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Abstract

In recent work, Fox (2016) has argued, on the basis of both empirical and
conceptual considerations, that relevance (the set of propositions relevant in
an utterance context) is closed under speaker belief: if φ is relevant, then it’s
also relevant whether the speaker believes φ. We provide a formally explicit
implementation of this idea and explore its theoretical consequences and
empirical predictions. As Fox (2016) already observes, one consequence is
that ignorance inferences (and scalar implicatures) can only be derived in
grammar, via a covert belief operator of the sort proposed by Meyer (2013).
We show, further, that the maxim of quantity no longer enriches the meaning
of an utterance, per se, but rather acts as a filter on what can be relevant in
an utterance context. In particular, certain alternatives (of certain utterances)
are shown to be incapable of being relevant in any context where the maxim
of quantity is active — a property we dub obligatory irrelevance. We show that
the resulting system predicts a quite restricted range of interpretations for
sentences with the scalar item some, as compared to both neo-Gricean (Horn
1972; Sauerland 2004; Geurts 2010) and grammatical (Chierchia, Fox, and
Spector 2012; Fox 2007; Meyer 2013) theories of scalar implicature, and we
argue that these predictions seem largely on the right track.

Keywords: ignorance inferences, scalar implicatures, exhaustivity, relevance, Gricean
maxims

1 Introduction

According to the standard grammatical approach to scalar implicatures, as devel-
oped by Chierchia (2004), Fox (2007), Chierchia, Fox, and Spector (2012), and Fox
(2014), scalar implicatures are only derived in grammar, while ignorance inferences,
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e.g. those associated with plain (unembedded) disjunctive sentences, are predicted
to arise only pragmatically. Not only that, but ignorance inferences are expected
to potentially be quite pervasive, for the following reason: given an utterance S,
if φ is a relevant alternative of S such that S doesn’t entail φ nor ¬φ (that is, S
doesn’t settle φ), then the maxim of quantity licenses the inference that the speaker
doesn’t have the belief that φ is true; but on standard assumptions about relevance
(viz. that it’s closed under negation), ¬φ is also relevant, and since S doesn’t settle
φ, S doesn’t settle ¬φ either, so S also licenses the inference that the speaker doesn’t
have the belief that ¬φ is true (i.e. that φ is false). In other words, the speaker
doesn’t have a belief one way or the other about the truth of φ: she’s ignorant
about φ. The result is that, for any relevant alternative φ of an utterance S which S
doesn’t settle, the maxim of quantity licenses an inference of speaker ignorance
about φ. Therefore, without any principled restrictions on relevance, ignorance
inferences are predicted to potentially be quite pervasive.

In recent work, Fox (2016) has argued that relevance is closed not just under
negation (and conjunction), but also under speaker belief: if φ is relevant, then it’s
also relevant whether the speaker believes φ. This closure condition is motivated
by the observation that “silence is uncooperative”: if φ is relevant, but the speaker
doesn’t have a belief one way or the other about the truth of φ, then she is obligated
to say so, which suggests that her beliefs about φ are relevant. As Fox points out,
a consequence of closing relevance under belief is that ignorance inferences, like
scalar implicatures, can only be derived in grammar, by way of a covert belief
operator (Chierchia 2006; Meyer 2013), not pragmatically. Put differently, the
maxim of quantity no longer derives any additional inferences, i.e. doesn’t enrich
the meaning of an uttered sentence.

In this article, we take seriously Fox’s proposal and explore its theoretical and
empirical consequences in detail. The article is divided roughly into two halves.
In the first half, we begin by developing a formally explicit semantic-pragmatic
framework (§2) that has as a consequence the generalization that for any relevant
proposition φ that an uttered sentence S doesn’t settle, the maxim of quantity
licenses the inference that the speaker is ignorant about φ (§3). (As far as we know,
ours is the first formally explicit theory of this kind.) We then minimally extend this
system by closing relevance under belief (§4). We show that the maxim of quantity
then acts as a filter on which propositions can be relevant in an utterance context.
More specifically, closing relevance under belief induces a precise condition on
when the maxim of quantity can be active: the maxim of quantity can be active for
the interpretation of an uttered sentence S only if, for every relevant proposition
φ, S either settles or entails ignorance about φ; otherwise, the maxim of quantity
yields a contradiction. Thus, if the maxim of quantity is taken to be active for the
interpretation of an uttered sentence S, then for any proposition φ that S doesn’t
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settle or entail ignorance about (regardless of what other propositions are relevant),
φ can’t be relevant. We refer to this as obligatory irrelevance.

In the second half of the article, we investigate whether we can find any
empirical traces of obligatory irrelevance by examining textbook cases of sentences
with the scalar expression some. We show that the new theory predicts a rather
restricted range of interpretations for such sentences: they cannot generally be used
to convey speaker ignorance about their all alternative; instead, they convey either
that their all alternative is false, or that it’s irrelevant. This prediction contrasts
sharply with those of the standard neo-Gricean view of implicature (Sauerland
2004; Geurts 2010), the standard grammatical view of implicature (Chierchia, Fox,
and Spector 2012), and the Matrix K theory of Meyer 2013, which we discuss and
compare with in turn.

The system we explore here makes quite clear predictions, which, however, are
at times tough to test introspectively. Nevertheless, our goal is to present them
as is, with the hope that more sophisticated empirical tests can be conducted in
the future. With that caveat in mind, we do find that the facts arguably point in
favor of closing relevance under belief. If it turns out that this is correct, then these
facts would also constitute another argument against a neo-Gricean approach to
scalar implicature, and in favor of a grammatical approach — one that is even more
radically grammatical than the standard one.

2 The standard grammatical theory of scalar implicature

We begin by laying out the ingredients that form the basis of the standard gram-
matical theory of scalar implicature, and we illustrate how it works for a textbook
example involving disjunction.

2.1 The ingredients

On the grammatical view of scalar implicature, a sentence S may be parsed as
exh S, with a grammaticalized exhaustivity operator, exh. What exh S means is
that S is true and that every innocently excludable (IE) member of alt(S), the set of
relevant formal alternatives of S, is false. Intuitively, a proposition q ∈ alt(S) is IE
(given ⟦S⟧) just in case the negation of q doesn’t contradict ⟦S⟧ and doesn’t force
any disjunction of members of alt(S) to be true, unless that disjunction is already
entailed by ⟦S⟧. The formal semantics of exh is provided in (1).

(1) Definition of exh (Chierchia, Fox, and Spector 2012)

a. ⟦exh S⟧ = ⟦exh⟧ (alt(S))(⟦S⟧).

b. ⟦exh⟧ (A)(p) = p ∧⋀{¬q ∶ q ∈ IE(p, A)}.
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c. IE(p, A) =
⋂{M ∶ M is a maximal set of excludable alternatives of A given p}.

d. M ⊆ A is a set of excludable alternatives of A given p iff p ∧⋀{¬q ∶ q ∈ M}
is consistent.

e. M is a maximal set of excludable alternatives of A given p iff M is a set of
excludable alternatives of A given p, and there is no M′ such that M′ ⊆ A,
M ⊂ M′, and M′ is a set of excludable alternatives of A given p.

(2) Exhaustification
exh may attach to any propositional constituent (i.e. any node of type st).

For any context c, the function altc, applied to a sentence S, returns the set
of all propositions that are both relevant in c and denoted by formally derivable
alternatives (in c) of S. More precisely, let altFA

c (S) be the set of formally derivable
alternatives (in c) of S (e.g. as proposed in Katzir 2007), and let relevantc be the set
of all relevant propositions in c. Then:

(3) Alternatives of a sentence (as used by exh)
For any sentence S, altc(S) = {⟦S′⟧ ∶ S′ ∈ altFA

c (S)}∩ relevantc.

We almost always omit the subscript c, like in the definition of exh in (1).
In addition, we assume the following maxim of quality and basic maxim of quantity.

This version of the maxim of quantity is “basic” in the sense that it doesn’t refer to
formal properties of linguistic expressions, e.g. Horn scales (cf. Fox 2007, 2016).1, 2

Fox (2016) refers to the two maxims together as “virtual truisms”, because we seem
to be aware of them without explicitly being taught them.3

1 This formulation of the maxim of quantity departs slightly from the one in Fox 2007, which only
states what a speaker should do when confronted with two relevant alternatives. (If S1 and S2 are
both relevant and S1 is more informative than S2, then, if the speaker believes that both are true, the
speaker should utter S1 rather than S2.) We think that our formulation is a faithful generalization of
this version to the full set of relevant alternatives and that it corresponds even more closely to the
“oath” (see fn. 3). Indeed, it’s very close to what Fox (2014, p. 3) takes to be “the simplest possible
formulation [of the maxim of quantity], namely that it requires a speaker to convey all the relevant
information that she has available”.

2 As stated, this formulation of the maxim of quantity doesn’t require the uttered sentence to be
relevant itself. For instance, in principle it could be a sentence that entails everything relevant that
the speaker believes, as well as some irrelevant things that the speaker believes. We think that such a
sentence would be independently ruled out by the maxim of relation, “Be relevant”. Nevertheless, one
could also slightly revise our definition of the maxim of quantity to say: “The speaker should utter a
sentence S such that S is relevant and . . . ”

3 Fox (2016) points out that the oath one takes in court (“I swear to tell the truth, the whole truth, and
nothing but the truth”) is essentially a reaffirmation of these virtual truisms.
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(4) Maxim of quality
The speaker should only utter sentences that the speaker believes to be true.
(“Tell nothing but the truth.”)

(5) Maxim of quantity
The speaker should utter a sentence S such that, for every relevant proposition
φ that the speaker believes to be true, S entails φ. (“Tell the whole truth.”)

We make the assumptions in (6) about relevance, which the maxim of quantity
makes reference to. Following standard procedure, we will (at first) simply stipulate
which propositions, together with the closure conditions, generate the full set of
relevant propositions.

(6) Closure conditions of relevance (cf. Fox 2007, endnote 5)

a. If φ and ψ are both relevant, then so is φ ∧ψ.

b. If φ is relevant, then so is ¬φ.

Quantity reasoning will (on the first incarnation of the theory) be tied to the
derivation of ignorance inferences. We characterize ignorance about a proposition
φ as in (7).

(7) Characterization of ignorance
To be ignorant about a proposition φ means to not have the belief that φ and
to not have the belief that ¬φ. (To not have the belief that ¬φ is to consider φ

possible.)

For our semantic representation language, we adopt an epistemic logic con-
taining the modal operator K, where Kφ means that the speaker believes the
proposition φ (cf. Hintikka 1962). Speaker ignorance about φ therefore amounts to
the conjunction of ¬Kφ and ¬K¬φ. We sometimes write “Iφ” to mean ¬Kφ ∧¬K¬φ.

2.2 Example: Disjunction

To illustrate, let’s take the classic case of disjunction, as in (8). Intuitively, (8)
licenses both a scalar inference, that Ann doesn’t own both a Boxer and a Collie,
and a pair of ignorance inferences, that the speaker is uncertain whether Ann owns
a Boxer and uncertain whether Ann owns a Collie.

(8) Ann owns a Boxer or a Collie.
LF: exh [S Ann owns a Boxer or (Ann owns) a Collie ]

What we wish to show is that parsing (8) with exh leads to just the right scalar
and ignorance inferences. For the sake of clarity, when we write “(8)”, we refer
to the LF provided below (8), containing exh, and we write “S” to refer to the
complement of exh, also known as the prejacent. The meaning of S is thus b ∨ c,
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the proposition that Ann owns a Boxer or a Collie (or both). We take alt(S) to
be {b ∨ c, b, c, b ∧ c}, since each of these is (denoted by) a formal alternative of
S (Sauerland 2004) and is presumably relevant. Then the meaning of (8) is the
meaning of S, b ∨ c, plus the conjunction of the negation of all IE alternatives of
S. The conjunctive alternative b ∧ c is IE, but the individual disjunct alternatives
b and c are not IE. Intuitively, this is because negating b would, together with
the meaning of S, entail c; and conversely, negating c would, together with the
meaning of S, entail b. So obviously we cannot negate both b and c (doing so
would contradict the meaning of S), and instead of making an arbitrary choice of
which one to negate, we negate neither. Thus, the overall semantic meaning of (8)
is (b ∨ c)∧¬(b ∧ c).

(9) Semantic meaning of (8):
(b ∨ c)∧¬(b ∧ c)

Next, based on the maxim of quality, a hearer is licensed to infer that the
speaker of (8) believes the semantic content of (8). Thus, (8) licenses the quality
inference K((b ∨ c)∧¬(b ∧ c)).

(10) Quality inference of (8):
K((b ∨ c)∧¬(b ∧ c))

Finally, the maxim of quantity allows us to infer that, for any proposition φ that
is both relevant and not entailed by S, it’s not the case that the speaker believes φ,
i.e. ¬Kφ. Since b and c are each relevant, and since neither of these is entailed by
the semantic meaning of (8), the maxim of quantity licenses the inferences ¬Kb and
¬Kc. Moreover, the closure conditions on relevance ensure that ¬b and ¬c are each
relevant as well, and since neither of these is entailed by the semantic meaning of
(8), the maxim of quantity also licenses the inferences ¬K¬b and ¬K¬c.

(11) Quantity inferences of (8):
¬Kb ∧¬K¬b ∧¬Kc ∧¬K¬c

Importantly, the pair of inferences ¬Kb and ¬K¬b together amount to speaker
ignorance about b, as characterized by (7). Likewise, ¬Kc and ¬K¬c characterize
speaker ignorance about c.

Putting together the quality and quantity inferences, we get the complete
semantic and pragmatic meaning of (8) given below.

(12) Semantic and pragmatic meaning of (8):
K((b ∨ c)∧¬(b ∧ c))
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Quality inference

∧ ¬Kb ∧¬K¬b
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Ignorance about b

∧ ¬Kc ∧¬K¬c
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Ignorance about c
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Quantity inferences
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3 A generalization about ignorance as quantity inferences
in the standard theory

The disjunction example is instructive because it allows us to get a sense of how
the various ingredients we assume work together to derive scalar inferences (or
not) and/or to derive ignorance inferences (or not). We saw that the disjunctive
sentence (8), parsed with exh, gives rise to a scalar inference about the conjunctive
alternative, namely ¬(b ∧ c), hence doesn’t imply any speaker ignorance about
that alternative. By contrast, (8) doesn’t give rise to a scalar inference about either
disjunct alternative (b or c), but does give rise to ignorance inferences about them,
due to a certain logical relation between the individual disjunct alternatives and
the disjunction as a whole (namely, they aren’t entailed, nor are their negations),
and to the closure of relevance under negation.

We now characterize more precisely how our procedure of pragmatic reasoning
works, so that we can provide an explicit generalization about exactly when (about
exactly which propositions) we predict ignorance. The deductive procedure in (13)
shows that if φ is relevant (in a given context) and S doesn’t entail φ nor ¬φ, then
the maxim of quantity licenses the inference that the speaker is ignorant about φ.

(13) Pragmatic reasoning procedure
For any context c, uttered sentence S, and proposition φ:

a. relevantc(φ), ⟦S⟧ ⊭ φ, ⟦S⟧ ⊭ ¬φ (assumption)

b. ¬Kφ ((a) + maxim of quantity)

c. relevantc(¬φ) ((a) + closure conditions of relevance)

d. ¬K¬φ ((a) + (c) + maxim of quantity)

e. Iφ ((b) + (d) + def. of ignorance)

If, following Fox 2016, we introduce the notion of settle, given in (14), then we
can state our generalization as in (15).

(14) Definition of settlement
S settles φ just in case ⟦S⟧ ⊧ φ or ⟦S⟧ ⊧ ¬φ.

(15) Generalization about the pragmatic reasoning procedure in (13)
For any context c, uttered sentence S, and proposition φ, if the maxim of
quantity is active in c, and if φ is relevant in c and S doesn’t settle φ, then S
gives rise to an inference of speaker ignorance about φ.

Thus, for example, (8) gives rise to inferences of speaker ignorance about the
individual disjunct alternatives b and c because (8) doesn’t settle either one of
them.
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This view of the interplay between semantic content and pragmatic reasoning
is completely in line with the intuitions of Fox (2007) regarding when and how
ignorance arises.

4 Closing relevance under belief

We now minimally extend the standard grammatical theory in the following way:
we add to our closure conditions on relevance the condition that if φ is relevant,
then so is Kφ. That is, the speaker’s beliefs about the truth of what is relevant are
themselves relevant. This small adjustment has a few important rippling effects.
The first is that not only scalar implicatures, but also ignorance inferences must be
derived in grammar. The second is that, for grammar to be capable of this, it needs
to make available a grammatical belief operator (Chierchia 2006; Meyer 2013).4

The third is that, since scalar implicatures and ignorance inferences can only be
derived in grammar, the maxim of quantity no longer derives additional inferences,
i.e. no longer enriches the meaning of an utterance; rather, it acts as a filter on what
can be relevant, leading to a notion we call obligatory irrelevance, whose (potential)
empirical footprint we explore in §5.

4.1 Closing relevance under belief

We now add to our closure conditions on relevance the condition that if φ is
relevant, then it’s also relevant whether the speaker believes φ.

(16) Closure conditions of relevance (revised)

a. If φ and ψ are both relevant, then so is φ ∧ψ.

b. If φ is relevant, then so is ¬φ.

c. If φ is relevant, then so is Kφ.

Fox (2016) motivates this move by observing the following empirical fact:
“Silence is uncooperative.” For example, in the context of a murder trial, if the
lawyer asks the witness, w, “Where was John at the time of the murder?”, w can’t
just look the lawyer in the eye and remain silent. The intuition, as Fox puts it, is
that “if w believes something that bears on John’s whereabouts at the time of the
murder, w is required to say so. If not, w is required to reveal this lack of opinion.”

We note that this observation is not limited to highly formal or rigid legal
contexts, but rather holds across everyday conversational contexts, too. For example,
if Ann asks Bob, “Where is John?”, and Bob doesn’t know where John is, Bob
cannot simply remain silent; he must express his ignorance to Ann in some way.

4 Fox (2016) has observed these first two points.
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As Fox (2016) informally demonstrates, if relevance is closed under belief,
then ignorance inferences are no longer pragmatic, but rather must be derived
in grammar. To see this, suppose that Ann utters a sentence S, and that φ is
any relevant alternative not settled by S. Then, as a consequence of the earlier
generalization in (15), Ann must be ignorant about φ. But in that case, Ann must
also convey her ignorance about φ, since that information is both relevant and
available to Ann. Thus, S must entail ignorance about φ.

We now formalize this result by making explicit the underlying logic necessary
for it to obtain.

4.2 A generalization about ignorance as semantic entailments

Formally, we assume an S5 modal logic, which contains the axiom schemata in
(17).

(17) S5 epistemic modal logic

a. (Kφ ∧K(φ → ψ))→ Kψ distribution axiom (K)

b. Kφ → φ truth axiom (T)

c. Kφ → KKφ positive introspection axiom (4)

d. ¬Kφ → K¬Kφ negative introspection axiom (5)

We take it that this logic appropriately models that component of the mind that
governs speaker belief in grammar and semantics. (We don’t necessarily take this
logic to be an appropriate model of human belief or knowledge more generally.)

The K axiom essentially represents our implicit knowledge of the logical rule
of modus ponens.5 We assume that speakers know certain basic logical validities
like (φ ∧ψ)→ φ. This means that from K(φ ∧ψ) we may conclude Kφ on the basis
of K.6

The T axiom corresponds to what Schwarz (2016) calls “bottom line inferences”
and effectively represents a hearer’s update of the common ground (or of their
own knowledge state) on the basis of what the speaker uttered.

Finally, axioms 4 and 5 formalize the notion that we know what our knowledge
state is (about a given proposition φ). These axioms are important for a speaker
to be able to obey the maxim of quality. Without 4, belief in φ would not suffice
for being able to utter φ (because the speaker wouldn’t necessarily know that she
believes φ); and without 5, a lack of belief in φ wouldn’t prevent the speaker from

5 Logical reasoning with modus ponens has been shown to be relatively easy for humans, as compared
to, say, modus tollens, which is much harder (Evans, Newstead, and Byrne 1993).

6 As far as we can tell, the K axiom is not actually required for any of the deductions that follow in
this article, but we list it here because K is valid in all normal modal logics, and because S5 is a logic
commonly employed in epistemic modal logic.
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uttering φ (because the speaker wouldn’t necessarily know that she doesn’t believe
φ). Together they also entail that a speaker knows what she’s ignorant about.

We now demonstrate formally that, as a consequence of closing relevance under
belief, together with the maxim of quantity, ignorance can only be derived in
grammar.

(18) Pragmatic reasoning procedure (after closure of relevance under K)
For any context c, uttered sentence S, and proposition φ:

a. relevantc(φ), ⟦S⟧ ⊭ φ, ⟦S⟧ ⊭ ¬φ (assumption)

b. ¬Kφ ((a) + maxim of quantity)

c. relevantc(¬φ) ((a) + closure conditions of relevance)

d. ¬K¬φ ((a) + (c) + maxim of quantity)

e. relevantc(¬Kφ) ((a) + closure conditions of relevance)

f. relevantc(¬K¬φ) ((a) + closure conditions of relevance)

g. ⟦S⟧ ⊧ ¬Kφ ∧¬K¬φ or ⟦S⟧ ⊭ ¬Kφ ∧¬K¬φ (tautology)

h. Case 1: ⟦S⟧ ⊧ ¬Kφ ∧¬K¬φ

⟦S⟧ ⊧ Iφ (above line + def. of ignorance)

i. Case 2: ⟦S⟧ ⊭ ¬Kφ ∧¬K¬φ

Subcase 1: ⟦S⟧ ⊭ ¬Kφ

¬K¬Kφ ((e) + above line + maxim of quantity)
K¬Kφ ((b) + axiom 4)
contradiction (above two lines)

Subcase 2: ⟦S⟧ ⊭ ¬K¬φ

¬K¬K¬φ ((f) + above line + maxim of quantity)
K¬K¬φ ((d) + axiom 5)
contradiction (above two lines)

This deductive procedure illustrates that, if the maxim of quantity is active in
a given context c, and if φ is relevant in c and not settled by S, then one of two
things follows: either S entails speaker ignorance about φ, or the maxim of quantity
licenses the inference of a contradiction. We take it to be an empirical fact that the
latter option is unavailable: we know of no cases where a listener actually draws a
contradictory quantity inference.7 Consequently (and given the obvious fact that

7 To be sure, formulating a diagnostic to test this claim is nontrivial, but at the very least, for sentences
that the theory predicts to give rise to contradictory quantity inferences, we should either perceive the
contradiction directly (viz. that the speaker is expressing a contradictory belief state) and/or detect
some oddness similar perhaps to the cases of oddness arising from contradiction discussed elsewhere
in the literature. For example (to foreshadow a bit), if Bob is interested in knowing whether or not
Ann is Canadian (and explicitly asks Carl this), and Carl says to Bob, It’s raining in Paris, Carl’s reply
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things can be relevant that speakers are ignorant about), ignorance must be able
to be derived in grammar, and it can no longer be derived by quantity reasoning
(since that would yield a contradiction); that is, ignorance must be derived in
grammar alone. Thus, the pertinent generalization can be stated as in (19).

(19) Generalization about the pragmatic reasoning procedure in (18)
For any context c, uttered sentence S, and proposition φ, if the maxim of
quantity is active in c, and if φ is relevant in c and S doesn’t settle φ, then
⟦S⟧ ⊧ Iφ.

Since speakers need to be able to convey their ignorance grammatically (and
since not every sentence begins with I (don’t) know, I’m (un)certain, etc.), language
evidently must make available a covert belief operator, such as the syntactic item
K proposed for independent reasons by Meyer (2013). We adopt K and take its
meaning to be the same as that of the belief operator we previously assumed; that
is, overloading the symbol K, we have ⟦K⟧φ = Kφ.

Crucially, in every context where the maxim of quantity is active, we take it
that every sentence must be parsed with a matrix-level K, in order to be able to
convey ignorance grammatically.8, 9

(20) Matrix K
Every (assertive) sentence S must be c-commanded by an occurrence of K.

Given this, together with our assumption in (2) that exh may attach to any
propositional constituent, it follows that exh can apply both above and/or below K
(cf. Meyer 2013, p. 43).

is certainly odd, but that’s simply because he isn’t addressing the question at hand; he’s explicitly
flouting or disobeying the maxims of quantity and relevance (for whatever reason). In no way is
the oddity of the sentence on a par with that of sentences like #Somebody but Kim called (Fintel 1993)
or #There are any cookies left (Chierchia 2013), whose oddity has been argued to arise due to their
expressing a contradiction.

8 Meyer (2013, p. 42) comes to the same conclusion, for independent reasons, and calls this the “Matrix
K hypothesis”, because for her, it’s an auxiliary assumption used to explain certain empirical facts.
For us, the idea that relevance is closed under belief is the crucial ingredient (or hypothesis), and
matrix K is essentially a consequence of this. More precisely, the consequence for us is that at least
some sentences (the ones for which we observe ignorance inferences) can be parsed with matrix K.
We could, therefore, adopt a weaker version of (20), replacing “must” with “can”. However, this
would raise an important question that we wish to ignore for now, namely why certain sentences
(the ones for which we observe ignorance inferences obligatorily/by default) must be parsed with
matrix K. We think that weakening (20) in this way, and answering this question, could lead to deeper
insights. However, we have to leave this inquiry for a future occasion, and so we instead adopt what
is given in (20).

9 In contexts where the maxim of quantity is inactive, e.g. game show contexts, we take it that sentences
are not parsed with K, but could still be parsed with exh. Thus, scalar implicatures are predicted to
still arise, but ignorance implicatures are not — predictions that Fox (2014) argues are borne out.
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4.3 Obligatory irrelevance

We now show how closing relevance under belief actually ends up conspiring
with the maxim of quantity to act as a filter on relevance. First, note that the
generalization in (19) is in fact just a stronger version of the generalization in (15)
from §3, repeated below.

(15) Generalization about the pragmatic reasoning procedure in (13)
For any context c, uttered sentence S, and proposition φ, if the maxim of
quantity is active in c, and if φ is relevant in c and S doesn’t settle φ, then S
gives rise to an inference of speaker ignorance about φ.

The difference between the two — the effect of closing relevance under be-
lief — has to do with the way in which S “gives rise to ignorance”. Previously,
ignorance was a purely pragmatic inference licensed directly by the maxim of
quantity. Now, ignorance is an entailment of the semantic meaning of the uttered
sentence.

As a consequence of the new generalization, we can now state a precise condi-
tion on relevance in contexts where the maxim of quantity is active.

(21) Condition on relevance (a consequence of closing relevance under belief)
For any context c, uttered sentence S, and proposition φ, if the maxim of
quantity is active in c, and if S doesn’t settle or entail ignorance about φ, then
φ isn’t relevant in c.

We assume that all the sentences we consider are interpreted in contexts where
the maxim of quantity is active and obeyed (not flouted) (but see fn. 9).

The condition in (21) restricts which propositions can be relevant in a specific
utterance context in which the maxim of quantity is active. Crucially, certain
propositions can’t be relevant (to certain sentences) in any context where the maxim
of quantity is active. We call such propositions obligatorily irrelevant.

(22) Definition of obligatory irrelevance
φ is obligatorily irrelevant to S just in case for every context c, if the maxim of
quantity is active in c, then S doesn’t settle or entail ignorance about φ.

To give an extreme example, the utterance Ann is Canadian (= S), no matter
how it’s parsed, neither settles nor entails ignorance about the proposition ‘it is
raining in Paris’ (= φ). So, φ is obligatorily irrelevant to S — which seems intuitive
enough. (S is predicted to be assertable only in contexts where φ is not taken to
be relevant.) In the second half of this article, we’ll explore whether less trivial
examples can be found for empirical traces of obligatory irrelevance, in order to
help us decide whether closure of relevance under belief yields an empirically
adequate semantic-pragmatic system. But first, we show how the new system
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handles the classic case of disjunction.

4.4 Disjunction revisited

Let’s return to the classic case of disjunction in (8), repeated below, with the new
assumed LF. As before, we wish to show that this LF leads to just the right scalar
and ignorance inferences (entailments now), but now we also need to show that, in
doing so, the maxim of quantity can be active (i.e. doesn’t yield a contradiction).
This involves checking that the LF settles or entails speaker ignorance about every
relevant proposition φ.

(8) Ann owns a Boxer or a Collie.
LF: exh [S2 K exh [S1 Ann owns a Boxer or (Ann owns) a Collie ] ]

We take a bottom-up approach and start by considering the meaning of exh S1.
As before, we take alt(S1) to be {b ∨ c, b, c, b ∧ c}. exh S1 is therefore precisely the
same as what we derived in §2.2 as the semantic meaning of (8) itself on the old
parse, with just one exh and no K: (b ∨ c)∧¬(b ∧ c). Thus, the meaning of K exh S1

is K((b ∨ c)∧¬(b ∧ c)).
The semantic meaning of (8) is therefore the meaning of K exh S1, which we

just computed, plus the conjunction of the negation of all IE alternatives of S2.
Following Meyer 2013, we take it that altc(S2) = {⟦K exh S′⟧ ∶ S′ ∈ altFA

c (S1)∧ ⟦S′⟧ ∈
relevantc}, the set of alternatives obtained by replacing in S2 any relevant alternative
of S1.10 (We abbreviate Ann owns a Boxer by “B” and Ann owns a Collie by “C”.)

(23) altc(S2) = {⟦K exh S′⟧ ∶ S′ ∈ altFA
c (S1)∧ ⟦S′⟧ ∈ relevantc}

= {⟦K exh [B or C]⟧ , ⟦K exh B⟧ , ⟦K exh C⟧ , ⟦K exh [B and C]⟧}
= {K((b ∨ c)∧¬(b ∧ c)), K(b ∧¬c), K(c ∧¬b), K(b ∧ c)}

The alternative corresponding to the prejacent itself (the first alternative in the
set above) is of course not IE, but all of the other alternatives are IE, which means
we exclude them all. Note that the negation of K(b ∧ c) is already entailed by the
meaning of K S1, and so we omit it below.

(24) Semantic meaning of (8)
K((b ∨ c)∧¬(b ∧ c))
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Prejacent of matrix exh

∧ ¬K(b ∧¬c)∧¬K(c ∧¬b)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Exclusions of matrix exh

Crucially, K((b ∨ c) ∧ ¬(b ∧ c)) and ¬K(b ∧ ¬c) together entail both ¬Kb and
¬K¬c. By the same token, K((b ∨ c)∧¬(b ∧ c)) and ¬K(c ∧¬b) together entail both

10 See Meyer 2013 for arguments why deletion (in the sense of Katzir 2007) of K or exh is illicit in
generating this set of formal alternatives.
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¬Kc and ¬K¬b. These four inferences together (¬Kb, ¬K¬b, ¬Kc, and ¬K¬c) amount
to a pair of speaker ignorance inferences concerning b and c.

Thus, what we end up with as the semantic meaning of (8) is precisely what we
derived earlier as the complete semantic and pragmatic meaning of (8) parsed with
just one exh and no K. That is, the semantic meaning of (8) that we arrive at can
be equivalently stated as in (25).11 The difference is that, what we derived earlier
as a quantity inference given the closure conditions of relevance, we now derive
grammatically, based purely on the semantics of the LF structure.

(25) Semantic meaning of (8) (equivalent version)
K((b ∨ c)∧¬(b ∧ c))∧¬Kb ∧¬K¬b ∧¬Kc ∧¬K¬c (same as (12))

The quality inference we derive is that the speaker knows the semantic meaning
of (8), i.e. K ⟦(8)⟧. However, given that we assume the validity of both Kφ → KKφ

(positive introspection) and ¬Kφ → K¬Kφ (negative introspection), this inference is
already a valid inference regardless of the maxim of quality.12

Finally, as we noted earlier, the maxim of quantity no longer derives any
additional inferences, but rather acts as a filter on relevance. In other words, the
question now is not what additional inferences the maxim of quantity licenses, but
rather whether the maxim of quantity can be active in a context where the structure
in (8) is being interpreted, under the assumption that the formal alternatives we’ve
assumed are relevant. We now show that the maxim of quantity can indeed be
active, i.e. that no contradiction arises.

If the maxim of quantity is active, then it must hold that for every relevant
proposition φ, either (8) settles φ or entails ignorance about φ. This entails showing
that for each alternative in {b ∨ c, b, c, b ∧ c}, either (8) settles that alternative or
entails ignorance about it. We also need to show the same thing for each proposition
that can be derived from this set on the basis of the closure conditions of relevance.
If we discover that at least one such proposition is such that (8) neither settles
nor entails ignorance about that proposition, it means that the maxim of quantity
would yield a contradiction, hence that (8), under the assumption that alt(S1) =

{b ∨ c, b, c, b ∧ c}, can’t be interpreted in a context where the maxim of quantity is
active (a bad result); otherwise, we’re in good shape.

We begin with b∨ c. Since (8) entails K(b∨ c), it also entails b∨ c by the T axiom.
As a result, (8) settles b ∨ c. Likewise, (8) entails ¬(b ∧ c) (again by T), which means
it also settles b ∧ c. Finally, as illustrated above, (8) entails speaker ignorance about
the individual disjunct alternatives b and c. Thus, (8) settles or entails ignorance
about every proposition in alt(S1).

11 We’ve shown that (24) entails (25). For the other direction, note that ¬Kb entails ¬K(b ∧¬c), and that
¬Kc entails ¬K(c ∧¬b).

12 More precisely, Kφ∧¬Kψ (the basic form of the semantic meaning of (8)) already entails KKφ∧K¬Kψ

in S5 (by positive and negative introspection), which is equivalent to K(Kφ ∧¬Kψ).
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Second, we need to show that for every proposition φ in the closure of alt(S1)

under conjunction, negation, and belief, (8) settles φ or entails ignorance about
φ. In the appendix (§A), we prove that if a sentence Σ of the form exh K (exh) S
(like (8) here) settles or entails ignorance about every proposition in a set A, then
Σ settles or entails ignorance about every proposition in the closure of A under
conjunction, negation, and belief. (As a consequence of this, it follows that each
alternative in alt(S2), the domain of the matrix-level exh, can be relevant.)

To recap, we’ve shown that, if (8) is parsed as exh K exh B or C, and if we assume
that the alternatives of a disjunctive sentence are the individual disjuncts and their
conjunction, then we derive precisely the right meaning for (8) (cf. Meyer 2013).
We also showed that, in doing so, the maxim of quantity can be active, i.e. doesn’t
yield a contradiction. Put differently, the formal alternatives that yield the right
inferences are all capable of being relevant without the maxim of quantity yielding
a contradiction; hence, none of them are obligatorily irrelevant in the sense of (22).

5 The textbook case of some

Having established the formal result of closing relevance under belief — namely,
the generalization in (19), which gives rise to the notion of obligatory irrelevance,
defined in (22) — we now turn to the empirical question of whether we can find
traces of obligatory irrelevance in natural language. To do so, we look at the
textbook case of the scalar item some.

5.1 Predicted denotations of some sentences

We focus on a textbook example like (26), borrowed from Geurts 2010. Which
readings of (26) does the current system predict to be available?

(26) Bonnie stole some of the pears.

First, we need to consider all the possible parses of (26). Since we assume that
every sentence must be c-commanded by K, (20), and that exh may be adjoined to
any propositional constituent, (2), this leaves us with four main options, depending
on whether exh attaches above K, below K, neither, or both.13 For clarity, we write
“some” to refer to the denotation of S1.

13 Adding more occurrences of K or exh wouldn’t generate any further readings, since they would be
semantically vacuous. For K, this is due to introspection (axioms 4 and 5). For exh, the lower exh
already fully strengthens the meaning of the sentence. (More precisely, for (27c), exh already excludes
the all alternative, so adding a second exh above or just below K would not exclude anything further;
and for (27b), the all alternative is obligatorily irrelevant, as we’ll soon see, so adding a second exh
would again not exclude anything further.)
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(27) a. K [S1 Bonnie stole some of the pears]

b. exh [S2 K [S1 Bonnie stole some of the pears]]

c. K exh [S1 Bonnie stole some of the pears]

d. exh [S3 K exh [S1 Bonnie stole some of the pears]]

We start with (27c), and we assume, uncontroversially, that (28) is a formal
alternative of S1. (We write “all” to refer to its denotation.) As such, we assume that
alt(S1) = {some, all}, i.e. that all is also relevant, and then ask what interpretation
we predict, and whether the maxim of quantity yields a contradiction.

(28) [S4 Bonnie stole all of the pears]

First, we note that all is IE (it has no symmetric partner), and so the overall
denotation we get for (27c) is K(some∧¬all). Second, we must ask whether (27c),
given this denotation, settles or entails ignorance about every relevant proposition.
Clearly, it settles both some and all (by the T axiom). (It also settles everything in
the closure of {some, all} under negation, conjunction, and belief, as per the result
in §A.) Therefore, no contradiction arises: the maxim of quantity can be active,
and the alternative all can be relevant. This is a good result, to be sure: this parse
corresponds to the ‘strong’ implicature reading of (26), which is universally agreed
to be available.

Next, we note that (27d) delivers the exact same reading as (27c), because the
outer exh is semantically vacuous: the alternatives of S3 are K exh. . . some. . . (S3

itself) and K exh. . . all. . . ; the former is not IE (the prejacent of exh never is), and
although the latter is IE, its negation is already entailed by S3. So, (27d) doesn’t
represent a different reading from (27c).

Turning next to (27a), since there is no exh present, the only possible denotation
is K some. This neither settles nor entails ignorance about all, no matter in which
context the sentence is used.14 Therefore, all is obligatorily irrelevant to (27a), in
the sense of (22). In other words, if all is taken to be relevant (and the maxim of
quantity is active), then (27a) is not an available parse of (26), since it would lead
to a contradiction; otherwise (if all is irrelevant), then (27a) is available and means
just K some.

Finally, we turn to (27b). We first assume, again, that alt(S1) = {some, all}, and
then ask whether the maxim of quantity yields a contradiction. In this case, the
denotation we end up with is K some∧¬K all. Clearly, (27b), given this denotation,
settles some; however, it neither settles nor entails ignorance (as characterized in

14 This claim rests on the assumption that the underlying notion of entailment (in terms of which
settlement is defined) is logical, not contextual, entailment: if the underlying notion were contextual
entailment, then in contexts where some and all are contextually equivalent, (27a) would indeed
settle all. We discuss such contexts in §6.2, where we provide arguments for maintaining that the
underlying notion of entailment is logical.
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relevant(all) ¬relevant(all)

(exh) K. . . some. . . � K some
(exh) K exh. . . some. . . K(some∧¬all) K some

Table 1: Predicted denotations of (26), depending on parse and (ir)relevance of all.
The symbol “�” means that the maxim of quantity yields a contradiction.

(7)) about all. (Although it entails ¬K all, it doesn’t entail the possibility inference
¬K¬all.) Therefore, if all were relevant, then the maxim of quantity would yield
a contradiction. Thus, all is obligatorily irrelevant to (27b). In other words, if
all is taken to be relevant, then (27b), like (27a), is not an available parse of (26);
otherwise (if all is irrelevant), then (27b) is available and, like (27a), means just
K some.

To recap, all can be relevant both to (27c) and to (27d), in which case the sentence
denotes K(some∧¬all). By contrast, all is obligatorily irrelevant both to (27a) and to
(27b); hence, they each denote simply K some. This all means that if all is not taken
to be relevant in a given context, then (26) can simply be parsed as (27a) (or (27b),
with a vacuous exh), yielding the simple meaning K some, which seems like a fine
result. However, if all is taken to be relevant in a given context, then (26) must be
parsed as (27c) (or (27d), with a vacuous outer exh), yielding the strong implicature
meaning K(some∧¬all). These predictions are summarized in Table 1.

5.2 Three paths to ignorance

We just saw that if all is relevant, then (26) is predicted to only be usable to convey
the strong implicature meaning K(some ∧ ¬all). Thus, if the speaker is ignorant
about all, then she shouldn’t be able to use (26) (assuming still that all is relevant,
and of course that the speaker is obeying the maxim of quality). This is because
the speaker is compelled (by the maxim of quantity) to grammatically express
her ignorance about all, which (26), no matter how it’s parsed, cannot do. Before
we explore whether this prediction (and the others) is correct, we first ask the
following question: in such a scenario, what options are predicted to be available
to the speaker, if not (26)? We mention here three options.

5.2.1 Disjunction: Some or all

The first option is to use the overt disjunction some or all.

(29) Bonnie stole some or all of the pears.

This is an example of a Hurford disjunction, which has been argued to involve
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embedded exhaustification of some. (Otherwise, there would be an entailment
relation between the disjuncts, which Hurford’s constraint disallows, as evidenced
by the oddness of #Bonnie went to France or Paris.) Thus, (29) is parsed as (30).15

(30) exh [S4 K [S3 [exh [S1 Bonnie stole some of the pears]] or [S2 . . . all . . . ]]]

The denotation of the first disjunct, exh S1, is thus some∧¬all, while the deno-
tation of the second disjunct, S2, is all. These two disjuncts exclude one another,
which means that they form a symmetric pair relative to the whole disjunction.
This in turn means that the outer exh yields ignorance about each disjunct, precisely
like in run-of-the-mill cases of disjunction like (8). The denotation of (30) is given
in (31); we write “some*” to abbreviate some∧¬all.

(31) ⟦(30)⟧ = K(some*∨ all)∧¬K some*∧¬K all
≡ K(some*∨ all)∧ I some*∧ I all

Since (30) entails ignorance about all, all can be relevant to (30) (unlike what we
saw for (27b)). Thus, if all is taken to be relevant, then (29) (specifically, parsed as
(30)) is predicted to be one path for the speaker to convey her ignorance about all.

5.2.2 Dedicated expression for conveying ignorance: At least some

A second option is to use a dedicated expression for conveying ignorance, such as
at least.

(32) Bonnie stole at least some of the pears.

The effect of at least is essentially to undo, or preempt, the scalar implicature
that would arise in its absence (Krifka 1999), viz. ¬all in the case of some. How
exactly this works is a topic of much debate, and for our purposes it doesn’t really
matter, as long as (32) can indeed convey (grammatically) ignorance about all. One
straightforward way to do this is to assume that at least has only as an alternative
(Schwarz 2016). Then (32), or more precisely S1 in (33a), has (33b) and (33c) as
alternatives. These alternatives form a symmetric pair, just like in the some or all
case discussed above, and so we derive precisely the same meaning as there.

(33) a. exh [S2 K [S1 Bonnie stole at least some of the pears]]

b. [S3 Bonnie stole only some of the pears]

c. [S4 Bonnie stole (at least) all of the pears]

(34) ⟦(33a)⟧ = K(some*∨ all)∧¬K some*∧¬K all
≡ K(some*∨ all)∧ I some*∧ I all

15 We omit any occurrence exh just below K, with the entire disjunction as its complement, because that
occurrence of exh would be vacuous.

18 Draft: June 1, 2018



Obligatory irrelevance and the computation of ignorance inferences

5.2.3 Special intonation (rise-fall-rise)

The third and final option we mention here is to use a special intonation contour for
conveying ignorance, such as the rise-fall-rise (RFR) contour in English (Ward and
Hirschberg 1985). We won’t provide an explicit semantics for RFR (for a specific
proposal, see Constant 2012); it suffices that RFR on a sentence with a scalar item
like some conveys speaker uncertainty about the relevant alternative(s), viz. all. For
simplicity, we model RFR as a kind of sentential operator, but the specifics don’t
concern us here.

(35) ⟦RFR [S2 K [S1 Bonnie stole some of the pears]]⟧ = K some∧ I all

When we discussed the four possible parses for (26) given in (27), we therefore
implicitly assumed that (26) has falling (or, at least, not RFR) intonation.

As far as we’re aware, little attention has been paid to the role of specific
intonation contours (like RFR) in computing scalar implicatures (but see Westera
2017, most recently). For example, textbook discussions of sentences with some
generally don’t mention the prosody with which they should be uttered, nor
do experimental studies on scalar implicatures generally control for prosody
(participants often just read sentences on a screen). In the discussions that follow,
therefore, we assume falling (non-RFR) intonation on some when it comes to
predictions.

5.3 Predictions in more detail

We now lay out the predictions of the current system in more detail. Our discussion
is divided into two parts. First, we discuss the predicted usability conditions of
some sentences: in which contexts is (26) predicted to be usable (and under which
parses)? Second, we discuss the predicted inferential patterns: which inferences
does (26) license in which contexts? After laying out the predictions, we discuss in
§5.4 a number of tests that help us decide whether the predictions are borne out.

5.3.1 Predicted usability conditions

If we fix the context — specifically, whether or not all is relevant, and what the
epistemic state of the speaker is regarding all — then we can ask whether or not
(26) is predicted to be usable (under this or that parse). We assume in each case
that the speaker believes some, since otherwise, (26) is not usable, because using it
would violate the maxim of quality.

If all is irrelevant, then the speaker should be able to use (26) — on any parse, in
principle — regardless of her epistemic state about all.

If, however, all is relevant, then the speaker can only use (26) (specifically, parse
(27c) or (27d)) if she believes ¬all. That is, if she believes all or is ignorant about all,
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relevant(all) ¬relevant(all)

K some∧K all 7 3

K some∧K¬all 3 3

K some∧ I all 7 3

Table 2: Predictions about when (26) is usable, depending on whether or not all is
relevant and on the speaker’s epistemic state about all.

relevant(all) ¬relevant(all)

↝ K¬all ↝ ∅

Table 3: Predictions about which inferences a hearer is licensed to draw about the
speaker’s epistemic state about all when she uses (26), depending on whether or
not all is relevant.

then she should not be able to use (26) (with falling intonation). These predictions
are summarized in Table 2.

5.3.2 Predicted inferential patterns

Rather than fixing both relevance and the speaker’s knowledge state, we can
instead fix just one of them and then ask which inferences about the other one
a hearer should be licensed to draw from a speaker’s use of (26). We first fix
relevance about all and ask which inferences a hearer should be able to draw about
the speaker’s epistemic state about all. Afterwards, we do the opposite.

If all is irrelevant, then a hearer can’t draw any inference at all about the
speaker’s epistemic state about all, and this is because the speaker is able to use
(26) regardless of which epistemic state she’s in, as Table 2 illustrates.

If, however, all is relevant, then a hearer can draw the inference that the speaker
believes ¬all, since that is the only epistemic state that she can be in to be able to
use (26). These predictions are summarized in Table 3.

We now fix the speaker’s epistemic state about all and then ask which inferences
a hearer should be able to draw about the relevance of all. In other words, we
assume that the hearer knows the speaker’s epistemic state about all, but isn’t
completely sure about whether or not all is relevant (or is ready to revise her
assumptions about it).

If the hearer knows that the speaker either believes all or is ignorant about
all, then from the speaker’s use of (26) she can deduce that all is irrelevant, for
otherwise, the speaker would be conveying K(some∧¬all), hence would be violating
the maxim of quality.
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Hearer knows: K all∨ I all Otherwise

↝ ¬relevant(all) ↝ ∅

Table 4: Predictions about which inferences a hearer is licensed to draw about the
relevance of all when a speaker uses (26), depending on the hearer’s knowledge of
the epistemic state of the speaker about all.

In all other cases, the speaker can’t conclude one way or the other (purely from
the speaker’s use of (26)) whether or not all is relevant. These predictions are
summarized in Table 4.

5.4 Testing the predictions

We now turn to the question of whether these predictions are indeed borne out. We
note right away that the judgments here are extremely subtle: it’s very difficult to
introspect about whether (26) licenses this or that inference in this or that context,
and about whether (26) is usable in this or that context. To help sharpen the
judgments, we will rely on the Are you saying that. . . ? test of Meyer 2013 to test
inferences, and on a modified version of it, What I’m saying is that. . . , to test usability.
The idea is that Are you saying that. . . ? and What I’m saying is that. . . can only target
meaning components that are somehow explicitly (grammatically) conveyed by a
speaker’s utterance.

(36) Are you saying that (might) φ. . . can only target grammatically derived impli-
catures. (Meyer 2013, p. 71)

To see this, witness the following contrasts. In (37), B can target either the ‘not
both’ implicature of A’s utterance, or the ignorance implicature of A’s utterance,
since these are grammatically expressed (by a suitable LF structure like exh K
exh. . . or. . . , as explained in §4.4).

(37) A. Table 3 ordered a sandwich or a hot chocolate.

B1. Are you saying they didn’t order both?

B2. Are you saying you don’t know whether they ordered the sandwich or
the hot chocolate?

By contrast, in (38) and (39), B attempts to target a proposition that isn’t at all
expressed by A’s utterance (but is merely compatible with it).

(38) A. I will buy a Gamay or a Valdiguié.

B. #Are you saying you will buy two bottles?
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(39) A. Al went to South America for vacation.

B. #Are you saying he went to Chile?

The question now is what this diagnostic can tell us about the interpretation
of some sentences like (26), specifically whether the predictions laid out above are
correct. We proceed in the reverse order of how we presented them, starting first
with the question of which inferences the use of (26) licenses, followed by the
question of which contexts support the use of (26).

5.4.1 Testing the predicted inferential patterns

If all is taken to be relevant, then (26) is usable only under a strongly exhaustive
parse, hence should license the inference K¬all, but not, for instance, I all. To ensure
that all is relevant, we consider a dialogue in which Alice explicitly asks whether
Bonnie stole all of the pears. As a consequence of Clyde’s use of (26) as a response,
Alice ought to be able to target the strong implicature of Clyde’s response, but not
any ignorance implicature.16 (As a reminder, Clyde’s sentence must be read with
falling (not RFR) intonation.)

(40) A. Did Bonnie steal all of the pears?

C. She stole some of them.

A1. So, are you saying she didn’t steal all of them?

A2. ??So, are you saying you don’t know whether she stole all of them?

Compare with at least some, where now the judgments should be reversed, since
Clyde’s response now (gramatically) conveys ignorance about all, as discussed in
§5.2.2.

(41) A. Did Bonnie steal all of the pears?

C. She stole at least some of them.

A1. ??So, are you saying she didn’t steal all of them?

A2. So, are you saying you don’t know whether she stole all of them?

It seems to us that there is a real contrast between the A1 and A2 responses in
each example (as indicated by our judgment mark of “??”), as well as between the
A2 responses across both examples: A2 is a worse response to some than to at least
some. These judgments therefore support the prediction that the use of (26) in a
context where all is relevant licenses the inference K¬all, but not I all.17

16 We find that the addition of so before are you saying that. . . sharpens the judgments even more,
perhaps because it makes it clearer that the speaker is drawing an inference from what the other
person said (or at least is making reference to such a potential inference).

17 This argument is taken straight from Meyer 2013.
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Suppose now that Alice (the hearer) knows that Clyde (the speaker) believes
that Bonnie stole all of the pears, e.g. because this is common knowledge between
the two of them. Suppose further that Alice is curious about whether Clyde thinks
Bonnie will go to jail and assumes that going to jail depends (at least in part) on
whether Bonnie stole all of the pears, rather than just some. In this case, Clyde’s
use of (26) is predicted to be usable, but only if all is irrelevant. Thus, Clyde should
be able to use (26) to convey to Alice that going to jail doesn’t depend on Bonnie’s
having stole all of the pears; it only matters that she stole any at all. Our judgment
is that this prediction is borne out.18

(42) Context: A and C both know that Bonnie stole all of the pears.

A. Do you think Bonnie will go to jail?

C. Absolutely — she stole some of the pears.

A1. ??So, are you saying she didn’t steal all of them?

A2. So, are you saying it’s irrelevant whether (that) she stole all of them?

The same contrast is predicted in a context where Alice knows that Clyde is
ignorant about whether or not Bonnie stole all of the pears, e.g. because this is
common knowledge between the two of them. This prediction also seems correct
to us.

(43) Context: A and C are both ignorant about whether or not Bonnie stole all of
the pears.

A. Do you think Bonnie will go to jail?

C. Absolutely — she stole some of the pears.

A1. ??So, are you saying she didn’t steal all of them?

A2. So, are you saying it’s irrelevant whether she stole all of them?

5.4.2 Testing the predicted usability conditions

We now fix both the relevance (or irrelevance) of all and the epistemic state of the
speaker regarding all, and ask whether the predictions about the usability of (26)
are borne out. As before, we assume that the speaker believes some.

If all is irrelevant, then it appears that the speaker can use (26), regardless of his
epistemic state about all: all of Clyde’s responses below sound fine to us.

18 Strictly speaking, it’s not clear to us that this irrelevance inference (¬relevant(all)) is a grammatical
inference on a par with, e.g., scalar inferences (like ¬all). If not, then the acceptability of the A2
response in (42), as compared to the A1 response, suggests that the generalization about the Are you
saying. . . diagnostic in (36) is not fully general. We set these details aside for now. The important
point here is that irrelevance inferences are as targetable by Are you saying. . . as scalar inferences are,
given the right contextual assumptions, whereas ignorance inferences are not.
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(44) Context: Anyone who steals any pears goes to jail.

A. Do you think Bonnie will go to jail?

C1. Absolutely — she stole some of the pears. In fact, she stole all of them.

C2. Absolutely — she stole some of the pears, though not all of them.

C3. Absolutely — she stole some of the pears. She may even have stolen all
of them — I don’t know.

If all is relevant, then (26) should only be usable if K¬all. In that case, the
meaning conveyed is K(some∧¬all). Consequently, the speaker should be able to
follow his utterance by targeting K¬all, but not, for instance, I all, and this seems
correct.

(45) A. Did Bonnie steal all of the pears?

C1. Bonnie stole some of them. So, what I’m saying is she didn’t steal all
of them.

C2. ??Bonnie stole some of them. So, what I’m saying is I don’t know whether
or not she stole all of them.

Compare with at least some, where now the judgments are once again reversed.

(46) A. Did Bonnie steal all of the pears?

C1. ??Bonnie stole at least some of them. So, what I’m saying is she didn’t
steal all of them.

C2. Bonnie stole at least some of them. So, what I’m saying is I don’t know
whether or not she stole all of them.

5.5 The status of weak implicatures

So far, the predictions of the current system seem to be on the right track. We now
turn to a potential problematic prediction.

On the standard neo-Gricean view of implicatures, e.g. the Standard Recipe
laid out in Geurts 2010, building on Sauerland 2004, the derivation of a scalar
implicature proceeds in two steps. First, a weak (or primary) implicature of the
form ¬Kφ is computed. Second, if the speaker is assumed to be competent (or
opinionated) about φ (i.e. Kφ ∨K¬φ), then the strong (or secondary) implicature
K¬φ follows. If this is correct, then a possible reading of (26), in a context where
all is relevant but the Competence Assumption is neither endorsed nor denied, is
K some∧¬K all. This weak implicature reading is unexpected on the present theory,
because the denotation neither settles nor entails ignorance about all.

Geurts (2010, p. 30) writes that “one of the main virtues of the Standard Recipe
is that it distinguishes between weak and strong implicatures, and connects them
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via the Competence Assumption”. However, as far as we can tell, there has been
little evidence put forward to suggest that a sentence with a scalar item like some,
as in (26), can be interpreted as actually conveying a weak implicature. First, if the
context is such that the Competence Assumption is explicitly denied, then speaker
ignorance, and a fortiori the weak implicature, follows as a contextual entailment:
the negation of Kφ ∨K¬φ is ¬Kφ ∧¬K¬φ (= Iφ). So, in such a case, nothing about
the sentence meaning conveys speaker ignorance.

What if the Competence Assumption is neither endorsed nor denied, i.e. a
context where the hearer doesn’t know whether the speaker is competent about φ?
Geurts (2010, p. 30) writes about this possibility:

In a context that doesn’t support the Competence Assumption, the
strong implicature cannot be derived, and the Standard Recipe gives
us only the weak one. To illustrate how this might happen, consider
[(26)] in two slightly different scenarios. In both cases Clyde has wit-
nessed Bonnie stealing some pears, but while in scenario S1 he saw
the platter from which she took the pears, in S2 his view of the platter
was obstructed by (say) a fat cat. Consequently, in S1 but not in S2

Clyde knows whether any pears are left; or in other words, while the
Competence Assumption holds in S1, it doesn’t hold in S2, and the
Standard Recipe forecasts a strong implicature in the former case but
not in the latter. This seems to be correct: while in S1 we would infer
from Clyde’s uttering [(26)] that [K¬all], S2 only allows for the weaker
inference that [¬K all].

Unfortunately, in scenario S2 it’s explicitly stated that Clyde’s view of the
platter is obstructed, hence that Clyde is ignorant about whether Bonnie stole all of
the pears. So, again, ignorance (hence also the weak implicature) is a contextual
entailment.

What this all means is that it’s not so clear that the present system makes any
wrong predictions (yet), despite the fact that there is no parse of (26) that actually
conveys ¬K all (either as an entailment or as a quantity implicature): in scenario S1,
the parses (27c) and (27d) are available and mean K(some∧¬all), while in scenario
S2, the parses (27a) and (27b) are available and mean just K some, with ¬K all (or I all)
following as a contextual entailment. (In the latter case, the obligatory irrelevance
of all is compatible with the contextual entailment ¬K all; indeed, the fact that the
context is already transparent about the speaker’s epistemic state concerning all
plausibly renders all irrelevant to begin with.)

But what about a scenario S3 where the hearer is genuinely unsure whether
or not Clyde saw the platter from which Bonnie took pears (i.e. a scenario where
it really is the case that the Competence Assumption is neither endorsed nor
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denied)? In this scenario, the current system predicts that Clyde’s utterance of
(26) either conveys that all is irrelevant, or conveys K¬all. Thus, if all is explicitly
made relevant, e.g. by the question Did Bonnie steal all of the pears?, then Clyde’s
utterance of (26) should imply K¬all. What this means is that if Clyde did in fact
see the platter (and saw that Bonnie stole just some of the pears), then Clyde can
felicitously and truthfully use (26). However, if Clyde did not see the platter (but
only saw Bonnie running away with pears presumably taken from the platter), then
Clyde cannot use (26), because doing so would either convey a belief he doesn’t
actually have (K¬all), or convey that all is irrelevant. Instead, Clyde would have to
use a different utterance that does convey his ignorance about all, e.g. use at least
some rather than plain some, or use RFR rather than falling intonation. We believe
that this is a correct prediction: it feels inappropriate for Clyde to utter (26) (with
falling intonation) when he’s in fact ignorant about all. (Naturally, intuitions here
are subtle, so more careful empirical testing is necessary to fully assess whether
the predictions of the current system are indeed correct.)19

The only piece of evidence that we’re aware of for the existence of strictly weak
(i.e. not ignorance) inferences associated with some comes from Meyer (2013), who
uses the Are you saying. . . ? test to distinguish weak implicatures from ignorance
implicatures. First, consider (47), where the felicity of B’s response question
indicates that the strong implicature K¬all can be targeted.

(47) A. Al returned some of your books yesterday.

B. Are you saying he didn’t return all of them?

Contrast (47) with (48), where the infelicity of B’s response question indicates
that the (potential) ignorance inference I all cannot be targeted.

(48) A. Al returned some of your books yesterday.

B. #Are you saying you don’t know whether he returned all of them?

As we just saw in §5.4.1, the present theory predicts this contrast between strong

19 Westera (2017) provides a similar example below. The point here is that A neither endorses nor
denies the assumption that B is competent about whether, say, Alice was at the picnic. And yet B’s
response can be interpreted exhaustively to convey that B believes that Alice wasn’t there. Indeed,
it seems to us that B’s response has to be interpreted that way: it would be odd for A to follow up
B’s response with Do you know if Alice was there?, since B’s response already settles that question. If,
however, B were to use RFR intonation, or explicitly say . . . but I don’t know who else, then of course
B’s response Wow, only four would be infelicitous.

(i) A. I may be asking the wrong person, but who were [sic.] at the picnic?

B. John, Bob, Mary, and Sue. (with falling intonation)

A. Wow, only four huh. Must have been boring. Well, thanks!
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scalar implicatures, which can arise (grammatically) from plain some sentences,
and ignorance inferences, which cannot.

Now consider (49). The felicity of B’s response suggests that the weak implica-
ture ¬K all can be targeted. (Note that ¬Kφ means that ¬φ is epistemically possible,
i.e. ‘it might be that ¬φ’.)20

(49) A. Al returned some of your books yesterday.

B. Are you saying he might not have returned all of them?

Contrast (49) with (50), where the infelicity of B’s response question indicates
that the (potential) inference ¬K¬all cannot be targeted. (Note that ¬K¬φ means
that φ is epistemically possible, i.e. ‘it might be the case that φ’.)21

(50) A. Al returned some of your books yesterday.

B. #Are you saying he might have returned all of them?

The contrast between (49) and (50) seems to suggest that A’s utterance could
grammatically entail ¬K all without entailing ¬K¬all, hence that A’s utterance has a
reading corresponding strictly to the weak implicature: K some∧¬K all. If so, then
the current theory is in trouble, because it predicts only the plain meaning K some
or the strong meaning K(some∧¬all).

We take the contrast between (49) and (50) to be real, but we wish to offer a
potential alternative explanation. Consider first (51). B’s response would normally
be considered quite odd, since A’s sentence is automatically taken to entail that
Al went to France; thus, it’s evidently odd, at least sometimes, to target a direct
entailment of a previous sentence by using Are you saying. . . ?.

(51) A. Al went to Paris last week.

B. (#)Are you saying he might have gone to France?

However, suppose that A and B both live in Texas, which has a city named Paris.
In that case, B’s response all of a sudden becomes much more acceptable. Compare,
for example, with #Are you saying that someone went to Paris last week? (which is
clearly entailed by A’s utterance), or with #Are you saying that he might have gone
to Germany? (which is clearly not entailed by A’s utterance). If so, then it would
appear that Are you saying that φ can target entailments of sentences, provided
there is some kind of disambiguation (syntactic, lexical, or otherwise) taking place.
In the case of (51), if A and B live in Texas, then B’s utterance is a way of asking

20 Meyer (2013) credits Irene Heim (p.c.) with the idea of using might not φ to diagnose the presence or
absence of weak implicatures.

21 The judgment in (50) is expected given the infelicity of B’s response in (48) and the felicity of B’s
response in (49).
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whether A meant Paris, France, as opposed to Paris, Texas.22

Returning now to (49), this sentence has two parses: one without exh, which
conveys just K some, and one with exh below K, which conveys K(some ∧ ¬all).
Importantly, the latter parse entails K¬all, which in turn entails ¬K all (‘might not
all’), but does not entail ¬K¬all (‘might all’); the former parse does not entail either
one. As such, it’s plausible that in (49), B’s response is a way of asking whether
A meant K(some ∧ ¬all) (which entails the content of B’s response question) as
opposed to just K some. By contrast, since neither parse entails ¬K¬all, B’s response
in (50) is odd.

As in the case of the intonation data, the intuitions here are quite delicate
(though they seem to point in the right direction, in our opinion). Needless to say,
therefore, these preliminary remarks deserve further scrutiny.

6 Discussion

6.1 Comparison with Meyer 2013

The theory we’ve developed here has a lot of similarity, but also several crucial
points of difference, with the Matrix K Theory of Meyer 2013. One major difference
(noted already in fn. 8) is that that Meyer’s theory rests on the hypothesis that K
is attached to every assertively used sentence (Meyer 2013, p. 42), whereas for
the present theory, matrix K is effectively a consequence of the hypothesis that
relevance is closed under belief. To appreciate the difference between the two
systems, take the case of disjunction, (8). It’s uncontroversial that the use of (8) can
convey speaker ignorance about the individual disjuncts, inferences traditionally
analyzed in pragmatic terms. Meyer argues that these inferences are best captured
in grammar, and to do so hypothesizes that (8) is parsed with exh K. By contrast,
on the present theory, the only way for ignorance to arise with a disjunction like (8)
is for (8) to be parsed with exh K; otherwise, the individual disjunct alternatives
are obligatorily irrelevant.

Another major point of difference has to do with which parses, and which read-
ings, each theory predicts to be available. As already mentioned, on the basis of the
Are you saying that. . . ? test, Meyer concludes that when it comes to some sentences
and their all alternatives, strong implicatures (K¬all) and weak implicatures (¬K all)
should be derivable in grammar, but not ignorance implicatures (I all). To ensure
this result, Meyer needs to restrict which parses/readings her theory generates,
and to do this she proposes a regulatory principle she calls epistemic transparency.

22 B could alse reply with Are you saying he went to France?, without the modal might. Our impression is
that the use of might is a kind of hedge: it feels most natural when B is mostly sure that A meant
Paris, Texas, but has some reason to believe that A might have meant Paris, France.
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(52) Epistemic transparency (Meyer 2013, p. 58)
An LF of the form [. . . K S] is licensed iff it entails the speaker’s state of mind
about every φ ∈ alt(S). States of mind are:

a. Kψ

b. ¬Kψ

So, for Meyer, the parse in (27b) for (26), repeated in (53), is licensed even
in a context in which all is relevant, and hence denotes K some∧¬K all (the weak
implicature reading), because this parse is epistemically transparent about all,
according to the definition of epistemic transparency given in (52).

(53) exh [S2 K [S1 Bonnie stole some of the pears]]

Interestingly, closing relevance under belief automatically induces its own
notion of epistemic transparency, but one which differs in a small but crucial
respect from that in (52). Specifically, a consequence of closing relevance under
belief is that a speaker’s utterance S must settle or entail ignorance about every
relevant proposition φ (cf. the generalization in (19)). An equivalent, and perhaps
more intuitive, way of understanding this consequence is to say that a speaker’s
utterance S must convey her epistemic state about every relevant proposition φ,
where epistemic states come in three, not two, logically exhaustive and mutually
exclusive varieties: certainty that φ, certainty that ¬φ, or uncertainty about φ.23

(54) Epistemic transparency 2 (equivalent to (19))
An utterance S must entail the speaker’s epistemic state about every relevant
proposition φ. Epistemic states about φ are:

a. Kφ

b. K¬φ

c. ¬Kφ ∧¬K¬φ (= Iφ)

Given this equivalence, we stress once more that the requirement to be epistem-
ically transparent arises automatically in our system as a consequence of closure
under belief, together with the maxim of quantity.

The difference between Meyer’s stipulated principle and the one that falls out
of our system boils down to the notion of epistemic state. For Meyer, there are
two, Kφ and ¬Kφ, while our system breaks the latter down into K¬φ and Iφ. That

23 The equivalence between (19) and (54) holds for the following reasons. (19) states that a speaker’s
utterance S must entail φ, ¬φ, or Iφ, for every relevant φ. Since every sentence must be c-commanded
by K, (20), the only way that S could entail φ or ¬φ is by entailing Kφ or K¬φ, hence entailing φ or
¬φ by the T axiom. In other words, obeying the generalization in (19) entails being epistemically
transparent. Conversely, being epistemically transparent entails obeying (19), as well. Hence, the two
notions are equivalent.
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is, Meyer’s principle of epistemic transparency doesn’t require speakers to be
transparent about whether they are in a K¬φ vs. an Iφ state, whereas ours does.
Intuitively, it seems to us that hearers would care about this difference; that is,
we find our more restrictive notion of epistemic state more intuitively satisfying.
However, whether or not language really does care about this distinction is an
empirical question.

6.2 Cases of oddness (Magri 2009)

In §4.1, we laid out the far-reaching consequences of adding the condition of closure
of relevance under belief to the standard grammatical theory. Therefore, we may
expect that this condition will interact in nontrivial ways with yet other closure
conditions on relevance that we might have reason to adopt. In this section, we
consider one such condition, viz. closure of relevance under contextual equivalence,
proposed in Magri 2009.

Magri wishes to explain the oddness of sentences like (55).

(55) #Some Italians come from a warm country.

To do so, he makes three assumptions: (i) that relevance is closed under contextual
equivalence (the aforementioned closure condition), (ii) that exh is mandatory in
matrix clauses, and (iii) that a sentence sounds odd if it expresses a proposition
that contradicts common knowledge. By (i), the all alternative of (55) is relevant
in all contexts in which all Italians come from the same country (i.e. in all natural
contexts, since this is common knowledge).24 By (ii), (55) is parsed with exh and
hence denotes the proposition that some but not all Italians come from a warm
country.25 Therefore, by (iii) and the fact that this proposition contradicts common
knowledge, (55) sounds odd.

Within the current system, we can explain this judgment by adopting (i) and
(iii), while at the same time not stipulating (ii). More precisely, in the current system
we automatically derive that (55) must be parsed with exh (below K) since otherwise
the maxim of quantity would yield a contradiction. Here’s why. Consider the four
parses in (56), which exhaust what can possibly be expressed by (56).26 As before,
we write “some” to refer to the proposition denoted by S1 and “all” to refer to its
universal counterpart.

24 More precisely, the relevance of the all alternative follows given that, furthermore, the propostion
denoted by (55) is itself relevant. See Magri 2009 for a stipuation to this effect.

25 As discussed in Magri 2009, exhaustification must be assumed to be contextually blind for the
strengthened meaning to arise. That is, innocent excludability must be defined by means of the
relation of logical entailment and not contextual entailment.

26 That is, additional occurrences of K and/or exh would not lead to different meanings (see fn. 13).
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(56) a. K [S1 some Italians come from a warm country]

b. exh [S2 K [S1 some Italians come from a warm country]]

c. K exh [S1 some Italians come from a warm country]

d. exh [S3 K exh [S1 some Italians come from a warm country]]

Note first that regardless of which of the structures in (56) is uttered, some
is relevant in the utterance context c (i.e. some ∈ relevantc) because the utterance
contains S1. By the common knowledge that all Italians come from the same
country, some and all are contextually equivalent. Therefore, all ∈ relevantc because
some ∈ relevantc.

Now consider the parse in (56a). As discussed in §5.1, this parse doesn’t settle
or entail ignorance about all; thus, all is obligatorily irrelevant to (56a).27 However,
we also have all ∈ relevantc, given that some ∈ relevantc. As such, there is a conflict
between the obligatory irrelevance of all, in the sense of (22), on the one hand, and
the (obligatory) relevance of all due to contextual equivalence with some, on the
other hand. The end result is that the maxim of quantity yields a contradiction, and
so we take it that the parse in (56a) is therefore unavailable. Likewise, the parse in
(56b) neither settles nor entails ignorance about all, so the maxim of quantity again
leads to a contradiction since all ∈ relevantc.

This leaves us with the parses in (56c) and (56d). Again as discussed in §5.1, the
exh operator below K yields the inference ¬all so that both (56c) and (56d) entail the
contextual contradiction that some but not all Italians come from a warm country.

Thus, overall we derive that (55) can only convey a contextual contradiction
or bring about a contradiction by the maxim of quantity. This explains why (55)
sounds odd. Importantly, unlike in Magri 2009, we derive this result without
having to stipulate the syntactic distribution of exh. This means that in certain
circumstances (here provided by common knowledge that leads to contextual
equivalence of some and all) obligatory irrelevance can explain the distribution of
exh.

6.3 Contextual expansion of formal alternatives

In §1, we adopted the view that the domain of the exhaustivity operator exh,
applied to a sentence S in an utterance context c, is the intersection of two sets,
viz. the set of propositions that are relevant in c and the set of all propositions
that are denoted by formally derivable alternatives of S in c (see the definition in
(3)). As before, we refer to the set of formally derivable alternatives of S in c with

27 This claim relies crucially on the assumption that the underlying notion of entailment (in terms
of which settlement is defined) is logical, not contextual, entailment (see fn. 14). Thus, if our
explanation of odd sentences like (55) is on the right track, then it provides an argument for making
this assumption.
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altFA
c (S), and we cited Katzir 2007 as an example of how this set can be defined.

Importantly, Katzir assumes that the extension of altFA
c (S) depends in part on the

utterance context (as indicated by the subscript c). This assumption is motivated
by the observation that the context can extend what implicatures are available. For
an illustration, consider the sequence of sentences in (57), which we borrow from
Trinh and Haida 2015 (modeled after an example presented in Matsumoto 1995).

(57) Yesterday, it was warm. Today, it is warm and sunny with gusts of wind.

The crucial observation with respect to (57) is that the two-sentence sequence
licenses the implicature that it wasn’t sunny with gusts of wind yesterday. Im-
portantly, this implicature cannot be drawn from the first sentence outside of the
particular context provided by the second sentence (or a similar context). Such
implicatures hence are called particularized implicatures as opposed to generalized
implicatures, which arise without contextual support (Grice 1975). Katzir (2007)
accounts for particularized implicatures by assuming that phrases that occur in the
utterance context of a sentence S can be used to derive formal alternatives of S.
In the case of (57), the second sentence provides the context for the first sentence,
which we assume to be parsed as given in (58a). Hence, the phrase warm and sunny
with gusts of wind (= α), contained in the second sentence, (58b), can be used to
derive a formal alternative of yesterday it was warm, namely by substituting α for
the adjective warm, (58c).

(58) a. K [exh [S yesterday it was warm]]

b. today it is [α warm and sunny with gusts of wind]

c. yesterday it was warm
[α/warm]
Ð→ yesterday it was [α warm and sunny with

gusts of wind]

Consequently, altc(S) contains the proposition denoted by yesterday it was warm
and sunny with gusts of wind,28 and since this proposition is IE given ⟦S⟧,29 the
denotation of exh S (and hence the denotation of K exh S) entails that it wasn’t
sunny with gusts of wind yesterday. Thus, Katzir’s analysis accounts for the
particularized implicature observed for (57).30

Now, the existence of particularized implicatures and Katzir’s analysis of this

28 That is, it is plausible to assume that, in addition to being the denotation of a formal alternative, this
proposition is also relevant in c, given that the speaker adds to c that it is warm and sunny with
gusts of wind on the day of utterance.

29 The innocent excludability of this proposition rests on the assumption that the lexicon does not
contain a lexical item with the meaning of ‘not warm and not sunny with gusts of wind’. See Trinh
2018 for discussion.

30 This means that there may even be a context in which an utterance of the sentence Ann is Canadian
(parsed as K [exh [Ann is Canadian]]) can implicate that it is(n’t) raining in Paris and hence settle
this proposition, counter to what we claimed at the end of section §4.3.
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phenomenon raise the question for what structures we predict that obligatory
irrelevance can even arise. That is, if context can extend the set of formally
derivable alternatives of a sentence S and hence extend the domain of exh, then
it may turn out that any proposition can, in a particular context, be settled or
entailed ignorance about by, e.g., the parse exh K exh S. That is, it may turn out
that obligatory irrelevance is only predicted for parses without exh.31 The example
in (57) illustrates that there are particularized scalar implicatures and thus also
contexts that extend the set of formal alternatives to the effect that sentences of the
form K exh S settle propositions that wouldn’t be settled outside of these contexts.
What we will discuss next is that there seem to be no particularized ignorance
inferences. If indeed such inferences cannot be contextually triggered, this means
that there are no contexts that extend the set of formal alternatives to the effect that
sentences of the form exh K (exh) S can entail ignorance about a proposition that
wouldn’t be entailed ignorance about outside of these contexts. To see that there
are no particularized ignorance inferences, consider the sentence in (59), taken
from Katzir 2007.

(59) John talked to some of the girls yesterday, and he talked to some but not all
of the girls today.

Katzir notes that according to his theory (59) has the two formal alternatives in
(60a) and (60b), where the former is derived from (59) by replacing some in the first
conjunct with all, which is taken from the lexicon, and the latter by replacing some
of the girls in the first conjunct with some but not all of the girls, which is taken from
the second conjunct (i.e. from the context of the first conjunct).

(60) a. John talked to all of the girls yesterday, and he talked to some but not all
of the girls today.

b. John talked to some but not all of the girls yesterday, and he talked to
some but not all of the girls today.

Moreover, Katzir observes that (59) is “distinctly odd”, a judgment that we very
much agree with. We take the oddness of (59) to show that it cannot entail ignorance
about the propositions denoted by the alternatives in (60).32, 33 Importantly, the

31 Note that this would be an interesting result since in this case obligatory irrelevance would regulate
the occurrence of exh in particular contexts. See the concluding remarks in §7.

32 To see that ignorance inferences about the alternatives in (60) can salvage a conjunctive assertion like
that in (59), note that the conjunction in (i) below is perfectly acceptable.

(i) John talked to at least some of the girls yesterday, and he talked to some but not all of the girls
today.

We can explain the contrast between (59) and (i) by the fact that the occurrence of at least in (i)
conveys ignorance about whether John talked to just some of the girls today or to all of them.

33 Katzir states that given the alternatives in (60) “all we get for [(59)] is an ignorance inference”, but
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structure exh K (exh) S, where S is the sentence in (59), would entail ignorance about
these propositions if the sentences in (60) were formally derivable alternatives of
S.34, 35 Thus, we are led to conclude that Katzir’s theory overgenerates alternatives
(see also Trinh and Haida 2015; Breheny et al. 2017; Trinh 2018 for observations that
justify the same conclusion). Specifically, it falsely predicts that there are contexts
in which (60b) is a formal alternative of (59).

It is not our goal to criticize the analysis in Katzir 2007. Rather, our goal is to
find out what exact predictions regarding obligatory irrelevance of alternatives
arise from our theory on the background of the correct theory of formal alternatives.
In particular, we concluded in §5.1 that the proposition that Bonnie stole all of the
pears is obligatorily irrelevant to the structure (exh) K Bonnie stole some of the pears.
What the foregoing discussion illustrates is that, despite the ability of the set of
formal alternatives to be expanded in cases like (57), our claim about structures
like exh K. . . some. . . is still correct, given the apparent inability of the set of formal
alternatives to be expanded (in the relevant way) in cases like (59).

Before closing this section, we want to reinforce the empirical claim that there
are no particularized ignorance inferences. Support for this claim comes from the
observation that there no particularized free-choice inferences either. Consider, for
instance, the sequence of sentences in (61). The second sentence of this sequence
cannot be understood to convey that today John is allowed to talk to just some of
the girls and is also allowed to talk to all of them.

(61) Yesterday, John was allowed to talk to some but not all of the girls. Today, he
is allowed to talk to some of the girls.

Assuming the theory of free-choice readings proposed in Fox 2007, the second
sentence of (61) (= S), parsed as exh exh S, entails that both (62a) and (62b) are true
if these two sentences are formally derivable alternatives of S.

concedes in a footnote, “[t]hough I do not know why the result is odd”.
34 Neither alternative is IE given S since the conjunction of (59) (= S1) with the negation of (60a) (= S2)

entails (60b) and vice versa. Both K S1 and K S2 are IE given K S, and K ⟦S⟧ ∧ ¬K ⟦S1⟧ ∧ ¬K ⟦S2⟧

entails I ⟦S1⟧ and I ⟦S2⟧, which in turn entail ignorance about whether John talked to just some of
the girls today or to all of them.

35 In a recent paper, Trinh (2018) considers the discourse in (i) and observes that “disjunctions give rise
to ignorance inferences much more naturally than such cases as [(i)].”

(i) A. Bill ran. He did not smoke.

B. What about John?

A. John ran.

Like in the case of (59), (i) can reasonably (but incorrectly) be expected to give rise to an ignorance
inference since by Katzir’s theory the last sentence of (i) has both John smoked and John didn’t smoke as
formal alternatives.
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(62) a. Today, John is allowed to talk to all of the girls.

b. Today, John is allowed to talk to some but not all of the girls.

Since the sequence in (61) doesn’t license this inference, we can conclude that
the sentences in (62) are not both formally derivable alternatives of the second
sentence of this sequence. That is, we can conclude that (62b) is not a formally
derivable alternative of the second sentence of (61). For reasons of space, we cannot
discuss why this restriction holds, i.e. why there are no particularized ignorance
or free-choice inferences, but see Trinh 2018 for an amendment of Katzir’s theory,
which explains this fact.

7 Conclusion

Fox (2007) argues that exhaustification, i.e. the use of the operator exh, serves to
reduce ignorance inferences: if S is a parse of a sentence and the maxim of quantity
produces a speaker ignorance inference about an alternative φ because S doesn’t
settle φ, then the sentence can be parsed as exh S to potentially assign it a stronger
meaning that settles φ and hence eliminates the speaker ignorance inference about
it. In this article, we have shown that, surprisingly, the hypothesis that relevance is
closed under speaker belief leads to the opposite conclusion: exh serves to produce
speaker ignorance inferences, when it occurs above the epistemic operator K, and
to prevent obligatory irrelevance, when it occurs below K, so that the maxim of
quantity can remain active and the utterance can conform to what is contextually
relevant. We have discussed empirical data, mostly centered around textbook
examples, that suggest that the consequences of closing relevance under belief are
indeed empirically attested: (i) a sentence gives rise to ignorance inferences if and
only if it has symmetric formal alternatives (§4.4 and §5.4.1), (ii) a sentence can
give rise to inferences about the relevance of certain alternatives (again §5.4.1), and
(iii) the (obligatory) relevance of certain alternatives can force exh to be present
in a sentence (§6.2). We also discussed the potentially problematic prediction
regarding the absence of weak implicatures and found that the available empirical
facts don’t adjudicate between the theory at hand and theories that can derive weak
implicatures (§5.5). Overall, we therefore conclude that the theory discussed in this
article deserves further attention, not least because it puts the spotlight on new
empirical questions and theoretical challenges that need yet to be fully addressed
(§5.5 and §6.3).
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A Proof

Let Σ be a sentence of the form exh K (exh) S, and let A be a set of propositions. We
wish to prove that if Σ either settles or entails ignorance about every proposition
in A, then Σ either settles or entails ignorance about every proposition in the
closure of A under conjunction, negation, and belief, as described by the closure
conditions on relevance in (16). Assume, then, that for every φ ∈ A, Σ settles or
entails ignorance about φ.

Case 1 (closure under conjunction). Let φ, ψ ∈ A. Then we need to show that Σ
either settles or entails ignorance about φ ∧ ψ. If Σ settles both φ and ψ, then Σ
either entails φ ∧ψ (if Σ entails both) or entails the negation of φ ∧ψ (if Σ entails
the negation of at least one of them), hence settles φ ∧ ψ. If Σ entails ignorance
about both φ and ψ, then Σ also entails ignorance about φ∧ψ. Finally, without loss
of generality, assume that Σ settles φ and entails ignorance about ψ. Then, if Σ
settles φ by entailing it, then Σ entails ignorance about φ ∧ψ, and if Σ settles φ by
entailing its negation, then Σ settles φ ∧ψ by entailing its negation.

Case 2 (closure under negation). Let φ ∈ A. If Σ settles φ, then Σ also settles ¬φ,
and if Σ entails ignorance about φ, then Σ also entails ignorance about ¬φ.

Case 3 (closure under belief). Let φ ∈ A. We must show that Σ either settles or
entails ignorance about Kφ. We proceed by induction on the form of φ and show
that Σ settles Kφ.

• Subcase 0 (base case) If φ doesn’t contain an occurrence of K, then, if Σ
settles φ, either φ or ¬φ is an entailment of Σ (by T) and so Σ either entails
Kφ or entails K¬φ (which entails ¬Kφ), hence settles Kφ; and if Σ entails
ignorance about φ, then Σ entails ¬Kφ, hence settles Kφ.

• Subcase 1 (closure under conjunction) If φ is of the form ψ ∧ χ, and if Σ
settles Kψ and settles Kχ, then Σ settles Kφ. (If Σ entails both Kψ and Kχ,
then it entails, hence settles, Kφ; and if Σ entails the negation of at least one
of Kψ or Kχ, then it entails the negation of Kφ, hence settles it.)

• Subcase 2 (closure under negation) If φ is of the form ¬ψ and if Σ settles
Kψ, then Σ either entails Kψ, which entails ¬Kφ, hence settles Kφ, or Σ
entails ¬Kψ, hence ¬K¬φ, and since by hypothesis Σ either settles φ or entails
ignorance about φ (φ ∈ A), we have that either Σ entails, hence settles, Kφ, or
Σ entails speaker ignorance about φ, hence entails ¬Kφ, hence settles Kφ.

• Subcase 3 (closure under belief) If φ is of the form Kψ and Σ settles Kψ,
then Σ either entails Kψ, which (by positive introspection) entails, hence
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settles, Kφ, or it entails ¬Kψ, which (by negative introspection) entails K¬φ,
which in turn entails ¬Kφ, hence settles Kφ.

QED
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