)
K¬Kφ ((b) + negative introspection)
contradiction (above two lines)

Subcase 2: ⟦S⟧ ⊭ ¬K¬φ

¬K¬K¬φ ((f) + above line + maxim of quantity)
K¬K¬φ ((d) + negative introspection)
contradiction (above two lines)

This deductive procedure illustrates that, if the maxim of quantity is active in
a given context c, and if φ is relevant in c and not settled by S, then one of two
things follows: either S entails speaker ignorance about φ, or the maxim of quantity
licenses the inference of a contradiction. We take it to be an empirical fact that the
latter option is unavailable: we know of no cases where a listener actually draws a
contradictory quantity inference.21 Thus, ignorance must be able to be derived in
grammar, and it can no longer be derived by quantity reasoning (since that would
yield a contradiction); that is, ignorance must be derived in grammar alone.

Since ignorance must be derived in grammar (and since not every sentence
begins with I know or I believe), language must make available a covert belief
operator, such as the syntactic item K proposed for independent reasons by Meyer
(2013). We adopt K and take its meaning to be the same as that of the belief operator
we previously assumed; that is, overloading the symbol K, we have ⟦K⟧φ = Kφ.

Crucially, in every context where the maxim of quantity is active, we take it
that every sentence must be parsed with a matrix-level K, in order to be able to
derive ignorance grammatically.22, 23

21 To be sure, formulating a diagnostic to test this claim is nontrivial, but at the very least, for sentences
that the theory predicts to give rise to contradictory quantity inferences, we should detect some
oddity. For example (to foreshadow a bit), for a sentence like (3) (Ann has more than two dogs), if
any propositions of the form [> n], for n > 2, are taken to be relevant, we’ll end up deriving a
contradictory quantity inference. But given that (3) isn’t perceived to be odd in any way, we take this
as an indication that no such propositions can in fact be relevant.

22 In contexts where the maxim of quantity is inactive, this condition doesn’t hold. We briefly discuss
such contexts in §8.

23 Meyer (2013, p. 42) comes to the same conclusion, for independent reasons, and calls this the “Matrix
K hypothesis”, because for her, it’s an auxiliary assumption used to explain certain empirical facts.
For us, the idea that relevance is closed under belief is the crucial ingredient (or hypothesis), and
matrix K is essentially a consequence of this. More precisely, the consequence for us is that at least
some sentences (the ones for which we observe ignorance inferences) can be parsed with matrix K.
We could, therefore, adopt a weaker version of (29), replacing “must” with “can”. However, this
would raise an important question that we wish to ignore for now, namely why certain sentences (the
ones for which we obligatorily observe ignorance inferences, like (2)) must be parsed with matrix K.
We think that weakening (29) in this way, and answering this question, could lead to deeper insights;
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(29) Matrix K
Every (assertive) sentence S must be c-commanded by an occurrence of K.

Given this, together with our assumption in (9) that exh may attach to any
propositional constituent, it follows that exh can apply both above and/or below K
(cf. Meyer 2013, p. 43).

6.2 Obligatory irrelevance

We now show how closing relevance under belief actually ends up conspiring with
the maxim of quantity to act as a filter on relevance. First, note that the deductive
procedure in (28) yields the generalization in (30), which is in fact just a stronger
version of the generalization in (24) from §4, repeated below.

(24) Old generalization about our pragmatic reasoning procedure
For any context c, uttered sentence S, and proposition φ, if the maxim of
quantity is active in c, and if φ is relevant in c and S doesn’t settle φ, then S
gives rise to an inference of speaker ignorance about φ.

(30) New generalization about our pragmatic reasoning procedure
For any context c, uttered sentence S, and proposition φ, if the maxim of
quantity is active in c, and if φ is relevant in c and S doesn’t settle φ, then
⟦S⟧ ⊧ Iφ.

The difference between the two — the effect of closing relevance under be-
lief — has to do with the way in which S “gives rise to ignorance”. Previously,
ignorance was a purely pragmatic inference licensed directly by the maxim of
quantity. Now, ignorance is an entailment of the semantic meaning of the uttered
sentence.

As a consequence of the new generalization, we can now state a precise condi-
tion on relevance in contexts where the maxim of quantity is active.

(31) Condition on relevance (a consequence of closing relevance under belief)
For any context c, uttered sentence S, and proposition φ, if the maxim of
quantity is active in c, and if S doesn’t settle or entail ignorance about φ, then
φ isn’t relevant in c.

For now, we assume that all the sentences we consider are interpreted in
contexts where the maxim of quantity is active and obeyed (not flouted). (In §8, we

for instance, Spector (2015) argues that the status of at least as a global positive polarity item can be
explained in terms of at least needing to be in the scope of exh, and if this is true, and if our proposal
is correct, then it would actually need to be in the scope of exh K, since otherwise the maxim of
quantity would yield a contradiction (there would be relevant alternatives, accessible to exh, which
the sentence as a whole doesn’t settle or entail ignorance about). However, we have to leave this
inquiry for a future occasion, and so we instead adopt what is given in (29).
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consider what our proposal predicts for contexts where the maxim of quantity is
inactive.)

The condition in (31) restricts which propositions can be relevant in a specific
context in which the maxim of quantity is active. In §7, we’ll see that certain
propositions can’t be relevant (to certain sentences) in any context where the maxim
of quantity is active. We call such propositions obligatorily irrelevant.

(32) Definition of obligatory irrelevance
φ is obligatorily irrelevant to S just in case for every context c, if the maxim of
quantity is active in c, then S doesn’t settle or entail ignorance about φ.

6.3 Disjunction revisited

Let’s return to the textbook case of disjunction in (17), repeated below, with the new
assumed LF. As before, we wish to show that this LF leads to just the right scalar
and ignorance inferences (entailments now), but now we also need to show that, in
doing so, the maxim of quantity can be active (i.e. doesn’t yield a contradiction).

(17) Ann owns a Boxer or a Collie.
LF: exh [S2 K exh [S1 Ann owns a Boxer or (Ann owns) a Collie ] ]

We take a bottom-up approach and start by considering the meaning of exh S1.
As before, we take alt(S1) to be {b ∨ c, b, c, b ∧ c}. exh S1 is therefore precisely the
same as what we derived in §3.2 as the semantic meaning of (17) itself on the old
parse, with just one exh and no K: (b ∨ c)∧¬(b ∧ c). Thus, the meaning of K exh S1

is K((b ∨ c)∧¬(b ∧ c)).
The semantic meaning of (17) is therefore the meaning of K exh S1, which we

just computed, plus the conjunction of the negation of all IE alternatives of S2.
Following Meyer 2013, we take it that altc(S2) = {⟦K exh S′⟧ ∶ S′ ∈ altFA

c (S1)∧ ⟦S′⟧ ∈
relevantc}, the set of alternatives obtained by replacing in S2 any relevant alternative
of S1.24 (Below, we abbreviate Ann owns a Boxer by “B” and Ann owns a Collie by
“C”.)

(33) altc(S2) = {⟦K exh S′⟧ ∶ S′ ∈ altFA
c (S1)∧ ⟦S′⟧ ∈ relevantc}

= {⟦K exh B or C⟧ , ⟦K exh B⟧ , ⟦K exh C⟧ , ⟦K exh B and C⟧}
= {K((b ∨ c)∧¬(b ∧ c)), K(b ∧¬c), K(c ∧¬b), K(b ∧ c)}

The alternative corresponding to the prejacent itself (the first alternative in the
set above) is of course not IE, but all of the other alternatives are IE, which means
we exclude them all. Note that the negation of K(b ∧ c) is already entailed by the
meaning of K S1, and so we omit it below.

24 See Meyer 2013 for arguments why deletion (in the sense of Katzir 2007) of K or exh is illicit in
generating this set of formal alternatives.
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(34) Semantic meaning of (17)
K((b ∨ c)∧¬(b ∧ c))
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Prejacent of matrix exh

∧ ¬K(b ∧¬c)∧¬K(c ∧¬b)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Exclusions of matrix exh

Crucially, K((b ∨ c) ∧ ¬(b ∧ c)) and ¬K(b ∧ ¬c) together entail both ¬Kb and
¬K¬c. By the same token, K((b ∨ c)∧¬(b ∧ c)) and ¬K(c ∧¬b) together entail both
¬Kc and ¬K¬b. These four inferences together (¬Kb, ¬K¬b, ¬Kc, and ¬K¬c) amount
to a pair of speaker ignorance inferences concerning b and c.

Thus, what we end up with as the semantic meaning of (17) is precisely what
we derived earlier as the complete semantic and pragmatic meaning of (17) parsed
with just one exh and no K. That is, the semantic meaning of (17) that we arrive
at can be equivalently stated as in (35).25 The difference is that, what we derived
earlier as a quantity inference given the closure conditions of relevance, we now
derive grammatically, based purely on the semantics of the LF structure.

(35) Semantic meaning of (17) (equivalent version)
K((b ∨ c)∧¬(b ∧ c))∧¬Kb ∧¬K¬b ∧¬Kc ∧¬K¬c (same as (21))

The quality inference we derive is that the speaker knows the semantic meaning
of (17), i.e. K ⟦(17)⟧. However, given that we assume the validity of both Kφ → KKφ

(positive introspection) and ¬Kφ → K¬Kφ (negative introspection), this inference is
already a valid inference regardless of the maxim of quality.26

Finally, as we noted earlier, the maxim of quantity no longer derives any
additional inferences, but rather acts as a filter on relevance. In other words, the
question now is not what inferences the maxim of quantity licenses, but rather
whether the maxim of quantity can be active in a context where the structure in
(17) is being interpreted, under the assumption that the formal alternatives we’ve
assumed are relevant. We now show that the maxim of quantity can indeed be
active, i.e. that no contradiction arises.

If the maxim of quantity is active, then it must hold that for every relevant
proposition φ, either (17) settles φ or (17) entails ignorance about φ. This entails
showing that for each alternative in {b ∨ c, b, c, b ∧ c}, either (17) settles that alterna-
tive or entails ignorance about it. We also need to show the same thing for each
proposition that can be derived from this set on the basis of the closure conditions
of relevance. If we discover that at least one such proposition is such that (17)
neither settles nor entails ignorance about that proposition, it means that the maxim
of quantity would yield a contradiction, hence that (17), under the assumption
that alt(S1) = {b∨ c, b, c, b∧ c}, can’t be interpreted in a context where the maxim of

25 We’ve shown that (34) entails (35). For the other direction, note that ¬Kb entails ¬K(b ∧¬c), and that
¬Kc entails ¬K(c ∧¬b).

26 More precisely, Kφ∧¬Kψ (the basic form of the semantic meaning of (17)) already entails KKφ∧K¬Kψ

in S5 (by positive and negative introspection), which is equivalent to K(Kφ ∧¬Kψ).
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quantity is active (a bad result); otherwise, we’re in good shape.
We begin with b ∨ c. Since (17) entails K(b ∨ c), it also entails b ∨ c by the T

axiom.27 As a result, (17) settles b ∨ c. Likewise, (17) entails ¬(b ∧ c) (again by T),
which means it also settles b ∧ c. Finally, as illustrated above, (17) entails speaker
ignorance about the individual disjunct alternatives b and c. Thus, (17) settles or
entails ignorance about every proposition in alt(S1).

Second, we need to show that for every proposition φ in the closure of alt(S1)
under conjunction, negation, and belief, (17) settles φ or entails ignorance about
φ. In the appendix (§9), we prove that if a sentence Σ of the form exh K (exh) S
(like (17) here) settles or entails ignorance about every proposition in a set A, then
Σ settles or entails ignorance about every proposition in the closure of A under
conjunction, negation, and belief. (As a consequence of this, it follows that each
alternative in alt(S2), the domain of the matrix-level exh, can be relevant.)

To recap, we’ve shown that, if (17) is parsed as exh K exh B or C, and if we
assume that the alternatives of a disjunctive sentence are the individual disjuncts
and their conjunction, then we derive precisely the right meaning for (17) (Meyer
2013). We also showed that, in doing so, the maxim of quantity can be active,
i.e. doesn’t yield a contradiction. Put differently, the formal alternatives that yield
the right inferences are all capable of being relevant without the maxim of quantity
yielding a contradiction; hence, none of them are obligatorily irrelevant in the sense
of (32).

As we’ll now see, when we turn to more than and at least, the alternative
propositions that previously overgenerated ignorance inferences are such that, if
they’re assumed to be relevant, then the maxim of quantity yields a contradiction.
As a consequence, we obtain the result that, if the maxim of quantity is taken to be
active, then those propositions can’t be relevant to begin with — they’re obligatorily
irrelevant. Thus, the maxim of quantity acts as a filter on relevance, and it crucially
renders irrelevant precisely those propositions that were previously problematic.

7 The maxim of quantity as a filter on relevance: Obliga-
tory irrelevance

We now revisit our running examples (3), with more than two, and (2), with at least
two, and show how our theory derives the right results.

27 Inferences from Kφ to φ seem to be routinely drawn in cooperative conversational exchanges. Schwarz
(2016) calls such inferences bottom line inferences.
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7.1 Comparative modified numerals revisited: More than two

Let’s discuss once more (3). In §5, we observed that, if we assume that the dense
set of [> n] propositions are relevant to (3), then parsing (3) with exh (and no K)
leads to a contradiction, which means it isn’t parsed with exh, hence why no scalar
implicature arises. However, the closure conditions of relevance, specifically closure
of relevance under negation, ensured that we incorrectly derived ignorance about
each [> n] alternative for n > 2; for example, the maxim of quantity derived both
¬K[> 5], assuming [> 5] is relevant, and ¬K¬[> 5], since relevance is closed under
negation. We also argued that it’d be purely stipulative to say that [> 5] is irrelevant.
We now show that, on our current proposal, [> 5] actually can’t be relevant, for
principled reasons, and the same for all other problematic propositions — they’re
all obligatorily irrelevant, in the sense of (32).

Consider the new assumed LF for (3) below, and assume, as before, that
altFA(S1), the set of formal alternatives of S1, are those obtained by replacing
two with any number in Q+. The crucial point now is that, if we attempt to
assume that any of these are relevant, for n > 2, then the maxim of quantity yields
a contradiction. Let’s see why. (For the purposes of the following discussion,
assume that the lower exh is not present; otherwise, we’d immediately derive a
contradiction, regardless of the maxim of quantity.)

(3) Ann owns more than two dogs.
LF: exh [S2 K (exh) [S1 Ann owns more than two dogs ] ]

Let c be any arbitrary context such that {[> n] ∶ n ∈ Q+} ⊆ relevantc; hence,
altc(S1) = {[> n] ∶ n ∈ Q+}. Then the semantic meaning of (3) is K[> 2]∧⋀{¬K[> n] ∶
n > 2}. Now consider the alternative [> 5]. (3) neither entails [> 5], nor its negation,
hence doesn’t settle [> 5]. Moreover, (3) doesn’t entail ignorance about [> 5]
because, even though it entails ¬K[> 5], it doesn’t entail the possibility ¬K¬[> 5].
The same holds for all alternative propositions of the form [> n], for n > 2. As a
result, if things are as we assumed, then the maxim of quantity can’t be active in c
for the interpretation of (3); otherwise, it yields a contradiction, illustrated by the
procedure in (28).

If we additionally included [= n] alternatives (those obtained by replacing more
than with exactly and by replacing two with any number in Q+) as relevant, formal
alternatives, nothing would change: (3) would still fail to settle or entail ignorance
about any [> n] proposition for n > 2 (and the same for any [= n] proposition for
n > 2). For instance, (3) would still fail to settle [> 5], and while it would still entail
¬K[> 5], it still wouldn’t entail ¬K¬[> 5]. Thus, the maxim of quantity, if it were
active, would still yield a contradiction.

Importantly, this result — that the maxim of quantity can’t be active in c without
yielding a contradiction — also holds for any context c′ in which any subset of
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the [> n] (or [= n]) alternatives are relevant; clearly, restricting the set of relevant
alternatives doesn’t settle or entail ignorance about more propositions than before.

If, however, we assumed that the set of formal alternatives of S1 also included
ones like not more than n, e.g. [≤ 5] (not more than five), then the maxim of quantity
could be active in c, because now (3) would settle or entail ignorance about every
alternative, and so no contradiction would arise from the maxim of quantity. For
instance, (3) would entail both ¬K[> 5] (on the basis of the alternative [> 5]) and
¬K[≤ 5] (on the basis of the alternative [≤ 5]), which is equivalent to ¬K¬[> 5].
Thus, (3) would entail ignorance about [> 5]. More generally, (3) would settle all
alternatives of the form [> n] and [≤ n] for n ≤ 2, and entail ignorance about all
other alternatives. This would be a bad result: as we observed in §2, (3) doesn’t
imply any ignorance. Thankfully, from the perspective of Katzir 2007, it’s natural
assume that not more than n isn’t a formal alternative of more than n, since it’s
structurally more complex. But what about fewer than n or at most n, each of which
would replicate the bad result just described? Here we have to assume that these
are likewise structurally more complex than more than n. Such an assumption
doesn’t seem too outlandish to us, and it in fact follows from several proposals in
the literature for independent phenomena like split-scope readings (cf. Heim 2006;
Penka 2014). We take up this issue in §8.

Assuming, then, that the formal alternatives of S1 are those obtained by replac-
ing two with any number in Q+ (and perhaps also by replacing more than with
exactly), we obtain the result that in every context where the maxim of quantity is
active, no such alternative for n > 2 can be relevant — because if any such alterna-
tive were relevant, then as just illustrated, the maxim of quantity would yield a
contradiction. In short, all such alternatives are obligatorily irrelevant to (3), in the
sense of (32).

Since all propositions [> n] (and [= n]) for n > 2 are obligatorily irrelevant to
(3), it follows that alt(S2), which feeds matrix exhaustification, doesn’t include
any alternatives of the form K[> n] (or K[= n]) for n > 2, which means that the
matrix-level exh doesn’t exclude those propositions. Given all this, the semantic
meaning of (3) is just K[> 2]. (Note that [> 1], [= 2], and so on are settled by (3),
hence can be relevant to (3), and therefore alt(S2) can include K[> 1], K[= 2], and
so on. exh thus can exclude these, but their negations are already entailed by the
prejacent, K[> 2].)

(36) Semantic meaning of (3)
K[> 2]

Lastly, since all alternatives [> n] (and [= n]) for n > 2 are obligatorily irrelevant,
parsing (3) with a second exh, below K, would no longer derive a contradiction (it
would just be vacuous), hence why we put it in parentheses. In §8, we’ll discuss an
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example where we actually do need this lower exh.
Before concluding this subsection, we note that if more than two is embedded

under a universal quantifier like required, as in (7c), repeated below, the alternatives
[> n] (and [= n]) for n > 2 can now all be relevant, and this is because they’re all
innocently excludable, hence settled when exh applies below K. The meaning we
derive is thus K(◻[> 2] ∧⋀{¬ ◻ [> n] ∶ n > 2}), which accounts for the inference
discussed in §2. (The matrix exh doesn’t exclude anything, hence could be omitted.)

(7c) Bill is required to take more than two courses.
LF: (exh) K exh [ required [ Bill takes more than two courses ] ]

7.2 Superlative modified numerals revisited: At least two

Now consider once again (2), repeated below, along with the new assumed LF.
We first show that, if we assume that the formal alternatives of S1 are all the at
least n and exactly n alternatives, we derive the result that they’re all obligatorily
irrelevant, for n > 2, which in turn means that the matrix-level exh doesn’t operate
on any K[≥ n] or K[= n] alternatives, for n > 2, hence is vacuous and in particular
fails to derive any ignorance whatsoever. We then show that if we additionally
include more than n alternatives, we derive precisely what we want.

(2) Ann owns at least two dogs.
LF: exh [S2 K (exh) [S1 Ann owns at least two dogs ] ]

Assume, then, that at least can be replaced by exactly (or only) and that two can be
replaced by any number in Q+. Now consider the alternative [= 2], which we would
like to be relevant, and specifically for (2) to entail ignorance about. If [= 2] were
relevant, then K[= 2] would be relevant too, and hence (2) would entail ¬K[= 2]. To
entail ignorance about [= 2], (2) would also need to entail the possibility ¬K¬[= 2].
This would be derivable if all the [≥ n] alternatives for n > 2 were relevant (so that
(2) would exclude all K[≥ n] for n > 2), but not otherwise. Unfortunately, none of
these alternatives can be relevant. Take an arbitrary alternative [≥ n] for some n > 2.
Clearly, (2) doesn’t entail [≥ n], nor its negation, given the structural alternatives
we assume, so (2) doesn’t settle [≥ n]. (2) does entail ¬K[≥ n], since K[≥ n] is IE,
but (2) doesn’t entail the possibility ¬K¬[≥ n]. Thus, (2) neither settles nor entails
ignorance about [≥ n], which means that [≥ n] is obligatorily irrelevant. Since n
was arbitrary, every alternative [≥ n] for n > 2 is obligatorily irrelevant, which in
turn means that (2) neither settles nor entails ignorance about [= 2], either, so [= 2]
is also obligatorily irrelevant. In short, every [≥ n] and [= n] alternative for n > 2
is obligatorily irrelevant. So, if we assume just these formal alternatives, (2) is
predicted to just mean K[≥ 2], i.e. not to entail any ignorance at all, which is wrong.

Our solution to this problem is to assume that the formal alternatives of at
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least two include not just at least n and exactly n alternatives, but also more than n
alternatives. Thus, for example, Ann owns more than two dogs is a formal alternative
of S1, hence K (exh) Ann owns more than two dogs is a formal alternative of the
prejacent, S2. Now consider again [= 2], which, to repeat, we’d like to be relevant,
and specifically for (2) to entail ignorance about. Now, [= 2] and [> 2], which
are both denoted by formal alternatives, can both be relevant, because (2) can
entail ignorance about them: if both are relevant, then (2) entails both ¬K[= 2] and
¬K[> 2], which together with the prejacent, K[≥ 2], entails the two possibilities
¬K¬[= 2] and ¬K¬[> 2]. Thus, (2) entails ignorance about both [= 2] and [> 2], as
desired. This result obtains because [= 2] and [> 2] form a symmetric pair relative
to [≥ 2].

Crucially, every other [≥ n], [= n], and [> n] alternative for n > 2 is obligatorily
irrelevant because, given the formal alternatives we assume, (2) can’t possibly settle
or entail ignorance about them. So the semantic meaning we derive for (2) is the
following.

(37) Semantic meaning of (2)
K[≥ 2]∧¬K[= 2]∧¬K[> 2]
≡ K[≥ 2]∧¬K[= 2]∧¬K¬[= 2]∧¬K[> 2]∧¬K¬[> 2]

This is precisely the partial ignorance reading that we wished to derive, follow-
ing Büring (2008), Kennedy (2013, 2015), and Schwarz (2016).

To recap, assuming that at least two has as its formal alternatives all alternatives
of the form at least n, exactly n (or only n), and more than n, every such alternative
for n > 2 ends up obligatorily irrelevant to (2), and the alternatives that we’re left
with, [= 2] and [> 2], yield precisely the attested inferences. Symmetry plays an
important role for our account of the ignorance inferences associated with (2):
symmetry is what allows (2) to entail ignorance about [= 2] and about [> 2], which
in turn lets them be relevant. In the case of (3), because of density, no alternative has
a symmetric partner, so (3) can’t entail ignorance about (nor settle) any alternative
for n > 2, which renders all such alternatives obligatorily irrelevant.

Finally, we note once more that, as in the case of more than two, if at least two
is embedded under a universal quantifier like required, as in (7b), repeated below,
the alternatives [≥ n], [> n], and [= n] for n > 2 can now all be relevant, and this
is again because they’re all innocently excludable, hence settled when exh applies
below K. The meaning we derive is thus K(◻[≥ 2] ∧ ¬ ◻ [= 2] ∧ ¬ ◻ [> 2]), which
again accounts for the inference discussed in §2.28 (Again, the matrix exh doesn’t

28 We actually derive something a little stronger than what we reported in (2). There, we reported
only the inference ¬◻ [> 2] (actually, ¬◻ [≥ 3]), which, together with the prejacent, entails that Bill
is allowed to take exactly two courses. Here, we also derive ¬ ◻ [= 2], which, together with the
prejacent, entails that Bill is also allowed to take more than two courses. This result is completely in
line with what Büring (2008) takes to be the “authoritative reading” of (7b).
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exclude anything, hence could be omitted.)

(7c) Bill is required to take at least two courses.
LF: (exh) K exh [ required [ Bill takes at least two courses ] ]

8 Discussion

We conclude with a discussion of a couple issues our theory faces (and how to deal
with them), a number of positive predictions it makes, and what it would take to
recast our theory in neo-Gricean terms.

Obligatory admissibility of more than n alternatives. Our proposal forces us to
assume that sentences like (2) with at least two have more than n alternatives as
formal alternatives. This result still keeps our analysis of the ignorance inferences
of at least n in line with Büring 2008, since ignorance ultimately still arises on the
basis of symmetry; in fact, our proposal coincides more or less with Kennedy 2015,
who likewise derives ignorance for at least two by appealing to exactly two and more
than two alternatives. (His theory is couched in neo-Gricean terms, so he stipulates
that at least, exactly, and more than form a Horn scale.) However, Schwarz (2016)
argues against the use of more than n alternatives, for the following reason. At least
and only have wider syntactic distributions than more than, as illustrated in (38) and
(39). If ignorance arose from at least on the basis of only and more than, then the fact
that (38a) and (39a) both convey ignorance would be unexpected: since (38c) and
(39c) are both ungrammatical (and assuming that ungrammatical structures can’t
serve as alternatives for scalar implicature computation), they can’t be alternatives
to (38a) and (39a), hence (38b) and (39b) wouldn’t have symmetric partners.

(38) a. Ann is at least allowed to own two dogs.

b. Ann is only allowed to own two dogs.

c. *Ann is more than allowed to own two dogs.

(39) a. Ann owns two dogs, at least.

b. Ann owns two dogs, only.

c. *Ann owns two dogs, more than.

Our response is that we don’t think our account is necessarily insufficiently
general. Although replacing at least with more than in the surface structures above
yields ungrammaticality, the question is whether the LF of (38a) and the LF of (39a)
have structural alternatives involving more than which are grammatical LFs, and
answering this question relies on explicit assumptions about the syntax and (focus)
semantics of at least. For instance, (38a) may well have the LF in (40a), and (39a) the

31 Draft: July 31, 2017



Brian Buccola and Andreas Haida

LF in (40b), despite surface appearances, and clearly, replacing at least with more
than in such structures preserves grammaticality.29

(40) a. exh K allowed [Ann owns at least two dogs]

b. exh K [Ann owns at least two dogs]

Moreover, note that, to the extent that the examples in (38a) and (39a) are a
problem for an analysis of English at least that relies on more than alternatives,
a similar problem could be constructed even for a Schwarz-style analysis of at
least in other languages in which (the equivalent of) at least has a wider syntactic
distribution than (the equivalent of) only. German mindestens ‘at least’ is a case in
point.

(41) Ann
Ann

hat
has

zwei
two

Hunde
dogs

besessen,
owned

{mindestens
{at least

/
/

*nur
only

/
/

*mehr als}.
more than}

‘Ann owned {at least / only / more than} two dogs.’

These data show that, if the problem Schwarz (2016) raises for an analysis of
English at least relying on more than alternatives is valid, then an analysis of German
mindestens relying on nur alternatives faces a nearly identical problem. We leave a
more detailed exploration of these issues for future work.

Inadmissibility of fewer than n and at most n alternatives. For sentences with
more than n and at least n, we crucially need to assume that the sentences one
would obtain by replacing more than and at least with fewer than or at most are not
viable alternatives; otherwise, we’d derive total ignorance both for more than n
and for at least n. From a structural perspective, we think this isn’t too outlandish:
it’s plausible that fewer than and at most, which possibly contain some kind of
negation at some level, are structurally more complex than either more than or
at least. For example, Penka (2014) proposes that at most is decomposed into a
negative antonymizer ANT plus at least, which explains why a sentence like Ann is
allowed to own at most two dogs can have an upper-bounded authoritative reading: it
has a parse where ANT scopes above allowed, while the at least remnant stays below
allowed, yielding the reading ‘it’s not the case that Ann is allowed to own at least n
dogs, for any n > 2’.

29 Alternatively, we might simply object to the premise of the problem, namely that unassertible LFs
can’t serve as alternatives for the purposes of implicature calculation. As Buccola, Križ, and Chemla
(2016) have argued, and attempted to demonstrate experimentally, alternative-based reasoning may
occur at a more conceptual, less linguistic level, and in particular the alternatives that enter into
such reasoning may not be totally constrained by one’s linguistic lexicon. If so, then perhaps the
(conceptual) alternative that one would obtain by replacing at least with more than in (the conceptual
counterparts of) (38a) or (39a) play a role, even though they can’t be vocalized.
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By the same token, however, for sentences like Ann owns fewer than/at most two
dogs, we now need the more than n and at least n alternatives to be inadmissible, lest
we again derive total ignorance in both cases. Following the above discussion, if
fewer than and at most are strictly more complex than more than and at least, then
we expect to be able to derive such alternatives, simply by deleting the relevant
negative expression, e.g. ANT. To solve this issue, we might simply argue that
negation cannot be deleted for the purposes of structurally deriving alternatives.
Again, we think this isn’t too outlandish an assumption, and in fact we observe
evidence for it, as in (42).

(42) Bill didn’t eat all of the cookies.

An utterance of (42) implicates that Bill ate some of the cookies. This implicature
is expected if the only alternative of (42) is Bill didn’t eat some (any) of the cookies,
whose negation is equivalent to ‘Bill ate some or all of the cookies’. Together with
the basic the meaning of (42), the overall meaning derived is that Bill ate some but
not all of the cookies, which is exactly right.

If, however, Bill ate some of the cookies were also an alternative of (42), as it
would be on a simple, structural theory of formal alternatives, then it would form
a symmetric pair with Bill didn’t eat some (any) of the cookies, hence incorrectly lead
to speaker ignorance about whether Bill ate some of the cookies, rather than the
implicature that he did in fact eat some. Thus, this example shows that it’s not too
implausible to think that negation can’t be deleted for the purposes of deriving
formal alternatives. See Trinh and Haida 2015 for further details.

Role of the UDM hypothesis. Our proposal is compatible more than n having
exactly n as a structural alternative, which we take to be a positive feature since,
presumably, they are structural alternatives of one another. This result relies
crucially on the UDM hypothesis. If the alternatives weren’t densely populated,
then [= 3] and [> 3] would form a symmetric pair relative to [> 2], and so (3) would
entail ignorance about [= 3] and ignorance about [> 3]. Specifically, K[> 2], ¬K[= 3],
and ¬K[> 3] (all entailments of (3)) would entail the possibility inferences ¬K¬[> 3]
and ¬K¬[= 3]. As a result, the alternatives [= 3] and [> 3] would no longer be
obligatorily irrelevant, and so instead of deriving as the basic meaning of (3) K[> 2],
we’d incorrectly derive the stronger meaning K[> 2]∧ I[= 3]∧ I[> 3]. Adopting the
UDM hypothesis forces these alternatives to be irrelevant, because density in this
case removes symmetry.

By contrast, when it comes to at least, as in (2), density fails to remove the
symmetry between the [= 2] and [> 2] alternatives, relative to [≥ 2], and so,
even with the UDM hypothesis, we still correctly derive as the meaning of (2)
K[≥ 2]∧ I[= 2]∧ I[> 2].
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Class A/B distinction. More generally, we correctly predict the class A/B dis-
tinction discussed by Nouwen (2010) purely as a consequence of the ordering
relations introduced by class A vs. class B modifiers. Class B modifiers, like at least,
at most, maximally, and so on, introduce non-strict relations like ≥ and ≤, which,
given reasonable assumptions about the formal alternatives they trigger, give rise
to symmetry, hence to partial ignorance. Class A modifiers, by contrast, like more
than, fewer than, and so on, introduce strict relations like > and <, which, together
with density, fail to give rise to symmetry, hence fail to yield ignorance.

Double quantifier sentences. In section §5.1, we assumed, following Fox and
Hackl (2006), that a sentence with unembedded more than like (3) can’t be parsed
with exh, since doing so leads to a contradiction. In the context of our amended
proposal, however, we pointed out that (3) could be in principle parsed with exh,
simply because it has no non-weaker alternatives to operate on (it’s vacuous), due
to obligatory irrelevance. We now show that this latter possibility is a reality.

Consider the following two sentences involving two quantifiers each (at least/
more than and some). As Schwarz (2016, fn. 12) observes, such sentences appear to
license scalar inferences about some. For instance, (43a) implicates that it’s not the
case that more than two students were interested in all of the topics, while (43b)
implicates that it’s not the case that at least two students were interested in all of
the topics.

(43) a. More than two students were interested in some of the topics.

b. At least two students were interested in some of the topics.

To derive these implicatures, we need to assume that the sentences are parsed
with an occurrence of exh below K, and we need it to be the case that the alternatives
more than two . . . all . . . ([> 2,∀]) and at least two . . . all . . . ([≥ 2,∀]) can be relevant
(aren’t obligatorily irrelevant), so that this exh can exclude them.

(44) a. exh [S1 K exh [S2 more than two . . . some . . . ] ]

b. exh [S1 K exh [S2 at least two . . . some . . . ] ]

Crucially, if we maintain our assumptions about the formal alternatives induced
by more than two and at least two, and in addition assume that some has all as a
formal alternative, then it turns out that [> 2,∀] can be relevant to (43a) and that
[≥ 2,∀] can be relevant to (43b) (and the same for greater-numbered alternatives of
those forms), and the reason for this is simple: they’re both innocently excludable,
hence settled when relevant. Note that the existential quantifier alternatives, [> n,∃]
and [≥ n,∃], for n > 2, are all obligatorily irrelevant to (43a) and (43b), respectively,
for the same reasons as before.

Importantly, we note that the original account of Fox and Hackl (2006) can’t
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derive a scalar inference for (43a) (they don’t discuss at least): if exh applies, it
yields a contradiction, and so it simply can’t apply. On our proposal, contradiction
is avoided because obligatory irrelevance eliminates from consideration the alter-
natives whose exclusion would yield a contradiction, and for those that remain,
some are IE, and they yield precisely the scalar inferences that are attested.

Comparison with a neo-Gricean account. We now briefly argue that our account
has several advantages over a neo-Gricean account. First, we note that it’s pos-
sible within a neo-Gricean framework to derive the partial ignorance inferences
associated with at least, either by taking the formal alternatives of at least two to
be just exactly two and more than two (Büring 2008; Kennedy 2013, 2015), or by
taking them to be all at least n and exactly n alternatives (Schwarz 2016). (The latter
case requires that the maxim of quantity make reference to innocent exclusion.) In
both cases, primary inferences of the form ¬Kφ are derived, such as ¬K[= 2] and
¬K[> 2] or ¬K[≥ 3] in the case of (2) (Ann owns at least two dogs), which, together
with the quality inference of (2), K[≥ 2], entail speaker ignorance about [= 2] and
about [> 2]. Moreover, none of these primary ¬Kφ inferences can be strengthened
into secondary inferences of the form K¬φ without yielding a contradiction, and
hence no scalar implicatures arise.

However, these accounts run into trouble when it comes to sentences with more
than, like (3) (Ann owns more than two dogs). If density isn’t assumed, then either
more than two triggers only other more than n alternatives, or it triggers both more
than n and exactly n alternatives, where n is an integer. (Recall that it must trigger
at least the more than n alternatives in order to account for the scalar inferences we
observe when more than two is embedded under a universal modal.) In the former
case, the scalar implicature K¬[> 3] is incorrectly predicted: the primary inference
¬K[> 3] can be strengthened without a problem. In the latter case, ¬K[> 3] can’t be
strengthened, but together with the inference ¬K[= 3], ignorance about [= 3] and
[> 3] is incorrectly predicted.

Perhaps, then, we can adopt the UDM hypothesis and try to recast the account
of Fox and Hackl (2006) in neo-Gricean terms. For instance, assume that more
than two triggers the dense set of more than n alternatives. Already at this point,
it’s unclear that a post-semantic, pragmatic algorithm would be sensitive to such
alternatives: at this level of reasoning, it’s plausible that granularity considerations
(which render alternatives like Ann owns exactly 2.5 dogs contextually irrelevant,
since they yield a contextual contradiction) are already in play. Nevertheless, let’s
grant that the dense set of alternatives are visible to the neo-Gricean algorithm.
Then it derives the primary implicatures ¬K[> n] for all n > 2, but they can’t be
strengthened into secondary implicatures without yielding a contradiction (even
if the neo-Gricean maxim of quantity refers to innocent exclusion, since, as we
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already observed, all these alternatives are IE). At this point, one may argue that,
because secondary strengthening yields a contradiction, it simply doesn’t happen.
There are two problems this approach faces.

First, we saw in the case of the double quantifier sentences that more than
two (and at least two) don’t necessarily suppress all scalar implicatures, if another
quantifier, like some, is present. If the step of strengthening from primary to
secondary implicatures doesn’t occur, then this fact remains unexplained. To be
sure, many subsets of primary implicatures can be strengthened consistently, but
there’s no principled way, on this approach, to determine precisely the subset that
is strengthened to yield the attested inferences.

Second, even for basic, single-quantifier sentences like (3), we would still be left
with many primary inferences of the form ¬K[> n], for n > 2. As we argued in §5.3,
however, even these inferences appear to be unattested.

Finally, if our arguments in this article are correct, then some notion of obliga-
tory irrelevance, i.e. some non-stipulative restriction on which alternatives can be
relevant to an uttered sentence, is necessary for explaining the range of ignorance
inferences observed in natural language. One wonders, then, whether such a
notion can be devised within a neo-Gricean framework. We’re doubtful that this is
possible. For instance, the move to close relevance under belief is not an option for
the neo-Gricean theory: doing so entails moving away from a neo-Gricean view
to a grammatical view of both scalar implicatures and ignorance inferences. The
reason for this is that closing relevance under belief entails adopting matrix K,
and this in turn entails adopting exh, in order to avoid deriving a contradiction in
contexts where the maxim of quantity is active.

Contexts where the maxim of quantity is inactive. In this article, we’ve only
considered contexts where the maxim of quantity is active. In such contexts, our
proposal states that every sentence must either settle its relevant alternatives or
entail ignorance about them. One wonders, then, what predictions our account
makes for contexts where the maxim of quantity is inactive, such as the game
show contexts discussed in Fox 2014. Specifically, consider a game show, where
utterances by the host don’t obey the maxim of quantity. There are 100 boxes of
different colors, and five of the 100 boxes contain a million dollars each (the rest
are empty). The host gives hints to the players without revealing exactly which
boxes contain money.

Fox (2014) observes that, in such a context, (45) fails to imply that the host is
ignorant about whether box 20 contains money and about whether box 25 contains
money, yet it does imply that boxes 20 and 25 don’t both contain money. His point
is that we can dissociate the computation of scalar inferences from that of ignorance
inferences.
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(45) There is money in box 20 or 25.

On a proposal like ours, which assumes matrix K, this indicates that (45) has an
LF like (46), with exh but without any matrix K. In other words, matrix K serves
to make an utterance obey the maxim of quantity, so if the maxim of quantity is
inactive, then it has no role to play. Note, by the way, that we can still derive the
inference that the speaker believes the content of her utterance because we still
assume that the maxim of quality is active.

(46) exh [there is money in box 20 or 25]

Consider now (47). In a game show context, this sentence isn’t parsed with
matrix K, and so we instead have one of the two parses below. These two LFs are
truth-conditionally equivalent because the exh in LF1 is vacuous: no alternative is
IE, for the same reasons discussed in §5. As a result, (47), uttered by a host in a
game show context, is predicted just to mean that there is money in two or more
green boxes, without any speaker ignorance, which is correct.30

(47) There is money in at least two green boxes.
LF1: exh [there is money in at least two green boxes]
LF2: [there is money in at least two green boxes]

Similarly, (48) would have the parse in LF2, again a simple quantificational
statement with no speaker ignorance. Note that in this case, LF1 is ruled out because
it’s a contradiction: for the same reasons discussed in §5, every alternative is IE,
but excluding them all contradicts the complement of exh. (Note that the maxim
of quantity, being inactive, doesn’t render any of these alternatives obligatorily
irrelevant, hence doesn’t rescue the LF from contradiction.)

(48) There is money in more than two green boxes.
LF1: exh [there is money in more than two green boxes]
LF2: [there is money in more than two green boxes]

9 Appendix: Proof

Let Σ be a sentence of the form exh K (exh) S, and let A be a set of propositions. We
wish to prove that if Σ either settles or entails ignorance about every proposition
in A, then Σ either settles or entails ignorance about every proposition in the

30 This explanation seems, at least on the surface, to be incompatible with Spector (2015)’s account of
the global PPI status of at least. He argues that at least must occur in the scope of exh, which rules out
LF2, and that the application of exh be non-vacuous, which rules out LF1. His prediction, then (even
apart from our own theory), is that at least can’t be used in contexts where the maxim of quantity is
inactive. According to our judgments, this prediction is incorrect.
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closure of A under conjunction, negation, and belief, as described by the closure
conditions on relevance in (27). Assume, then, that for every φ ∈ A, Σ settles or
entails ignorance about φ.

Case 1 (closure under conjunction). Let φ, ψ ∈ A. Then we need to show that Σ
either settles or entails ignorance about φ ∧ ψ. If Σ settles both φ and ψ, then Σ
either entails φ ∧ψ (if Σ entails both) or entails the negation of φ ∧ψ (if Σ entails
the negation of at least one of them), hence settles φ ∧ ψ. If Σ entails ignorance
about both φ and ψ, then Σ also entails ignorance about φ∧ψ. Finally, without loss
of generality, assume that Σ settles φ and entails ignorance about ψ. Then, if Σ
settles φ by entailing it, then Σ entails ignorance about φ ∧ψ, and if Σ settles φ by
entailing its negation, then Σ settles φ ∧ψ by entailing its negation.

Case 2 (closure under negation). Let φ ∈ A. If Σ settles φ, then Σ also settles ¬φ,
and if Σ entails ignorance about φ, then Σ also entails ignorance about ¬φ.

Case 3 (closure under belief). Let φ ∈ A. We must show that Σ either settles or
entails ignorance about Kφ. We proceed by induction on the form of φ and show
that Σ settles Kφ.

• Subcase 0 (base case) If φ doesn’t contain an occurrence of K, then, if Σ
settles φ, either φ or ¬φ is an entailment of Σ (by T) and so Σ either entails
Kφ or entails K¬φ (which entails ¬Kφ), hence settles Kφ; and if Σ entails
ignorance about φ, then Σ entails ¬Kφ, hence settles Kφ.

• Subcase 1 (closure under conjunction) If φ is of the form ψ ∧ χ, and if Σ
settles Kψ and settles Kχ, then Σ settles Kφ. (If Σ entails both Kψ and Kχ,
then it entails, hence settles, Kφ; and if Σ entails the negation of at least one
of Kψ or Kχ, then it entails the negation of Kφ, hence settles it.)

• Subcase 2 (closure under negation) If φ is of the form ¬ψ and if Σ settles
Kψ, then Σ either entails Kψ, which entails ¬Kφ, hence settles Kφ, or Σ
entails ¬Kψ, hence ¬K¬φ, and since by hypothesis Σ either settles φ or entails
ignorance about φ (φ ∈ A), we have that either Σ entails, hence settles, Kφ, or
Σ entails speaker ignorance about φ, hence entails ¬Kφ, hence settles Kφ.

• Subcase 3 (closure under belief) If φ is of the form Kψ and Σ settles Kψ,
then Σ either entails Kψ, which (by positive introspection) entails, hence
settles, Kφ, or it entails ¬Kψ, which (by negative introspection) entails K¬φ,
which in turn entails ¬Kφ, hence settles Kφ.

QED
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