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1 Introduction
As part of language acquisition, the child needs to acquire many different aspects of
the morpho-phonology of their language. If the child is learning English, for example,
they will need to learn that in ‘cats’, pronounced [khæts], the aspiration of the initial
[k] and the voicelessness of the final [s] are no accident: voiceless stops such as [k]
are always aspirated in this position (roughly, syllable-initially in a stressed syllable)
in English, and the expression of the plural morpheme is always the voiceless [s] after
a voiceless stop such as [t]. Thus, the child will need to learn that imaginable forms
such as [kæts] or [khætz] are not possible in the language. These pieces of knowl-
edge come from a very large – most likely unbounded – set of possible choices that
languages can make and that children must be able to acquire. Moreover, the child ac-
quires this knowledge from distributional cues alone, without access to analyzed forms
or paradigms and without negative evidence. The result is a nontrivial learning task
that is challenging even in relatively simple cases such as deterministic, surface-true
phonotactics (as in the aspiration pattern of English) or alternations providing useful
information (such as the voicing pattern concerning the z suffix in English). The learn-
ing challenge is even more pronounced in cases of optional phonological processes and
of opaque interactions of phonological processes. To date, no general solution to this
challenge has been provided in the literature.

In this paper we will show how a certain kind of simplicity metric can address the
learning challenge, supporting the distributional learning of a morpho-phonological
grammar that handles optionality and opacity. The simplicity metric will follow the
principle of Minimum Description Length (MDL; Rissanen 1978), which incorporates
both the idea of grammar simplicity (as in the evaluation metric of SPE) and that of
restrictiveness (as in the subset principle). The representational framework will be that
of rule-based phonology, which offers a more direct handle on the representation of
both optionality and opacity than constraint-based formalisms. The resulting learner
will start with a small corpus of unanalyzed surface forms – generated from artificial
grammars based on morpho-phonological patterns in various languages – and arrive
at a full grammar including a lexicon of underlying forms, a morphological segmen-
tation of forms into morphemes and their attachment possibilities, and different kinds
of phonological rules and their ordering (including both transparent and opaque in-
teractions). While it might seem that these different aspects of morpho-phonological
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knowledge call for a fragmented learning approach, with specialized learners for the
different sub-tasks, we will show how the MDL evaluation metric allows us to learn all
of them in a unified way.

We start, in section 2, by presenting the MDL metric in the context of rule-based
phonology and by specifying our representations and their MDL costs. In section 3
we present proof-of-concept learning simulations with optionality, rule interaction (in-
cluding opacity), and interdependent phonology and morphology. Section 4 discusses
previous work on the learning of rule-based morpho-phonology. Section 5 concludes.

2 The present work
The current section presents the assumptions behind our learning model. We start, in
section 2.1, by considering two evaluation metrics from the literature – the SPE evalu-
ation metric, which aims for grammar economy, and the subset principle, which aims
for restrictiveness – in the context of acquiring a single optional phonological rule. We
will see that in order to acquire the relevant rule, the child cannot follow grammar econ-
omy alone or the subset principle alone but must instead balance between the two. This
balancing of economy and the subset principle is the essence of the MDL evaluation
metric, and while we motivate it here using one simple rule, the very same metric will
allow us to learn whole phonological grammars, including the lexicon, the morpholog-
ical segmentation of forms into stems and affixes, a variety of phonological rules, and
both transparent and opaque rule interactions. In order to turn the MDL evaluation met-
ric into an actual phonological learner, we need to make explicit our representations.
We do this in section 2.2, where we present the concrete representations we assume
and the costs they induce in terms of MDL. Section 2.3 completes the description of
our learner by presenting the search procedure that we use to find a grammar that yields
a good MDL score.

2.1 The MDL criterion
French has an optional process of liquid-deletion word-finally following an obstruent
(Dell, 1981). The French-learning child, then, will be exposed to surface forms such as
[tabl] and [tab] for ‘table’ and [arbr] and [arb] for ‘tree’ (but only [parl] and neither
*[par] nor *[pal] for ‘speak’, since neither liquid appears in the right environment).
Suppose that the child uses a simplicity metric such as the one in SPE, which optimizes
grammar economy:1

(1) SPE evaluation metric: If G and G′ can both generate the data D, and if |G| <
|G′|, prefer G to G′

We use | · | to notate length, and to see how we can use (1) we need to be precise
about how | · | is measured. Anticipating our discussion below, it will be convenient

1Here and below the grammar G will be taken to be not just the phonological rules and their ordering but
also the lexicon. Thus, by saying that a grammar G generates the data D, we mean that every string in D can
be derived as a licit surface form from some UR in the lexicon and the ordered phonological rules.
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to think of grammars as sitting in computer memory according to a given encoding
scheme, with |G| the number of bits taken up by G.

Early on, the child will store a separate UR for each surface form of the alternating
pairs: both /tabl/ and /tab/ for ‘table’; both /arbr/ and /arb/ for ‘tree’; and so on
(along with a single /parl/ for ‘speak’). After seeing a few additional alternating pairs
of this kind, however, (1) will lead the child to conclude that for each such pair there
is just one UR – /tabl/ for ‘table’, /arbr/ for ‘tree’, and so on – and that an optional
phonological rule such as the following applies (where L stands for [+liquid]):

(2) L→ ∅ (optional)

The rule in (2) adds complexity to the grammar, but this complexity is more than
offset by the savings obtained by the elimination of all the L-less forms from the lex-
icon. Consequently, the overall size of the grammar is shorter using (2), and (1) will
favor the new grammar.

As mentioned above, however, the actual process of L-deletion in French is some-
what more specific than (2) suggests: L may be deleted, but only in certain contexts. A
more appropriate rule is the following, in which L-deletion is restricted to word-final
environments following an obstruent:

(3) L→ ∅ /[−son] # (optional)

And unfortunately, as pointed out by Dell (1981), a child using (1) will fail to
acquire the appropriate context for the application of the rule. That is, the child will
choose (2) rather than the more appropriate (3). This is so since a grammar G using the
unrestricted (2) and a grammar G′ using the restricted (3) both can generate the data
(by allowing both surface forms to be derived from the single UR) and G is shorter
than G′ (since specifying the context in (3) adds to the grammar’s length). By the SPE
evaluation metric in (1), the child will prefer G to G′, which is the wrong result. For
example, the child will erroneously rule in L-deleted forms such as *[par] for /parl/.
Moreover, the child will never recover from this error: since the child sees only positive
evidence, they will never be forced to leave the simpler but overly inclusive G.

The problem is quite general, as discussed by Braine (1971) and Baker (1979),
and goes well beyond phonology: a preference for grammar economy, as in the SPE
evaluation metric in (1), will fail to learn the contexts for optional rules. Just as in the
example of optional L-deletion, a grammar G in which an optional rule R has no context
will generally be both simpler and more inclusive than a minimal variant G′ in which
the optional rule does have a context. If G′ is the correct grammar, both grammars will
be able to generate the input data: G′ since it is the correct grammar, and G since its
language is a superset of that of G′. By (1), then, the child will incorrectly prefer the
simpler G to G′ and – since the child will not receive negative evidence – will never
recover from this error.

One solution to this predicament – the one advocated by Dell (1981) and adopted
in much later work – is to change the evaluation metric from one that favors simple
grammars to one that favors restrictive ones, where restrictiveness is captured in terms
of subsethood: G is more restrictive than G′ if the set of all licit surface forms according
to the lexicon and rules of G is a subset of the set of all licit surface forms for G′.
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This solution, also known as the subset principle (Berwick 1985; Wexler and Manzini
1987), directs the learner to never choose a superset language when a proper subset is
compatible with the data:2

(4) Subset evaluation metric: If G and G′ can both generate the data D, and if the
language of G is a proper subset of the language of G′, prefer G to G′

A child following (4) will always choose a minimal language compatible with the
data and will thus avoid the overgeneralization problem. In the case of optional L-
deletion in French, the grammar with the unrestricted (2) generates a language that is a
strict superset of the one with the restricted (3); consequently, the unrestricted (2) will
be rejected and the restricted (2) chosen, which is the correct result.

While choosing correctly between (2) and (3), the subset principle gives rise to a
problem of undergeneralization – the mirror image of the overgeneralization problem
of the SPE simplicity metric – and does not offer a general solution for learning. To see
the problem in the case of French L-deletion, consider the situation of a learner who
has heard a surface form such as [sabl] but, accidentally, has not yet heard its L-elided
variant [sab] (both for the UR /sabl/ ‘sand’). If the learner has heard sufficiently many
pairs differing only in whether they have a final liquid, we would expect them to adopt
(3), even if for /sabl/ only one member of the pair has been observed so far. But if
the learner is following the subset principle, this will not be possible: with (3), the
language will include also the L-deleted form [sab], which makes the language a strict
superset of the language of a grammar without any deletion rules and with a lexicon
that has separate URs for each of the L-variants that have been seen in the input data. In
other words, a single accidental gap is enough to prevent a learner following the subset
principle from generalizing at all.

We have seen that minimizing |G|, as in the SPE evaluation metric, makes the child
generalize; when left unchecked, however, it leads to overgeneralization. Meanwhile,
the subset principle protects from overgeneralization, but on its own prevents any gen-
eralization at all. It seems reasonable, then, to try to balance the two principles against
each other: look for a grammar with a relatively small G that generates a relatively
small language. This is exactly the idea behind the idea of Minimal Description Length
(MDL; Rissanen 1978), which we will adopt here.3 To make it work, however, we need
to be more precise about how we quantify both grammar size and the subset principle.
The insight of MDL – building on the work of Solomonoff (1964), Kolmogorov (1965),
and Chaitin (1966) – is that we can think of restrictiveness as another simplicity cri-
terion and combine it naturally with grammar economy. In particular, restrictiveness
can be thought of in terms of how simple it is to tell the story of the data, D, given the
grammar, G, a story that we will notate as D : G. Consider again the case of optional
L-deletion. Suppose that the learner has acquired a lexicon with the single UR /tabl/
and an optional rule such as (2) or (3). To describe an instance of the surface form
[tabl] or the surface form [tab], we need to first specify the UR /tabl/ and then spec-
ify whether L-deletion has applied (for [tab]) or not (for [tabl]). Specifying the UR

2As Baker (1979) notes, Braine (1971)’s alternative to the SPE evaluation metric, while stated in proce-
dural terms, has a similar effect to a restrictiveness metric.

3See also the closely related idea of Minimal Message Length of Wallace and Boulton (1968).
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/tabl/ involves a choice from among the URs. In general, the greater the number of
URs from which we choose, the longer the specification of the UR we have selected.
For example, if there are just two possible URs, we can specify the choice using one
bit. With four URs in the lexicon, we now need about two bits to specify each choice.
And so on. The optional L-deletion rule requires the further specification of whether it
applied or not, which can be stated as one additional bit (perhaps 0 to specify that the
rule did not apply and 1 to specify that it did). These specifications for the different
surface forms in the input data D are accumulated to provide the complete D : G.

We can now see how optionality can be cashed out in terms of simplicity. If L-
deletion were not optional – if it always applied or if it never applied – the final bit
would have been unnecessary for the specification of the relevant surface forms: se-
lecting a UR would have fully determined the surface form. For URs like /tabl/
and /arbr/, L-deletion is optional, and the extra bit of the appropriate rule cannot be
avoided. But for /parl/ L-deletion never applies, so paying an extra bit for each occur-
rence is an unnecessary expense. The unrestricted (2) forces us to pay this unnecessary
expense: the optional rule is applicable whenever an L-final UR is chosen, including
URs such as /parl/ that do not allow for L-deletion, so a bit specifying whether the
rule applies is always needed, leading to D : G that is longer than needed. The more
restricted (3), on the other hand, makes us pay the extra bit only when an appropriate
UR – /tabl/ or /arbr/ – is chosen but not when /parl/ is chosen. Consequently, (3)
leads to a shorter D : G.

Having recast the subset principle – or the idea of restrictiveness – in terms of
simplicity (specifically, the simplicity of the story of D : G), we can immediately
see how we can combine this idea with simplicity of grammar: instead of minimizing
|G| alone, as in the SPE evaluation metric, we can now minimize the sum of the two
quantities, |G| + |D : G|, thus balancing between the goal of a simple, general grammar
and a restrictive one.

(5) MDL evaluation metric: If G and G′ can both generate the data D, and if
|G| + |D : G| < |G′| + |D : G′|, prefer G to G′

In our L-deletion example, storing a single UR for pairs like [tabl] and [tab] or
[arbr] or [arb] will shorten |G| sufficiently to justify adding an optional rule of L-
deletion to G, just as with the SPE evaluation metric. As for the precise form of the
rule, the simultaneous consideration of both |G| and |D : G|, as in (5), will mean that the
more complex rule in (3) will eventually be chosen over the unrestricted (2), despite its
increased |G|. The reason is that after sufficiently many instances of [parl] have been
encountered, the savings in terms of |D : G| obtained with (3) – since no bit will need
to be spent when a UR such as /parl/ is chosen – will more than outweigh the increase
in |G|. Figure 1 illustrates. The MDL metric in (5) thus allows the child to generalize
but protects them from overgeneralizing.

The balancing of economy and restrictiveness has made MDL – and the closely
related Bayesian approach to learning – helpful across a range of grammar induc-
tion tasks, in works such as Horning (1969), Berwick (1982), Ellison (1994), Ris-
sanen and Ristad (1994), Stolcke (1994), Grünwald (1996), de Marcken (1996), Brent
(1999), Clark (2001), Goldsmith (2001), and Dowman (2007), among others. Recently,
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11010011010011101100001011101︸                                          ︷︷                                          ︸
Lex=/tabl/,/tab/,/arbr/,/arb/,/parl/...

10︸︷︷︸
Rules=(none)︸                                                        ︷︷                                                        ︸

G

010︸︷︷︸
3

110︸︷︷︸
3

011︸︷︷︸
3

011︸︷︷︸
3

010︸︷︷︸
3

110︸︷︷︸
3

011︸︷︷︸
3

. . .︸                                                      ︷︷                                                      ︸
D:G

010110010001︸            ︷︷            ︸
Lex=/tabl/,/arbr/,/parl/,...

1011101001︸         ︷︷         ︸
Rules=L→∅︸                                     ︷︷                                     ︸

G

010 0︸︷︷︸
4

110︸︷︷︸
3

011 0︸︷︷︸
4

011 0︸︷︷︸
4

010 0︸︷︷︸
4

110︸︷︷︸
3

011 0︸︷︷︸
4

. . .︸                                                      ︷︷                                                      ︸
D:G

010110010001︸            ︷︷            ︸
Lex=/tabl/,/arbr/,/parl/,...

1001101110110︸              ︷︷              ︸
Rules=L→∅ /[−son] #︸                                              ︷︷                                              ︸

G

010 0︸︷︷︸
4

110︸︷︷︸
3

011 1︸︷︷︸
4

011︸︷︷︸
3

010︸︷︷︸
3

110︸︷︷︸
3

011︸︷︷︸
3

. . .︸                                                      ︷︷                                                      ︸
D:G

Figure 1: Schematic illustration of three hypotheses. Introducing a naive lexicon (top),
in which [tabl] and [tab] have distinct URs results in a complex grammar. Captur-
ing optional L-deletion with (2) allows the grammar to be simplified (middle): the
complexity of the rule is outweighed by the savings of eliminating unnecessary URs.
However, an additional bit is needed for specifying the actual surface form of each L-
final UR. Finally, restricting the context of L-deletion, using (3), allows us to limit the
extra bit to just those URs that require it (bottom): /tabl/ but not /parl/.

Rasin and Katzir (2016) have used MDL to show how complete phonological gram-
mars can be acquired distributionally within constraint-based phonology. The present
work shows how the same can be done within rule-based phonology. In particular, we
will show how the same MDL metric that supported the correct generalization in the
case of the optional rule of L-deletion in French will support the acquisition of whole
phonological grammars, including the lexicon, the segmentation of forms into stems
and affixes, a variety of phonological rules, and both transparent and opaque rule inter-
actions. The simulations illustrating the use of MDL for the acquisition of phonological
grammars will be presented in section 3. Before that, in the remainder of the present
section, we describe the phonological representations that we assume in order to make
explicit their contribution to the MDL score, and we describe the search procedure we
use to traverse the space of possible grammars.

2.2 Representations
As is standard, we assume that segments, both in phonological rules and in the lexicon,
are represented not atomically but as feature bundles. Specifically, we will assume the
feature table in Figure 2, though we remain agnostic here as to whether this table is
innate or acquired in an earlier stage.

2.2.1 Phonological rules

Feature bundles based on the feature table in Figure 2 are used to state the phonological
rules. The general form of rules is as follows, where A, B are feature bundles or ∅; X,Y
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cons voice coronal cont low
d + + + - -
t + - + - -
g + + - - -
k + - - - -
z + + + + -
s + - + + -
a - + - + +

o - + - + -

Figure 2: Feature table

are (possibly empty) sequences of feature bundles; and optional? is a boolean variable
specifying whether the rule is obligatory or optional (Figure 3).

A︸︷︷︸
focus

→ B︸︷︷︸
change

/ X︸︷︷︸
left context

Y︸︷︷︸
right context

(optional?)

Figure 3: Rule format

The following, for example, is an optional phonological rule of vowel harmony
that fronts a vowel before another front vowel when the two are separated by arbitrar-
ily many consonants, stated in textbook notation in (6a) and in string notation (more
convenient for the purposes of the conversion to bits below) in (6b).

(6) Vowel harmony rule
a. Textbook notation[

−cons
]
→
[
−back

]
/
[
+cons

]∗ [−cons
−back

]
(optional)

b. String notation

−cons#rc − back#rc#rc + cons ∗ #b − cons# f − back#rc1#rc

Determining the length of the rule for the purposes of MDL is done using a conver-
sion table that states the codes for the possible elements within phonological rules. An
example of a possible conversion table appears in Figure 4. The representation scheme
we use here treats all possible outcomes at any particular choice point as equally easy
to encode. For the conversion table, this means that if there are n possible elements
that can appear within a rule, each will be assigned a code of length dlg ne bits.

Using the conversion table in Figure 4, we can now encode the phonological rule of
vowel harmony (in (6) above) by converting each element in the string representation
in (6b) into bits according to Figure 4 and concatenating the codes. To ensure unique
readability, we use various delimiters to mark the end of the description of features,
feature bundles, and the rule’s components. The following is the result, and its length
is 73 bits:
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Symbol Code
# f (feature) 0000
#b (bundle) 0001
#rc (rule component) 0010
+ 0011
- 0100
* 0101

Symbol Code
cons 0110
voice 0111
velar 1000
back 1001
... ...
... ...

Figure 4: Conversion table for rules

Figure 5: An HMM representation of a lexicon

(7) Vowel harmony rule (bit representation):

0100︸︷︷︸
−

0110︸︷︷︸
cons

0010︸︷︷︸
#rc

0100︸︷︷︸
−

1001︸︷︷︸
back

0010︸︷︷︸
#rc

0010︸︷︷︸
#rc

0011︸︷︷︸
+

0110︸︷︷︸
cons

0101︸︷︷︸
∗

0001︸︷︷︸
#b

0100︸︷︷︸
−

0110︸︷︷︸
cons

0000︸︷︷︸
# f

0100︸︷︷︸
−

1001︸︷︷︸
back

0010︸︷︷︸
#rc

1︸︷︷︸
1

0010︸︷︷︸
#rc

A phonological rule system is a sequence of phonological rules. Since each rule
ends with the code for optionality followed by #rc, we can specify a phonological rule
system by concatenating the encodings of the individual rules while maintaining unique
readability with no further delimiters. The ordering of the rules is the order in which
they are specified, from left to right. At the end of the entire rule system another #rc is
added.

2.2.2 Lexicon

The lexicon contains the URs of all the possible morphemes. Since morphemes com-
bine selectively and in specific orders, some information about morpheme combina-
tions must be encoded. We encode this information using Hidden Markov Models
(HMMs), where morphemes are listed in the emission table for specific states, and the
possible combinations are defined by state transitions. A simple example is provided
in Figure 5.

The HMM in Figure 5 defines a lexicon with two kinds of morphemes: the stems
/dog/ and /kat/, and the optional suffix /z/. As with rules, description length is not
calculated directly for the standard, graphical notation of the HMM but rather for a
bit-string form. As before, we start with an intermediate string representation for the
HMM, as presented in Figure 7 (derived from the concatenation of the string represen-
tations for the different states, as listed in Figure 6; the delimiter #S marks the end of
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the list of outgoing edges from a state and #w marks the end of each emitted word; an-
other #w is added at end of each state). We then convert the string to a bit-string using
a conversion table, as in Figure 8. As before, all choices at a given point are uniform,
with the same code length for all possible selections at that point.

state encoding string
q0 q0q1#S #w

q1 q1q2q f #S dog#wkat#w#w

q2 q2q f #S z#w#w

Figure 6: String representations of HMM states

q0q1#S #w#wq1q2q f #S dog#wkat#w#wq2q f #S z#w#w

Figure 7: String representation of an HMM

State Code
#S 000
q0 001
q1 010
q2 011
q f 100

Segment Code
#w 0000
a 0001
k 0010
d 0011
... ...

Figure 8: Conversion table for HMM

2.2.3 Data given the grammar

Turning to the encoding of the data given the grammar, D:G, recall that the generation
of a surface form involves concatenating several morphemes in a specific order and
applying a sequence of phonological rules. Given the grammar as described above,
specifying a surface form will therefore involve: (a) specifying the sequence of mor-
phemes (as a sequence of choices within the lexicon, repeatedly stating the code for
a morpheme according to the table in the current state followed by the code to make
the transition to the next state); and (b) specifying the code for each application of an
optional rule. Note that obligatory rules do not require any statement to make them
apply.

Our goal, given a surface form, is to determine the best way to derive it from the
grammar in terms of code length. A naive approach to this parsing task would be to try
all the ways to generate a surface form from the grammar. Even with simple grammars,
however, this approach can be unfeasible. Instead, we compile the lexicon and the rules
into a finite-state transducer (FST) that allows us to obtain the best derivation using
dynamic programming. The compilation of the rules relies on Kaplan and Kay (1994).

Let us illustrate the encoding of best derivations in the case of the form [khæts]
– actually, of the simpler [kæts] – using the FSTs for two simple grammars. First,
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Figure 9: Naive FST

Figure 10: Lexicon corresponding to the naive FST

consider the FST in Figure 9, which corresponds to a grammar with the lexicon in
Figure 10 and no phonological rules. Using this FST, encoding the word [khæts]/[kæts]
requires 16 bits. The initial transition from q0 to q1 is deterministic and costs zero bits.
After that, each of the four segments costs four bits: three bits to specify the segment
itself (since there are eight outgoing edges from q1) followed by one bit to specify
the transition from q2 (loop back to q1 or proceed to q3). The encoding, using the
conversion table in Figure 12, is in Figure 11.4

100︸︷︷︸
k

0︸︷︷︸
q2→q1

000︸︷︷︸
a

0︸︷︷︸
q2→q1

010︸︷︷︸
t

1︸︷︷︸
q2→q1

110︸︷︷︸
s

1︸︷︷︸
q2→q3

Figure 11: Encoding of a surface form using the naive FST

Consider now the more complex FST in Figure 13, which corresponds to a gram-
mar with the lexicon in Figure 5 and the English voicing assimilation rule. This FST
corresponds to a more restrictive grammar: differently from the simpler FST in Fig-
ure 9, the present FST can only generate a handful of surface forms. Consequently,
the present FST offers a shorter D:G. Specifically, since specifying [khæts]/[kæts] re-
quires making only two choices in the FST, both of them binary, it allows us to encode
the relevant string using only 2 bits, as in Figure 14.

4Specifying [khæts] requires handling the aspiration of the initial segment. Since the relevant rule is
obligatory, the same number of bits is required as for [kæts], though the FST is slightly more complex.
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State q0 State q1 State q2
Arc Code Arc Code Arc Code

(-,q1) ε (a,q2) 000 (-,q1) 0
(o,q2) 001 (-,q3) 1
(t,q2) 010
(d,q2) 011

... ...

Figure 12: Conversion table for naive FST

Figure 13: A more complex FST

2.3 Search
Above we saw how encoding length, |G| + |D:G|, is derived for any specific hypothesis
G. In order to use it for learning, the learner can search through the space of possi-
ble hypotheses and look for a hypothesis that minimizes encoding length. Since the
hypothesis space is big – infinitely so in principle – an exhaustive search is out of the
question, and a less naive option must be used. We adopt Simulated Annealing (SA;
Kirkpatrick et al., 1983), a general strategy that supports searching through compli-
cated spaces that involve multiple local optima.

SA proceeds by comparing a current hypothesis to its neighbors in terms of their
goodness, which in our case is the total description length. That is if a current hypoth-
esis G has G′ as its neighbor, |G| + |D:G| is compared to |G′| + |D:G′|. If G′ is better
than G, the search switches to G′. Otherwise, the choice of whether to switch to G′ is
made probabilistically and depends both on how much worse G′ is and on a tempera-
ture parameter. The higher the temperature, the more likely the search is to switch to a
bad neighbor. The temperature is initially set to a relatively high value, and it is grad-
ually lowered (by multiplying the temperature at each step by a constant α to yield the
temperature at the next step) as the search progresses, making the search increasingly
greedy. The search ends when the temperature descends below a fixed threshold. The
specific parameters of the search are provided below.

For any grammar G, the neighbor grammar G′ is generated as a variant of G in
which one of the following changes occurs.

(8) Possible mutations during the search:
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0︸︷︷︸
q1→q2

0︸︷︷︸
q6→q8

Figure 14: Encoding of a surface form using the more complex FST

a. Mutate rule: add/remove/modify rule, add/remove/modify feature bundle
b. Mutate lexicon: add/remove/modify morpheme, add/remove/modify state

The possible mutations are described in greater detail in Appendix A.
The search starts from a naive initial hypothesis – generally far away from the

optimal one – that can generate any sequence of segments. This hypothesis has the
trivial lexicon in Figure 15 and no phonological rules.

Figure 15: Initial hypothesis

3 Simulations
The present section provides several simulations in which the MDL learner described
in section 2 is faced with unanalyzed data exhibiting various linguistically-relevant
patterns. We are not able to test the learner on real-life corpora at this point. Instead,
we provide a proof-of-concept demonstration, using small datasets generated by arti-
ficial grammars that incorporate phonologically interesting dependencies. Section 3.1
illustrates our learner’s acquisition of optionality, using a dataset based on the case of
optional French L-deletion discussed above. Section 3.2 uses a dataset based on plural
/-z/-affixation in English to illustrate the joint acquisition of affixation and phono-
logical processes. Section 3.3 extends the results of section 3.2 by showing how the
learner can acquire two rules and their ordering in the case of transparent rule interac-
tion. Section 3.3 modifies the English-based dataset to one in which the rule interaction
is opaque (involving counterbleeding) and shows that the MDL learner succeeds in this
case as well.

3.1 Optionality
The first dataset shows a pattern modeled after French L-deletion (Dell, 1981) and is
designed to test the learner on the problem of restricted optionality. As discussed in
section 2.1, the challenge for the learner is to strike the right balance between economy
and restrictiveness. The learner needs to generalize beyond the data and conclude that
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Ginitial =



Rules: ∅

Lex:

Description length: |Ginitial| + |D:Ginitial| = 7, 740 + 4, 750 = 12, 490

Figure 16: Initial grammar for the French optionality simulation. The grammar in-
cludes both /tabl/ and /tab/ and does not relate them by a rule.

for each pair like [tab]-[tabl] there is a single UR, and that a rule of L-deletion option-
ally applies. But the learner must not overgeneralize and should restrict L-deletion to
only apply after obstruents, despite the added complexity of specifying the restricted
environment in the description of the rule.

The data presented to the learner in the present simulation consisted of 19 words,
including 4 collapsible pairs (9). The lexicon of the initial state was identical to the
data and the rule set was empty (Figure 16). The parameters used in this simulation
are: initial temperature: 75, cooling rate: 0.999995, threshold: 1.0. Encoding length
of the data given the grammar was multiplied by 50 and the encoding length of the
HMM was multiplied by 20.

(9) tab, tabl, lub, lubl, tap, tapl, rud, rudl, parl, birl, dail, lid, lup, puard, rlad, ruap,
tbir, tid, tpul

The learner induced the correct optional rule and converged on the target lexicon
(Figure 17). Compared to the final (correct) grammar, the over-generating hypothesis
has a shorter grammar but a longer D:G, leading to an overall longer description:
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G f inal =



Rules: R1 : [+liquid]→ ∅/[−son] (optional)
Lex:

Description length: |G f inal| + |D:G f inal| = 6, 493 + 4, 200 = 10, 693

Figure 17: Final grammar for the French optionality simulation. The grammar includes
the restricted L-deletion rule and /tabl/ but not /tab/.
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Ginitial =



Rules: ∅

Lex:

Description length: |Ginitial| + |D:Ginitial| = 97 + 17, 600 = 17, 697

Figure 18: Initial grammar for the joint learning simulation. The grammar can generate
any concatenation of segments in the alphabet.

(10) a. Correct Hypothesis:
• R1 : [+liquid]→ ∅/[−son] (optional)
• Description length: |G| + |D:G| = 6, 493 + 4, 200 = 10, 693

b. Over-generating Hypothesis:
• R1 : [+liquid]→ ∅/ (optional)
• Description length: |G| + |D:G| = 6, 485 + 5, 400 = 11, 885

3.2 Joint learning of morphology and phonology
Our next simulation demonstrates the learner’s ability to perform joint learning of mor-
phology and a single phonological rule. Other works in the literature that perform joint
learning of this kind include Naradowsky and Goldwater (2009) and (in a framework of
constraint-based phonology) Rasin and Katzir (2016). After establishing this baseline,
we will proceed, in the following sections, to the joint learning of morphology and rule
interaction, a task that, as discussed in section 4, has not been accomplished in previous
work. In the present simulation, the learner’s tasks are to decompose the unanalyzed
surface forms into a lexicon of underlying morphemes and to learn the rule.

Our example is modeled after English voicing assimilation (where, as discussed
in section 1, the plural suffix /z/ devoices following a voiceless obstruent). The
learner was presented with 32 words generated by creating all combinations of 8 stems
with 4 suffixes (including the null suffix) and applying voicing assimilation. A sam-
ple of the data is provided in (11). The parameters used in this simulation are: ini-
tial temperature: 50, cooling rate: 0.999999, threshold: 1. Encoding length of the
data given the grammar was multiplied by 25.

(11)

stem\suffix ∅ -gos · · ·

toz toz tozgos
dot dot dotkos
· · ·

For the initial state of this simulation, we used a grammar that contained no rules
and a lexicon that can generate any sequence of segments (Figure 18). The initial
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G f inal =



Rules: R1 : [+cons]→ [−voice]/[−voice]
Lex:

Description length: |G f inal| + |D:G f inal| = 277 + 4, 400 = 4, 677

Figure 19: Final grammar for the joint learning simulation. The grammar includes the
voicing assimilation rule and a segmented lexicon with URs like /-gos/ from which
both surface [-gos] and [-kos] can be derived.

grammar can thus generate any possible surface string; with this grammar, the cost of
specifying a surface form of length l is 4l bits. In the final grammar (Figure 19), surface
forms were decomposed into stems and suffixes: generating a surface form requires
first choosing a stem (out of 8 stems, at a cost of 3 bits), then choosing a suffix (out
of 4 suffixes, including the null suffix, at a cost of 2 bits), which makes a total of only
5 bits per surface form. |D:G| decreases dramatically from 17,697 in the initial state
to 4,677 in the final state. The final lexicon stores stems and suffixes and is therefore
more complex than the simple initial lexicon, but this addition is easily offset by the
savings to |D:G|. Finally, the assimilation rule adds complexity to the set of rules, but it
allows collapsing pairs of morphemes (like [-gos] and [-kos]) that differ minimally on
the surface into a single underlying morpheme; compared to the rule-less alternative,
this move decreases both |G| – since it allows storing fewer items in the lexicon – and
|D:G| – since having fewer morphemes means that there are fewer choices to make in
specifying a surface form.

3.3 Rule Ordering
Rule-based phonology accounts for the interaction of phonological processes through
rule ordering. In English, voicing assimilation devoices the plural morpheme /-z/
when preceded by a voiceless obstruent (as in [khæts] ,‘cats’, but not in [dOgz], ‘dogs’).
Epenthesis inserts the vowel [I] between two sibilants (as in [glæsIz] ,‘glasses’). To
derive forms such as [glæsIz], where voicing assimilation does not apply and the plu-
ral morpheme remains voiced, epenthesis can be ordered before assimilation. When
epenthesis applies to the UR /glæs-z/, it disrupts the adjacency between the plural
morpheme and the preceding consonant, rendering assimilation inapplicable. The op-
posite ordering would have derived the incorrect form *[glæsIs], as demonstrated in
(12):

(12) a. Good: epenthesis before assimilation
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/glæs-z/
Epenthesis glæsIz

Assimilation -
[glæsIz]

b. Bad: assimilation before epenthesis
/glæs-z/

Assimilation glæss
Epenthesis glæsIs

*[glæsIs]

Our next dataset was generated by an artificial grammar modeled after the interac-
tion of voicing assimilation and epenthesis in English. The learner was presented with
105 words generated by creating all combinations of 15 stems with 7 suffixes (includ-
ing the null suffix) and applying epenthesis (13a) and voicing assimilation (13b), in this
order. A sample of the data is provided in (14). The parameters used in this simula-
tion are: initial temperature: 75, cooling rate: 0.99999955, threshold: 1.0. Encoding
length of the data given the grammar was multiplied by 10. The initial state was as
before (Figure 20). The learner converged on the expected lexicon and rules (Figure
21).5

(13) Rules
a. Rule 1: Low-vowel epenthesis between coronals
b. Rule 2: Progressive assimilation of [−voice] (to an adjacent segment)

(14)

stem\suffix -go -zoka -saat · · ·

dog doggo dogzoka dogsaat
kat katko katazoka katasaat
dok dokko doksoka doksaat
· · ·

3.4 Opacity
The term opacity informally refers to a state of affairs where the effect of a rule is
obscured on the surface, often because of an interaction with another rule. One type
of opacity called counterbleeding in the literature results when a rule R2 removes the
environment of another rule R1 which applies earlier in the derivation. R1 is opaque
since its environment of application is missing on the surface.

Our next dataset was designed to test the learner on the problem of counterbleeding
opacity. We used two rules modeled after English epenthesis and voicing assimilation
and changed the order such that assimilation was ordered first:

(15) Rules
a. Rule 1: Progressive assimilation of [−voice] (to an adjacent segment)

5In the final lexicon, the stems are split between two states (q2 and q4). At present, we are not sure why
the split-state lexicon was chosen over a lexicon in which all stems are stored in a single state.
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Ginitial =



Rules: ∅

Lex:

Description length: |Ginitial| + |D:Ginitial| = 97 + 31, 120 = 31, 217

Figure 20: Initial grammar for the rule-ordering simulation. The grammar can generate
any concatenation of segments in the alphabet.

G f inal =



Rules: R1 : ∅ → [+low]/[+coronal] [+coronal]
R2 : [+cons]→ [−voice]/[−voice]

Lex:

Description length: |G f inal| + |D:G f inal| = 559 + 7, 440 = 7, 999

Figure 21: Final grammar for the rule-ordering simulation. The grammar includes
epenthesis and voicing assimilation (in this order) and a segmented lexicon.
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b. Rule 2: Low-vowel epenthesis between coronals

The result is that feature spreading takes place even between segments that are
separated by an epenthetic vowel on the surface. Examples of natural languages that
show a similar interaction between feature spreading and epenthesis are some varieties
of English and Armenian, as reported in Vaux (2016), and Iraqi Arabic, as reported in
Kiparsky (2000, citing Erwin, 1963).

As shown in (16), the opposite rule ordering would lead to the wrong result. Given
the correct order, epenthesis applies after assimilation, rendering assimilation opaque:
the first consonant of the suffix undergoes assimilation but is preceded by the epenthetic
vowel on the surface.

(16) Voicing assimilation crucially precedes epenthesis
a. Good: assimilation before epenthesis

/kat-zoka/
Assimilation katsoka
Epenthesis katasoka

[katasoka]
b. Bad: epenthesis before assimilation

/kat-zoka/
Epenthesis katazoka

Assimilation -
*[katazoka]

For this simulation, the dataset was generated by taking all combinations of the
same 15 stems and 7 suffixes as in 3.3 and applying voicing assimilation and epenthe-
sis, in this order. A sample of the data is provided in (17). The parameters used in
this simulation are: initial temperature: 75, cooling rate: 0.9999999, threshold: 1.0.
Encoding of the data given the grammar was multiplied by 10. Given an initial state
as before (Figure 22), the learner converged on the expected lexicon and rules (Figure
23).

(17)

stem\suffix -go -zoka -saat · · ·

dog doggo dogzoka dogsaat
kat katko katasoka katasaat
dok dokko doksoka doksaat
· · ·

4 Previous work on learning rule-based phonology
We presented a learner that uses the MDL evaluation metric, which minimizes |G| +
|D:G|, to jointly learn morphology and phonology within a rule-based framework. This
learner is fully distributional, working from unanalyzed surface forms alone – without
access to paradigms or negative evidence – to obtain the URs in the lexicon, the possi-
ble morphological combinations, and the ordered phonological rules. It acquires both
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Ginitial =



Rules: ∅

Lex:

Description length: |Ginitial| + |D:Ginitial| = 97 + 31, 120 = 31, 217

Figure 22: Initial grammar for the opacity simulation. The grammar can generate any
concatenation of segments in the alphabet.

G f inal =



Rules: R1 : [+cons]→ [−voice]/[−voice]
R2 : ∅ → [+low]/[+coronal] [+coronal]

Lex:

Description length: |G f inal| + |D:G f inal| = 567 + 7, 440 = 8, 007

Figure 23: Final grammar for the opacity simulation. The grammar includes voicing
assimilation and epenthesis (in this order) and a segmented lexicon.
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allophonic rules and alternations, and for a rule of the form A→ B/X Y it can arrive
at generalizations both in terms of the focus and the change (A and B, respectively) and
in terms of the context (X and Y). And it handles both optionality and rule interaction,
including instances of opacity. In this section we review past work on inducing rule-
based phonology and highlight aspects of the task handled by our learner that were left
open in the literature.

As we discussed in section 2.1 above, evaluation metrics that do not balance |G|
against |D : G| have not been successful. In particular, and as discussed by Dell (1981)
and others, the evaluation metric of SPE, which aimed at minimizing |G|, leads to
overgeneralization. We further showed how a restrictiveness metric, which can be
stated in terms of minimizing |D : G|, addresses the problem for the SPE metric but
does so at the cost of failing to generalize at all. Not surprisingly, neither of these two
evaluation metrics have led to actual learners.

Johnson (1984) offers the first working learner for phonological rule systems. It is
particularly significant since it can handle the task of learning rule interactions, includ-
ing cases of opacity. Differently from Chomsky and Halle’s approach and the present
one, Johnson’s learner is based not on an evaluation metric that compares hypotheses
given the data but rather on a procedure that obtains contexts for individual phonolog-
ical rules. In particular, when A and B alternate, Johnson’s procedure examines the
contexts in which A appear and those in which B appears; for the rule A→ B/X Y , a
context X Y is obtained (not necessarily uniquely) by considering what is common to
all the contexts in which B appears and different from every context in which A appears.
The alternating segments A and B themselves are identified with the help of morpho-
logically analyzed paradigms, which the procedure assumes as input. The learner is
thus not fully distributional. The dependence on morphological analysis to identify A
and B also means that the procedure is aimed at alternations and cannot generally ac-
quire cases of allophony that are not identifiable from alternations. It also generalizes
only in terms of the context X Y and provides no handle on generalizations in terms
of A or B. Finally, by relying on contexts in which B appears but A does not, the pro-
cedure misses cases of optionality, which by definition involve contexts where both A
and B can appear.

Johnson (1984)’s learner can be seen as the direct predecessor of the procedure-
based learner for rule-based phonology proposed by Albright and Hayes (2002, 2003).
Like Johnson’s learner, Albright and Hayes; Albright and Hayes’s learner assumes
that morphological paradigms are identified in advance and are thus not fully distribu-
tional.6 For Albright and Hayes, paradigms serve a similar role in morphology to the
role they served for Johnson in phonology, namely the identification of change in an
alternation, leaving the learner the task of finding the context for the change. Albright
and Hayes then add a step of phonological acquisition in which the learner examines
the morphological changes obtained so far and checks whether a given morphologi-
cal change can apply even when superficially inappropriate by adding a phonological
rule. During phonological induction, the set of possible contexts for phonological rules
is provided in advance (rather than acquired) in the form of phonotactically illicit se-

6See Dunbar (2008) and Simpson (2010) for later procedure-based learners for aspects of morpho-
phonology. Like Albright and Hayes (2002, 2003)’s learner, these proposals rely on pre-analyzed paradig-
matic pairs as input to the learner and are thus not distributional.
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quences. Like Johnson (1984), Albright and Hayes (2002, 2003)’s learner is aimed at
alternations and cannot generally acquire cases of allophony that are not identifiable
from alternations. Moreover, it does not provide a handle on generalizations in terms
of A and B or on optionality, and it does not acquire rule interactions.

A different procedure-based learner was proposed by Gildea and Jurafsky (1995,
1996), who adapt Oncina et al. (1993)’s OSTIA model for the induction of certain de-
terministic finite-state transducers (FSTs) – specifically, subsequential FSTs – to the
task of acquiring phonology.7 OSTIA starts from an FST that faithfully maps inputs
to outputs and gradually merges states in the FST while maintaining subsequentiality,
and Gildea and Jurafsky enhance this process with linguistically-motivated constraints
to obtain linguistically-natural mappings of URs to surface forms. Since the procedure
requires the URs to be given in advance, however, it is not distributional. Like Johnson
(1984), it also generalizes entirely in terms of the context X Y not in terms of A or B.
It also has no handle on optionality (though Gildea and Jurafsky suggest that a stochas-
tic HMM merger framework, for example along the lines of Stolcke and Omohundro
1993, might address this).8

Of the learners for rule-based phonology in the literature, our learner is closest
to those proposed by Goldwater and Johnson (2004), Goldsmith (2006), and Narad-
owsky and Goldwater (2009). All three are fully distributional learners for rule-based
morpho-phonology that, like Chomsky and Halle (1968), rely on an evaluation metric
rather than on a procedural approach.9 Differently from Chomsky and Halle (1968) –
and similarly to the present proposal – these learners use a balanced evaluation metric
that optimizes economy and restrictiveness simultaneously.10 Goldwater and Johnson
(2004)’s algorithm starts with a morphological analysis based on Goldsmith (2001)’s
MDL-based learner and then searches for phonological rules that lead to an improved
grammar, where the improvement criterion is Bayesian. Goldsmith (2006)’s learner
follows a similar path but uses MDL also for the task of phonological learning. Narad-
owsky and Goldwater (2009)’s learner is a variant of Goldwater and Johnson (2004)’s
learner with joint learning of morphology and phonology, thus addressing (similarly to
the present learner) the interdependency of phonology and morphology. As stated, all
three learners can acquire rules only at morpheme boundaries, which, as in the learn-

7Thus, while aiming at phonological rule systems, Gildea and Jurafsky (1995, 1996) do not learn such
systems directly but rather FSTs, which are a rather different kind of representation. In fact, FSTs are a
computationally convenient form into which one can compile both rule-based phonology (see Kaplan and
Kay 1994) and constraint-based phonology (see Frank and Satta 1998 and Riggle 2004). See Cotterell
et al. (2015) for a recent learner for FSTs that, while not siding with either rule-based or constraint-based
phonology is closer in spirit to the latter. We should note that Gildea and Jurafsky’s goal is not the modeling
of the acquisition of rule-based phonology as such but rather to investigate the role of linguistic biases in this
kind of learning. In particular, they show that three quite general biases improve the acquisition of rule-based
grammars within Oncina et al.’s framework.

8It is difficult to evaluate the suitability of the model to rule interaction. Gildea and Jurafsky (1995, 1996)
provide an example with multiple rules, but these rules do not interact, and it remains unclear whether rule
interaction (and, in particular, opacity) can be handled by their system.

9Naradowsky and Goldwater (2009) targets orthographic rules rather than phonology, but the difference
is immaterial.

10Outside of rule-based phonology, Cotterell et al. (2015) and Rasin and Katzir (2016) propose balanced
learners for the acquisition of phonology, the former within a phonological framework of weighted edits and
the latter within constraint-based phonology.
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ers of Johnson (1984), Albright and Hayes (2002, 2003), and Simpson (2010), limits
considerably the phonological rules that they learn. Like these procedural learners, the
three balanced learners generalize only with respect to the context and not with respect
to the change. They are also aimed at obligatory rules and do not handle rule interac-
tion. One way of interpreting our simulations above is as showing that these limitations
are not essential within this framework and that a balanced evaluation metric can sup-
port the acquisition of allophony, generalizations over both the context and the change,
optionality, and rule interactions.

A final comparison for the current proposal is with the recent procedural learner
of Calamaro and Jarosz (2015), which learns phonological rules – both allophony
and alternations – in a fully distributional way by extending the allophonic learner
of Peperkamp et al. (2006). Peperkamp et al. detect maximally dissimilar contexts
as hints for allophonic distribution. For example, [æ] and [æ̃] are allophones in En-
glish, and the contexts that they can appear in are very different: [æ̃] can only appear
before a nasal consonant, while [æ] can only appear elsewhere. Peperkamp et al. pro-
vide a statistical score that identifies such dissimilarities in the consonants in which
two segments can appear; when two segments have highly dissimilar contexts, they are
considered to be potential allophones.11 Calamaro and Jarosz (2015) look to extend
Peperkamp et al. (2006)’s model beyond allophony, in order to account for neutral-
ization processes. The challenge, given Peperkamp et al.’s dissimilarity score, is that
neutralization involves segments whose possible contexts may have a significant over-
lap. Consider, for example, a language like Dutch that has final devoicing. In such a
language, [t] and [d] might contrast everywhere except for the context #; a global
score of contextual dissimilarity will consequently treat [t] and [d] as quite similar and
fail to relate them to one another. In order to overcome this challenge, Calamaro and
Jarosz consider contextualized distributional dissimilarity: for a given context X Y
and two potential alternants A and B, they compute a dissimilarity score for the triple
< X Y , A, B > by comparing the probability of the context X Y given A and given
B. These dissimilarity scores are summed for the context and for the featural change
over all pairs A and B that have that change, thus allowing for generalization in terms
of the change. A further extension introduces generalization over contexts (subject to
two special conditions). In terms of comparison with the present proposal, Calamaro
and Jarosz’s model faces two challenges that, as far as we can tell, are hard to address
within the framework of distribution comparison that they adopt. First, their model
does not handle rule orderings. This gap is particularly difficult to bridge in the case
of opaque rule interactions, where surface distributions obscure the correct context for
rule application. The second challenge to Calamaro and Jarosz model concerns option-
ality. When a rule is optional, the distribution of A and B can be similar in all contexts,
so a dissimilarity detector will fail to identify the rule.

11This raises all the usual issues with phonemics, such as the fact that, in English, [h] and [N] are in
complementary distribution but are not phonemically related. And indeed, Peperkamp et al. encounter
many false positives (even more so since they do not require full complementary distribution). Echoing
early structuralist proposals, they propose that complementarity should be combined with requirements of
phonological similarity. As discussed by Chomsky (1964, p. 85), such requirements do not resolve the
problem for phonemic analysis.
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5 Discussion
We presented an MDL-based learner for the unsupervised joint learning of lexicon,
morphological segmentation, and ordered phonological rules from unanalyzed sur-
face forms. The learner contributes to the literature on learning rule-based morpho-
phonology, a literature that starts with Chomsky and Halle (1968) and continues with
Johnson (1984), Albright and Hayes (2002, 2003), Gildea and Jurafsky (1995, 1996),
Goldwater and Johnson (2004), Naradowsky and Goldwater (2009), and Calamaro and
Jarosz (2015), among others. The current learner goes beyond the literature in two
main respects. First, it can handle rule systems that involve not just obligatory rules
but also optional ones. And second, it can handle rule interaction, including cases of
opacity. In handling both optionality and rule interaction the present proposal offers
what to our knowledge is the first distributional learner that can acquire a full morpho-
phonological rule system with the structure proposed in the phonological literature.
However, the present work has focused on small, artificial corpora that exhibit specific
morpho-phonological patterns, and it remains to be seen if and how the approach can
extend to larger, more realistic corpora.

The proposed learner uses the simple and very general MDL approach, in which
hypotheses are compared in terms of two readily available quantities: the storage space
required for the current grammar and the storage space required for the current gram-
mar’s best parse of the grammar. It has been argued recently that this approach has
cognitive plausibility as a null hypothesis for language learning in humans and that it
offers a reasonable framework for the comparison of different representational choices
in terms of predictions about learning (Katzir, 2014). From an empirical perspective,
Pycha et al. (2003) have provided evidence that simplicity plays a central role in the
acquisition of phonological rules.12 If correct, the present work is a step toward a cog-
nitively plausible learner for rule-based morpho-phonology, and its predictions can be
compared with those of MDL or Bayesian learners for other representation choices
such as Rasin and Katzir (2016)’s MDL learner for constraint-based phonology. We
leave the investigation of such predictions for future work.

Appendix

A Mutations
This appendix describes all possible mutations used to generate a variant G′ of a hy-
pothesis G as part of the Simulated Annealing search procedure.

A.1 Mutations on HMM
1. Combine emissions: pick two emissions at random, concatenate them, and add

the result to a random state
12See also Moreton and Pater (2012a,b) for simplicity in phonological learning, and see Goodman et al.

(2008) and Orbán et al. (2008), among others, for empirical evidence for balanced learning elsewhere in
cognition.
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2. Clone emission: pick an emission at random and add to a random inner state

3. Advance emission: pick a random state q1. From q1, pick an emission and an
outgoing state q2 at random. Create a new state: q′. Add the chosen emission to
q′. Remove the chosen emission from q1. Add the transitions: q1 to q′, q′ to q2,
and q′ to q′.

4. Add state: add an empty state to the HMM (with no emissions or transitions)

5. Remove state: remove a random state and all arcs connected to it

6. Add transition: add a new transition between two random states (chosen with
repetitions)

7. Remove transition: remove a random transition from a random state

8. Add segment to emission: add a random segment from the segment table to a
random emission in a random position

9. Remove segment from emission: remove a random segment from a random
emission

10. Change segment in emission: replace a random segment from a random emission
with a different random segment

11. Add emission to state: add a random segment from the segment table as a new
emission to a random state

12. Remove emission from state: remove a random emission from a random state

A.2 Mutations on feature bundle list
1. Add feature bundle: create a random feature bundle and insert it in a random

position in the list

2. Remove feature bundle: remove a feature bundle at a random position

3. Change existing feature bundle: create a random feature bundle and mutate it
using one of the mutations on feature bundles:

(a) Add feature: add a random feature with a random value to the feature bun-
dle

(b) Remove feature: remove a feature at random from the feature bundle

(c) Change feature value: flip the value of a random feature
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A.3 Mutations on rule set
1. Add rule: generate a random rule with random feature bundles in each of the 4

parts of the rule: change, focus, left context, and right context. Add the rule to
the rule set

2. Remove rule: remove a random rule from the rule set

3. Demote rule: pick a random rule. Move it down in the rule order

4. Change rule:

(a) Mutate focus: mutate the focus feature bundle

(b) Mutate change: mutate the change feature bundle

(c) Mutate left context: mutate the left context feature bundle list

(d) Mutate right context: mutate the right context feature bundle list

(e) Mutate obligatoriness: flip the value of the obligatory value (which deter-
mines whether a rule is optional or obligatory)
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