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Abstract. I sketch a modular treatment of pronouns using applicative
functors, monads, and then applicative functors (again!). This approach
dissolves theoretical issues typical of standard accounts, and extends their
empirical coverage to paycheck pronouns and binding reconstruction.
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1 Overview

Since Shan’s (2002) pioneering work, a number of researchers have argued that
MONADS offer a flexible, robust compositional interface for expressions that
denote in “enriched spaces” (e.g., Giorgolo & Asudeh 2012, Unger 2012, Char-
low 2014, 2017). This paper argues that a monadic treatment of pronouns and
assignment-sensitivity has a number of theoretical and empirical benefits, in-
cluding (i) a maximally simple lexicon and a fully categorematic treatment of
abstraction; (ii) centrally, immediate analyses of PAYCHECK PRONOUNS and BIND-
ING RECONSTRUCTION with a unitary, simple semantics for pronouns and traces:
[she;] = [t:] = Ag.gi- The treatment involves abstracting out the two functions
that underlie standard treatments of assignment-friendly composition — yielding
a so-called APPLICATIVE FUNCTOR (McBride & Paterson 2008) — and then adding
a third function to deal with ‘higher-order’ variables, yielding a monad.

Two developments of the basic idea are briefly explored. First, I argue that a
mere applicative functor turns out to be sufficient after all, if we (a) adopt a more
type-theoretically conservative treatment of assignments than is standard, and
(b) countenance sentence meanings that depend on multiple assignments. Second,
I demonstrate an equivalence of the resulting theory with a VARIABLE-FREE
SEMANTICS (cf., e.g., Jacobson 1999), one which extends both to the combinatory
apparatus underwriting composition, and to the resulting semantic values.

2 The standard theory, and its discontents

2.1 Adding assignments

When we do model-theoretic semantics, we characterize the kinds of meanings
expressions can have and specify a procedure for building complex meanings from
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Fig. 1. Left: deriving a meaning for John saw Mary in a grammar based on 7 and [-].
Right: deriving a meaning for John saw hery in a grammar based on 7+ and [[-].

smaller pieces. A particularly simple model in the Fregean vein is given below:
(1) says that meanings can either be entities (type e), truth values (type t), or
functions from meanings to meanings; (2) says that the meaning of a binary
branching node is gotten by doing (type-driven) functional application on the
denotations of its daughters. See Figure 1 (left) for an example derivation.

(1) 7u=elt|T—>T
(2) [apB] =[a][5] or [B][«], whichever’s defined

This baseline theory can be used to profitably theorize about a large, nontrivial
fragment of natural language. But there’s a lot it doesn’t handle. My focus in
this paper is on wvariable expressions— that is, on free and bound pronouns:

(3) John saw her.
(4) Every philosopher; thinks they;’re a genius.

The simple model given by (1) and (2) seems ill-suited to such cases: no concrete
member of type e is a suitable candidate for the denotation of a free prounoun
(whose reference shifts with the context of utterance) or a bound pronoun (whose
reference shifts as the binder plows through its domain).

The standard Tarskian treatment of pronouns (e.g., Heim & Kratzer 1998) is
meant to remedy this. It’s got two pieces. First, meanings are uniformly conceived
of as determined relative to some way of valuing free pronouns— commonly
known as an assignment function, as indicated in (5). So both pronominal and
nonprominal expressions have denotations of the form ‘Ag...” (here and throughout
I represent assignment-dependence explicitly via a A-abstract). Second, the bare-
bones Fregean interpretation function [-] is re-engineered as [[-], a function that
composes assignment-dependent meanings to yield new assignment-dependent
meanings, as in (6) ([] is akin to Heim & Kratzer’s [-]9). A derivation of John
saw hery using these pieces is depicted in Figure 1, right.

(5) 7ti=g—T
6) [eB] = Xg-Ta]g (5T g) or AT g (]l g), whichever’s defined
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Fig. 2. Derivations requiring a syncategorematic treatment of A, in the presence of [-].

2.2 Conceptual and empirical issues

The theoretical and empirical discontents of the standard approach are well
known. On the theoretical side, it requires lexically generalizing to the worst
case: everything is treated as assignment-sensitive, including expressions are not
usually taken to depend on assignments in any meaningful way (e.g., proper
nouns, verbs, and so on). For example, the derivation in Figure 1 (right) requires
trivially assignment-dependent lexical entries for John and saw — [[-]] demands
that its inputs be assignment-relative, and so the lexicon must oblige.!

Also, because the grammar insists on interpreting binary-branching nodes by
passing an input assignment to both branches, any behavior deviating from this
norm (e.g., abstraction) requires a bespoke syncategorematic rule. Consider the
trees in Figure 2, in which we aim to bind a raised subject’s trace (left), and a
co-indexed pronoun (right). In both cases, A,’s sister must be evaluated at shifted
assignments ¢°~% anchored to a new functional parameter Az. But no possible
denotation for Ay can secure this result: once [-]] passes the input assignment to
Ag’s sister, the latter can’t be unsaturated — the jig is up. Getting the right result
for such cases thus requires a syncategorematic rule: [[Ag af = Ag. Az. [[a] ¢°~2.

On the empirical side, the standard account doesn’t handle paycheck construc-
tions (Cooper 1979, Engdahl 1986) —e.g., the reading of (7) saying Bill hates
Bill’s mom or the reading of (8) saying every linguist saved their paycheck.?

(7)  John; likes [his; mom]|;. But Bill, hates her;.
(8) Every philosopher; spent [their; paycheck];. Every linguist) saved it;.

There are two related puzzles here. First: in (7) and (8), the second, PAYCHECK
PRONOUN is quite clearly anaphoric to the co-indexed expression in the previous

L A related point about lexical complication can be made about theories built on simple
functional application which task their lexical entries with doing all the assignment
management (e.g., Sternefeld 1998, 2001, Kobele 2010).

2 This is, of course, not to say that the standard account is incompatible with paycheck
readings, only that it does not generate them out of the box and therefore requires
additional stipulations (Engdahl 1986). See Jacobson (2000) for discussion.



sentence. Yet despite this anaphoric relationship, the two expressions somehow
come to have different meanings (e.g., John’s mom vs. Bill’s mom). Second: the
lexical semantics of pronouns is given schematically as [[pro,]] :== Ag. g;. Even if
Bill or every linguist triggers an assignment shift via a Ay operator, this shift
should have no effect whatsoever on the interpretations of the paycheck pronouns,
which bear a distinct index j. So on standard assumptions about pronouns, how
they could ever come to be ‘bound into’ (as paychecks seem to be) is mysterious.

Nor does the standard account generate cases of BINDING RECONSTRUCTION,
as in the indicated readings of (9) and (10). The reason is simple: Predicate
Abstraction passes modified assignments down the tree, and so binding invariably
requires (LF) c-command (e.g., Sternefeld 1998, 2001, Barker 2012).

(9) [His; mom];, every boy; likes t;.
(10) [Unless he;’s been a bandit|;, no man; can be an officer ¢;.

We might hope to rescue these cases by scoping the quantifier over the fronted
pronoun. But this should trigger a Weak Crossover violation, as in the ungram-
matical *his; mom likes every boy;. Indeed, the distinctive feature of binding
reconstruction is that the trace of the overtly moved expression occupies a lower
(roughly: further right) position than the quantifier. In other words, binding
reconstruction requires the bound-into expression to ‘originate’ lower than the
binder. A theory of binding reconstruction should capture this fact.

3 Getting modular

3.1 Abstracting out the essence of the standard account

An alternative approach to assignments is to simply abstract out and modularize
the core features of the standard account, as in (11) and (12). Instead of treating
the lexical-semantic values of non-pronominals as trivially dependent on an
assignment, we’ll invoke a function p which turns any x into a constant function
from assignments into x. Instead of taking on [[-]] wholesale, we’ll help ourselves to
a function ® which perform assignment-friendly function application on demand.

(11) px = Ag.x pra—g—a
(12) m®n = Ag.mg(ng) ®:(g—va—b)—>(g—a)—>g—b

Derivations of shey left and John saw hery using these pieces are provided
in Figure 3. The principles guiding the construction of these derivations are
quite simple. Wherever the standard account appeals to a trivially assignment-
dependent lexical entry, we instead invoke p. Wherever the standard account
appeals to [[-], we instead invoke ® (applied to the assignment-sensitive function).

3.2 Conceptual issues dissolved

The p/® approach to compositionally managing assignment-sensitivity imme-
diately dissolves the theoretical baggage associated with the standard account.
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Fig. 3. Assignment-sensitive composition using p, ®, and [-], cf. Figure 1 (right).

First, p lets us keep the lexicon maximally simple: anything that isn’t really
assignment-dependent can be entered into the lexicon as such.

Second, ® liberates us from the yoke of [[-]|, which allows us to categoremati-
cally define operations relevant for binding, as in (13). Because the grammar is
oriented around simple functional application, and assignment-friendly functional
application (®) is conjured only as needed, there’s no grammatical default about
how assignment functions get passed around (as there is with [[-]]), and no need
for a syncategorematic rule subverting a grammatical default that doesn’t exist.

(13) A; == Af.Ag. \x. fgi™®

Derivations using A; to generate binding of a trace and concomitant binding of a
pronoun are given in Figure 4. (I've elected to notate A; as a unary compositional
rule rather than as a lexical item, but nothing here hinges on this choice.)

3.3 On applicatives

When we abstract out p and ® in this way, we're in the presence of something
known to computer scientists and functional programmers as an APPLICATIVE
FUNCTOR (McBride & Paterson 2008). Essentially, an applicative functor char-
acterizes an enriched type-space that supports some correspondingly enriched
notion of functional application. The relevant enrichment for our purposes is
assignment-sensitivity, and the corresponding enrichment of functional application
is, naturally enough, assignment-friendly functional application.

A little more formally, an applicative functor is a type constructor F' associated
with two functions p :: a— Fa and ® :: F (a—b)— F a— Fb. These two functions



Ag.leftb Ag.eo (Az.likes(momz) x)

g—t g—t
Ag.b An. Mg left(ng) An.\g.eo(ng) Ag. Az.likes (momz) ©
g—e (g—~e)—g—t (g—e—t)2g—t g—re—t
| |® |® | 40
b Ag. \z.leftz Ag.eo Ag.likes (mom go) go
e g—re—t g (e—t)—t g—t
Biu ‘ Ao ‘ P
Ag.leftgo eo to likes theirp mom
g—t (e—=t)—t
everyone
A
to left
subj raising subj raising

Fig. 4. Binding derivations using a categorematic A, alongside p, ®, and [-], cf. Figure 2.

are required to satisfy the four laws below, which together guarantee that ®
embodies an enriched notion of functional application, and that p does nothing
more than trivially inject values into the enriched type-space characterized by F'.

Homomorphism Identity

pf®pz=p(fz) p(Az.2) ®v =10

Interchange Composition

p(Af. fx)®u=u®px pO)@udvAdW=u® (VA W)

Our applicative functor is given by Ga = g — a, with p and ® as defined in (11)
and (12). It’s straightforward to check that these p and ® have types of the right
shape, and that they satisfy the four applicative functor laws.

Applicative functors can be factored out of a great deal of existing semantic
theory. I'll briefly mention two examples. Alternative semantics of the Hamblin
(1973) variety can be re-stated using an applicative functor for sets, such that
Sa i=a—t, with p and ® as defined in (14) and (15).

(14) px = {z} pa—Sa
(15) m@®n:={fz| fE€m,z€n} ®:S(a—b)—+Sa—Sb

Likewise, the continuations-based analyses of Shan & Barker 2006, Barker & Shan
2014 are built on two combinators (‘Lift’ and ‘Scope’) that directly instantiate
the applicative functor for continuations, such that C.a := (a — r) = r, and:

(16) px = Ak.Kkx pra—Cra
(17) m®n = Ak.m(Af.n(Ax.k(fx))) ®:Cr(a—b)—>Cra—Cprb
Finally, as emphasized by McBride & Paterson (2008), Kiselyov (2015), ap-

plicative functors enjoy an important property: they are closed under composition.
Given any two applicative type constructors F' and G, both F'o G and G o F
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Fig. 5. Composing two applicative functors F' and G.

are applicative as well. The general recipe for assembling composite p and ®
operations from F' and G’s applicative components is given in Figure 5. For ex-
ample, Go S yields assignment-dependent sets of alternatives, with pz = Ag. {z}
andm®n=Ag.{fx|f€mg,x€ng} (cf. Kratzer & Shimoyama 2002, Char-
low 2014, 2017). S o G gives alternative assignment-dependent meanings, with
prx={Ng.z} and m@n ={Ag.fg(xzg) | f € m,x € n} (cf. Poesio 1996, Romero
& Novel 2013). And composing G with itself —taking GoG—yields an applicative
for double-assignment-relativity: px = Ag. \h.x and m ® n = Ag. \h.mgh(ngh).
This latter composite applicative makes an appearance in Sections 5 and 6.3
The ‘compositionality’ of applicative functors is significant in part because it
guarantees that the applicative bits of grammar can be theorized about separately
and modularly. Any set of potentially disparate analyses relying on applicatives
automatically generates a ‘composite’ analysis in terms of composed applicatives.

4 Getting higher-order

4.1 Higher-order meanings

Taking stock, applicative functors are a robust way to add assignment-sensitivity
to a baseline grammar, allowing pronouns and traces to interact with expres-
sions that are not inherently assignment-sensitive. This approach dissolves the
theoretical baggage inherent in the standard, one-size-fits-all account.

But it would appear that p and ® have nothing special to say about bind-
ing reconstruction or paycheck pronouns (but see Section 5). Intuitively, both
phenomena are higher-order, in that the referent anaphorically retrieved by the
paycheck pronoun or the topicalized expression’s trace is an ‘intension’, rather
than an ‘extension’ (cf. Groenendijk & Stokhof 1990, Sternefeld 1998, 2001, Hardt

3 Notably, the continuations-based analysis of inverse scope (e.g., Shan & Barker 2006)
involves composing C, with itself.



1999, Kennedy 2014). In, e.g., (7), the paycheck pronoun is anaphoric to his;
mom, but it doesn’t thereby denote the extension of his; mom (which is, after
all, John’s mom). In, e.g., (9), the trace is anaphoric to his; mom, but not to its
extension (i.e., the mother of the contextually furnished value for the index ).

When assignments (rather than worlds) are our indices of evaluation, the
intension of a phrase like hisyg mom is Ag.momg, (type g— e). Its corresponding
extension at an assignment mapping 0 to, e.g., j is momj (type e). Similarly,
pronouns anaphoric to extensions deliver an individual after being served an
assignment function; their type is g— e. Pronouns anaphoric to intensions deliver
an intension after being served an assignment; their type is therefore g — g — e.

There is thus reason to believe that pronouns and traces can have among
their types g — e and g — g — e. Going whole hog, we assume that pronouns
and traces are polymorphic, with the recursive type given in (18). Simply put,
a pronoun (or trace) is an expression that denotes an individual after being
supplied some number of assignment functions.

(18) pro:=g-—e|g— pro

Two points. First, the generalized type in (18) doesn’t mean pronouns or traces
are ambiguous. Indeed, they’re assigned a unified (schematic) lexical semantics:
[pro,] :== Ag.g;. Second, it should be noted that reasons already exist to treat DP
traces as polymorphic along a different dimension: instances of SCOPE RECON-
STRUCTION, as in the = > V reading of everyone didn’t pass, can be analyzed by
assuming that traces of overt DP movement (here, subject raising) can be of type
g — (e = t) — t in addition to type g — e (e.g., von Fintel & Heim 2011: 94).

4.2 Extending the grammar with a higher-order combinator

So our toolkit now includes a generalized type for pronouns and traces (though a
constant lexical semantics). The question now becomes how higher-order pronouns
and traces should be folded into derivations.

An obvious option is to invoke a ‘flattener’ function which turns a higher-order
pronoun (type g — g — e) into something with the same type as a garden-variety
pronoun (g — e), and then to simply run our derivations as before. See (19) for
the definition of the flattener, which we’ll write ‘u’. Its job is to take an expression
m that’s anaphoric to an intension, and then obtain an extension by evaluating
the anaphorically retrieved intension m g once more against g.*

(19) pm = Ag.mgg p:(g—g—a)—g—a

And that is actually all there is to it! Derivations using p, ®, and u (along with
[-] and A;) to derive a paycheck reading and binding reconstruction (respectively)

4 A referee wonders whether p is not already entailed by p and @®: (untyped versions
of) these functions correspond to Combinatory Logic’s K and S combinators, which
are Turing-complete. In particular, in an untyped setting, u (aka W) is equivalent to
SS(SK). Importantly, though, this only holds of untyped systems. E.g., given any
concrete type for the ‘environment’ argument (here: g), SS isn’t defined.



are given in Figure 6.5 Notice that the pronoun in the paycheck derivation and
the trace in the binding reconstruction derivation have the same sort of semantics
they’ve had all along, but that their types are now higher-order: g— g—e. These
higher-order meanings are converted to garden-variety denotations of type g — e
via p. The rest is a mundane series of invocations of p, ®, A;, and [-].

In the paycheck derivation, the meaning computed for the sentence expects
the incoming assignment to furnish an intensional value (type g — e) for the
index 1. In the context of example (7), there’s a natural candidate at hand: the
meaning of hisy mom —i.e., A\g.mom gg! Supposing that the contextually given
input assignment g maps 1 to this value, we observe the following routine series
of A-theoretic equivalences, resulting in the desired paycheck truth-conditions:

(\g.hates (g1 g°~®)b)g = hates (g, g°~")b
= hates ((\g.momg,)g’~?)b
= hates (mom (g°~?),)b
= hates(momb)b

< J <

The binding reconstruction derivation works along essentially identical lines.
The only material difference here is that the intension picked up by the higher-
order variable (here, the trace) is fixed by the compositional semantics via in-scope
binding by A;, and not by the pragmatics or (pending suitable elaborations,
cf. Charlow 2014) via dynamic binding, as happens in the paycheck case. Notice
in particular that this analysis of binding reconstruction doesn’t require the
quantifier to scope over a pronoun it isn’t higher than (i.e., to the left of) on the
surface. Given the Weak Crossover facts, this is exactly as desired.

4.3 On monads

We observed that p and ® form an applicative functor. And it turns out that
p, ®, and u likewise correspond to a construct familiar to functional program-
mers —namely, a MONAD (sometimes termed the Environment or Reader monad,
cf. Wadler 1995, Shan 2002) —though the presentation here, in terms of an
applicative functor plus u, seems to be novel, at least in the linguistics literature.

In functional programming contexts, monads are usually defined as a type
constructor 7' with two operations 7 :: a — Ta and >=:: Ta— (a —»Tb) = Tb,
satisfying three laws (see, e.g., Wadler 1995: 33). Equivalently, we can (as we do
in this paper) use p::a—=Ta, ® = T(a—b)—=>Ta—Tb,and p:: T(Ta) — Ta,
requiring these operations to satisfy the following two laws:

Associativity Identity
pop=Am.u(pp®m) pop=2Am.pu(pp®m)=Am.m

The monad laws for the p, ®, and u presentation are admittedly complex. The
payoff of this presentation, though, is two-fold. First, facilitating composition
with ® is significantly closer to existing semantic practice than using >= (recall
that we factored ®, and p, directly out of the standard account of pronouns).

00—z O0—x

® Writing ‘Ag. Az. hates (g1 g° %)’ in lieu of the equivalent ‘\g. \z.hates (g?7* g°~)’.
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Fig. 6. Left: deriving a paycheck reading with a higher-order instantiation of the pronoun and a corresponding application of the monadic
p. Given a g such that g, = Ag.momgo (i.e., the intension of hisp mom), the extension of this sentence at g is hate(momb)b. Right:
deriving binding reconstruction with a higher-order trace and a corresponding application of p. In contrast with the paycheck derivation,
here the higher-order variable is resolved to an intra-sentential antecedent, via in-scope binding (precipitated by A;).



Second, monads generally require scope-taking to work their magic: the a — T'b
argument of >= must be created by scoping something of type a over something
of type b, applying 7 to the b, and then abstracting over a’s ‘trace’. While this
approach is certainly workable (Charlow 2014, 2017), it’s worth exploring the
comparatively conservative ‘in situ’ derivations afforded by ® in lieu of >=.
Finally, as the p, ®, and p formulation of a monad makes clear, every monad
determines (at least one) applicative functor. The reverse, however, is not generally
true. While (e.g.) S, Go S, and C, are all monadic, it turns out that S o G isn’t!
(To get a flavor for why, you can try to find a flattener p :: S(G(S(Ga))) — S(Ga).
It’s much harder than finding a x :: G(S(G(Sa))) — G(Sa), and any function you
do find will run afoul of one of the monad laws above.) In other words, while
applicatives are, happily, closed under composition, monads, alas, are not.

5 Stepping back, to applicatives

5.1 What’s the type of an assignment?

We often blithely think of assignments as having type N—e. But this is insufficient:
(a) it rules out the kinds of assignments we’ve assumed above, which harbor
intensions alongside individuals; and (b) it’s incompatible with cross-categorial
topicalization, extraposition, scope reconstruction, etc., all of which require us to
be able to bind variables with types other than e (cf. Heim & Kratzer 1998: 213).

Muskens (1995) offers a type-theoretic treatment of assignments as primitive
objects that can be used to value variables of arbitrary types. However, Muskens
also cautions that special care must be taken when using assignments to value
intensional variables (as we have done), on pain of inconsistency (cf. Muskens
1995: 179-80). While this technical difficulty has a solution consistent with the
outlook of Section 4 (ibid.; see also Hardt 1999: 216-7), I think it’s illuminating
to briefly and tentatively explore a more conservative solution, one which doesn’t
take assignments as primitives, and which allows intensional variables without
any fuss. Moreover, as we will see presently, taking this tack allows us to explain
paychecks and reconstruction without monads, in terms of the simpler (and more
modular) notion of applicatives.

5.2 Higher-order applicatives and higher-order variables

We begin by admitting only type-homogeneous assignments. Formally, we take
g, =N — r. Thus we have, e.g., assignments for individuals (g, ), assignments
for properties (g,_,), assignments for intensions of individuals (g, _,.), and so
on. Replacing g simpliciter with a hierarchy of assignments means we don’t risk
packing too much stuff into them and ending up with an inconsistent type theory.

Consider now how we might use g, assignments to interpret the bracketed
part of (20). We need to value its pronoun, so we’ll need a g,. We need to value
its VP-trace, so we’ll need a g,_,,. Splitting the difference, we conclude that the
bracketed expression should have type g, = g,_,, — t.

(20) ...And buy the couch Ag [she; did tg].



Can we derive something of that type? Yes, by generalizing our previous applica-
tive G and composing it with itself. We define a type constructor G,a := g, — a,
and take p and ® as in (11) and (12), but with generalized types: p :: a— G,.a, and
® :: G- (@ = b) = Gra — G, b. Then the applicative functor Ge o Ge—sy (Section 3.3)
can be used to derive a doubly assignment-dependent meaning: Ag. A\h.hg g;.

The higher-order variables used to model paychecks and reconstruction can be
treated analogously to (20). Notice that a higher-order meaning for, e.g., hery has
type Gg, e (Gee): it depends on an intension-assignment to fix its ‘initial’ reference,
and then on an individual-assignment to fix the value of the retrieved intension.®
As in (20), we can use a composed applicative (here, Gg o © Ge) to juggle these
two dependencies. The ultimate result for, e.g., the paycheck reading of Bill hates
herg will be Ag. \h. hates (g; h°7®)b— virtually identical to what we monadically
derived in Figure 6 (left), but depending on two assignments rather than one.

All told, type-homogeneous assignments seem attractive: the underlying type
theory is simpler, there’s no whiff of inconsistency in the air, and we needn’t
exploit the extra power of monads to treat paychecks and reconstruction. The
only ‘price’ we pay is needing multiple assignments to extract propositional
content from certain utterances.

6 A bit of variable-free semantics to play us out

Jacobson (1999) proposes a variable-free account of pronouns that eschews indices
and assignments, instead treating pronouns as identity functions: [she] = A\z.z.
How should pronominal denotations like these, of type e — e, be composi-
tionally integrated, given that they occur in places where something of type e is
expected? The answer may by this point be obvious: after all, the situation is
perfectly analogous to the one we found ourselves in before — we’ve only replaced
g-dependent e’s with e-dependent e’s. So we can just use our trusty applicative
to compose up a variable-free sentence meaning. Figure 7 gives the details (ab-
stracting away from the elaborations considered in Section 5). In other words,
variable-free semantics can be done using the exact same combinatory tools as
the modular treatment of assignment-sensitivity in variable-full semantics.
Though I lack the space to develop this point as much as it deserves, one
other striking fact bears mentioning before we conclude. Consider she saw her. A
variable-free theory should assign it the following value: Axz. Ay.saw y x. How’s that
supposed to go, compositionally? Again, a solution presents itself: we can simply
compose the variable-free semanticist’s applicative functor with itself, exactly as
in Section 5! Dependence on two assignments in the variable-full theory becomes
dependence on two assignment-free model theoretic objects (here, e’s) in the
variable-free theory. Moreover, uncurrying the two-place function derived by the
variable-free theory gives A(z,y).sawyxz = Ap.saw ps p1: assignment-dependence
springs organically into being. Thus, not only can variable-free and variable-full
approaches to semantics be treated with an identical set of applicative (or, if you

5 Pronouns and traces will still have a uniform lexical semantics, [pro,] = Ag.gi, along
with a polymorphic type: pro = Gee | Gpro pro.
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Fig. 7. Variable-full (left) and variable-free derivations (right), applicative-style.

prefer, monadic) combinatory tools, modulo types — the semantic values thereby
generated turn out to be equivalent up to isomorphism.
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