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Still glides the Stream, and shall for ever glide;
The Form remains, the Function never dies.

Wordsworth (1820)

Mother: I’ll tell her the details of the party.
There was six children who came.

Child: Ten actually.
Mother: Who came to your party?
Child: Actually not ten. Ten hundred.
Mother: Ten hundred.
Child: Actually not ten hundred. Infinity.

(5;0: the CHILDES corpus)

1 Languages and Numbers

Discrete infinity is the hallmark of both natural languages and natural numbers. This has
led some observers (e.g., Chomsky 1980, Hurford 1987) to conjecture that our linguistic and nu-
merical capacities have a shared evolutionary origin. Such a position is not without difficulties
(Gelman and Butterworth 2005). All human societies have infinite languages but not all cultures
have an infinite number system, which apparently limits the speaker’s performance on exact nu-
merical tasks (Gordon 2004, Pica et al. 2004 though see Butterworth et al. 2008). All human chil-
dren acquire a language effortlessly: many language-specific features are firmly in place by the
beginning of language production (Brown 1973, Pierce 1992, Ramus et al. 1999, Yang 2013). By
contrast, while pre-linguistic infants can solve simple addition and subtraction problems for very
small numbers (“2=1+1”, “3=2+1”; Wynn 1992a), numerical development follows a protracted
period of several years (Fuson 1988, Wynn 1990, Feigenson and Carey 2003, Condry and Spelke
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2008, Davidson et al. 2012). Moreover, home signers, who do not have a linguistically systematic
input model, spontaneously invent a combinatorial gestural system similar to spoken/sign lan-
guage syntax (Goldin-Meadow and Mylander 1998, Goldin-Meadow and Yang 2016), yet they do
not develop exact numerosity representations (Spaepen et al. 2011).

Nevertheless, this programmatic note will advocate a strong identity thesis that connects
language and numbers developmentally as well as evolutionarily. I claim that the acquisition of
numbers, as concepts, follows the mechanisms of language acquisition. Number concepts are
like words; their phonological forms are given by the morphosyntax of the numeral system, and
their semantic contents are provided by the successor function (SF), that each integer has a suc-
cessor that increments by exactly one (Russell 1919, Gelman and Gallistel 1978). The successor
function is thus a generative procedure that recursively assigns semantic meanings to number
concepts. Its acquisition, I claim, is enabled by the acquisition of the numeral system, which re-
cursively assigns phonological forms to number concepts: the ordering it imposes on numbers
is the crucial step in the semantic induction of numbers. My proposal is outlined as follows:

(1) a. Base case: the child has innately available two concepts “1” and “2” for which the
successor function holds (i.e., 2= 1+1; Wynn 1990, 1992a);

b. Numeral acquisition: the child acquires the numeral system such that the next nu-
meral is formally predictable from the previous one thereby establishing an ordered
list of number concepts;

c. Induction: the property that holds between the 1st and 2nd concepts on such an
ordered list (i.e., the successor relation between 1 and 2) is extended to any two suc-
cessive concepts (i.e., the successor function for N and N +1).

As I discuss in Section 5, my proposal builds on a large body of previous theories of numerical
development. The key innovation here is that the successor function is enabled by a productive
numeral system:1 morphosyntactic infinity in the linguistic system provides the anchoring for
numerical infinity in the conceptual system.

Because the numeral system is fundamentally linguistic, the critical step in the acquisition
of numbers becomes a problem of language acquisition. Specifically, the child needs to iden-
tify the productive rules for numeral formation in the face of the unpredictable and thus rote-
learned numeral words. For instance, in the English numeral system, seventeen, twenty-five and
eighty-two are formally predictable whereas three, twelve, and thirty are not. The acquisition of
rules along with exceptions is the sort of problem that all language-learning children face and
generally excel at. I propose that a theory of language learning, dubbed the Tolerance Principle
(Yang 2016), provides the causal, and quantitatively precise, link between the numeral system
and the successor function.

My argument will be given as follows. Section 2 reviews the key features of the Tolerance
Principle, which accounts for how children overcome exceptions to learn rules. Section 3 re-
views cross-linguistic studies of children’s counting to show that the Tolerance Principle makes
accurate predictions for when children discover their numeral system and why it takes so long.
Section 4 presents preliminary evidence that the successor function seems to become available

1I use the term productive as opposed to generative to describe an infinite numeral system. Generative processes
describe input-output relations which may be restricted to a finite number of items. Productive processes, on the
other hand, are open-ended and infinite.
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as soon as — but not before – the acquisition of the numeral system. Section 5 gives a more de-
tailed statement of my proposal in (1) and highlights how the acquisition of numbers is funda-
mentally linguistic. In the concluding section, I will articulate a new cultural and evolutionary
perspective on the connection between natural language and natural number.

2 How Children Generalize

Linguistic rules often take a long time to learn. The most prominent example in the language
development literature is the acquisition of English past tense. Children initially are locked in
a protracted stage during which the irregular verbs are inflected correctly (Marcus et al. 1992,
Maratsos 2000). Then rather abruptly, over-regularization errors (e.g., think-thinked, know-
knowed) start to appear. This marks the emergence of the productive regular rule (“add -d”)
which can apply to all verbs, affecting even the irregulars that never appear with “-d” in the in-
put. An important question in the study of English past tense is to determine the “tipping point”
at which the “add -d” rule becomes productive: the child must learn enough regular verbs to
overcome the irregulars. Similar questions arise for the acquisition of linguistic rules in general,
many of which have exceptions.

The Tolerance Principle, which is summarized in Yang (2016), is a theory that provides for the
threshold of exceptions for a productive rule. In the case of English past tense, the regular “add
-d” rule becomes productive only if the child has acquired a sufficiently large number of verbs
such that the number of exceptions (i.e., the irregulars) falls below the threshold. The motivation
for Tolerance Principle comes from computational efficiency considerations of language use. It
holds that when faced with alternative organizations of linguistic data, the child chooses a more
efficient, i.e., faster, grammar. For the acquisition of rules, the choice is between a productive
rule with a list of exceptions or a fully lexicalized list that dispenses with the rule altogether. By
comparing the cost of full listing and the cost of a rule plus exceptions, we can derive a threshold
value of exceptions below which postulating a productive rule results in faster processing time.
Under general assumptions about word frequencies (i.e., Zipf’s Law; 1949), it is possible to prove
the following:

(2) Tolerance Principle:

If R is a productive rule applicable to N candidates, then the following relation holds
between N and e , the number of exceptions that could but do not follow R :

e ≤ θN where θN :=
N

ln N

Yang (2016) presents dozens of empirical case studies to show that the Tolerance Principle
makes accurate predictions about where productivity arises in language and where it collapses.
The slow growth of the N / ln N function suggests that for a productive rule to emerge, there
must be an overwhelming number of rule-following items to overcome the exceptions. Recent
experiments with Kathryn Schuler and Elissa Newport using the artificial language paradigm
have produced near-categorical support for the numerical predictions of the Tolerance Principle
(Schuler et al. 2016). Children between the age of 5 and 7 were presented with 9 novel objects
with labels. The experimenter produced both “singular” and “plural” forms of those nouns as
determined by their quantity on a computer screen. In one condition, five of the nouns share
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a plural suffix and the other four have individually specific suffixes. In another condition, only
three share a suffix and the other six are all individually specific. Thus, the nouns that share the
suffix are the regulars and the rest of the nouns are the irregulars. The choice of 5/4 and 3/6 was
by design: the Tolerance Principle predicts the productive extension of the shared suffix in the
5/4 condition because 4 exceptions are below the threshold (θ9 = 4.1), but no generalization in
the 3/6 conditions. In the latter case, despite the statistical dominance of the shared suffix as
the most frequent suffix, the six exceptions exceed the threshold. When presented on additional
novel items in a Wug-like test, nearly all children in the 5/4 condition generalized the shared
suffix on 100% of the test items in a process akin to the productive use of English -ed. In the
3/6 condition, almost no child showed systematic usage of any suffix, much like native speakers
when queried with “gapped” (ineffable) morphological items (e.g., the past participle of stride
whose past tense is strode, and numerous other cases in morphologically complex languages;
see Halle 1973, Baerman and Corbett 2010, Yang 2016).

The Tolerance Principle is a parameter-free model in the sense that it is not tuned to fit any
linguistic data or experimental results. It makes a categorical prediction about productivity on
two input variables (N and e ). I now give a simple example to show how the Tolerance Principle
accounts for the emergence of the “add -d” rule in English past tense; the application to the
acquisition of numeral systems follows the same process.

Suppose an English-learning child knows e = 120 irregular verbs, roughly the total number
found in a five million word corpus of child-directed English (MacWhinney 2000). We can in-
fer the minimum value of N , the number of all verbs (regular plus irregular), such that θN =
N / ln N ≥ 120. A simple calculation shows that the value is about 800. That is, if the child has
acquired 120 irregular verbs, they will need at least 680 regular verbs to establish the productivity
of the “add -d” rule. This condition is easily met: the five million word corpus of child-directed
English contains over 900 regular verbs inflected in past tense. Thus, an English learner will be
justified to conclude that the “add -d” rule is productive and can be extended to novel items (e.g.,
rick-ricked; Berko 1958).

In fact, the prediction can be made more precisely, potentially at the individual level. Af-
ter all, productivity is determined by the numerical values of N and e , which are determined
by an individual learner’s vocabulary of regulars and irregulars. Consider “Adam”, the poster
child for English past tense acquisition (Pinker 1995). Adam produced the first instance of over-
regularization error — “What dat feeled like?” — at the age of 2;11. In the transcript of almost a
year prior to that point, not a single irregular past tense is incorrect. If we take over-regularization
as the moment when “add -d” becomes productive (Marcus et al. 1992), then it must be the case
that by this point, Adam has acquired a sufficiently large number of regulars to overwhelm the
irregulars. To test this prediction, I extracted every verb stem in Adam’s transcripts until 2;11
(MacWhinney 2000). There are N = 300 verbs in all, out of which e = 57 are irregulars. This is
very close to the predicted θ300 = 53, and the small discrepancy may be due to the undersam-
pling of the regular verbs which tend to be lower in frequency and are more likely to be missed in
a modest sample. The critical point to note here is that Adam needed a filibuster-proof majority
of regular verbs to acquire the “add -d” rule: this is strongly consistent with the predictions of
the Tolerance Principle.

The formulation of the Tolerance Principle suggests that the statistical composition of reg-
ular and irregular items in the learner’s vocabulary plays a decisive role in the emergence of
productivity. The “add -d” rule is learned relatively late because irregular verbs are among most
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frequent verbs in English. In a five million word corpus of child-directed English, 54 of the top
100 most frequent verbs in past tense are irregulars; the child must acquire a substantial verb
vocabulary before learning that “add -d” is regular. By contrast, the irregular plural nouns (e.g.,
child-children) are far less frequent: only 6 of the top 100 most frequent plural nouns are irregu-
lar. The “add -s” rule is therefore acquired much earlier: “Adam”, for instance, produced his first
token of over-pluralized noun (peoples) a full three months before the attestation of feeled.

The Tolerance Principle can be applied to numeral systems, which are also a mixture of reg-
ularly formed expressions along with rote-learned items. It makes precise predictions on when
children acquire a productive numeral system, which will be manifested in their counting range.
This, I then argue, leads to the acquisition of the successor function and the system of natural
numbers.

3 To 73 and Beyond

While reading a classic paper (Fuson et al. 1982) on English-learning children’s development
of counting, I was suddenly overcome with excitement. The authors chose to present their data
in a particular fashion (Table 1).

Table 1: Percentage of age groups producing accurate sequences of variable lengths (from Fuson
et al. 1982: p38).

Here children are grouped according to their counting range. The lower values are divided
by the decade but why is 72 a “key point” (Fuson et al. 1982: p39) for breakdown? The paper does
not provide any specific justification but Karen Fuson helpfully clarified in an email:

You can see two major learning tasks in the chunks in the table: learning the teens
count and learning from 30 to 72. It can take a long time to learn the teens count
because of all the irregularities in English. Fifteen seems to be especially difficult.
Then children get the pattern 21 to 29, and they may get this before they consistently
know all of the teen num bers. But the irregularities in the teens and especially ten,
eleven, twelve, interfere with learning the repeat of the twenties pattern with 30.
There is nothing to signal that the count starts repeating at ten, so children count ...
twenty nine, twenty ten, twenty eleven, etc. Inhibiting this can take time. Once they
finally solidly have the 30 31 ... 39 pattern, they have to learn the decades forty, fifty,
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sixty, which are irregular and do not seem to come from four, five, six (sixty does of
course) and that is one reason children take off after 72. (Personal communication.
March 31st, 2016. Emphasis added)

There is a reason why children take off after 72, which is in fact predicted by the Tolerance
Principle. The acquisition of an open-ended counting list is only possible if the child has mas-
tered a productive numeral system, which in turn must meet the condition of productivity in the
face of the rote-learned items. Consider the English numerals below 100:

(3) one two three four five six seven eight nine ten eleven twelve thirteen 14 fifteen 16 17
18 twenty 21 22 23 24 25 26 27 28 29 thirty 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
47 48 fifty 51 52 ...

Here the rote-learned numerals are in boldface, 17 in all. According to the Tolerance Prin-
ciple, the acquisition of the productive numeral system in English requires the child to have
learned at least N numerals such that θN =N / lnN ≥ 17: the smallest value of N is 73. In other
words, if a child can count to 73, they are guaranteed to “take off”.2

Although the Tolerance Principle has proven more effective than I had expected (or hoped),
this calculation is surely too fantastic to be exact. The tipping point of 73 can only be regarded as
an approximation. I have not said anything about how the child discovers the numeral rules but
only counted the number of items (17) that would not be predictable in the target-like system. No
doubt children eventually arrive a such rules but how they do so in an incremental fashion needs
further investigation and it is likely that they are guided by the constraints on numeral systems
in the world’s languages (Hurford 1975). Here we also expect to find individual differences in the
construction of the rules (and thus counting lists), as is generally the case in the acquisition of
linguistic rules such as morphology (Freyd and Baron 1982, Maratsos 2000). Nevertheless, since
everyone knows how to count forever but no one learns that by literally counting forever, some
upper bound on the numeral vocabulary must be sufficient for the acquisition of the numeral
system. The Tolerance Principle provides a rough estimate of where the transition to infinity
may be. An immediate prediction is that once such a transition has taken place, children may
start producing “over-regularization” errors, such as ten-hundred noted at the beginning of this
paper. Presumably the child did not know the rote-learned word thousand well enough but the
fact that ten-hundred was produced at all suggests that he understood English numerals to be
infinite, just as irregular error such as feel-feeled marked the productivity of “add -d”.

For any language, the Tolerance Principle can predict the transitional point of numeral ac-
quisition using only the number of rote-learned words. Consider a much simpler (i.e., more
regular) numeral system, that of Mandarin Chinese:

(4) 一 二 三 四 五 六 七 八 九 十 十一 十二 十三 十四 十五 十六 十七 十八 十
九 二十 二十一 二十二 二十三 二十四 二十五 ...

The numerals from 1 to 10 must be rote-learned. Both 11 (“ten-one”) and 20 (“two-ten”) are also
unpredictable as they are positionally differentiated by arbitrary conventions. Taken together,
there are at most 12 exceptions; the Tolerance Principle suggests that the Chinese learner needs
to acquire at least 46 numeral words to discover the productive process of numeral formation

2Strictly speaking, the Tolerance Principle does not require the 73 numbers to be consecutive as long as they are
unique, although it is almost surely that children can only learn 73 unique numerals through counting.
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(N46 = 12). This immediately accounts for the developmental differences in counting by English
and Chinese-learning children. Within the same age group, Chinese-learning children count sig-
nificantly higher than American children (Miller and Stigler 1987); see also Miura et al. (1988) for
other East Asian languages and Song and Ginsburg (1987) for contrasts in Korean children ac-
quiring two numeral systems with different degrees of regularity. Especially interesting is a study
by Miller et al. (1995). Chinese and American children were assessed for their counting range
and tested on object counting. As found previously, Chinese children count significantly higher
than American children as soon as the counting range goes in the teens, which is where the two
systems begin to diverge in regularity. More significantly, Chinese children hold a significant
advantage over American children on the task of object marking that involves a large numbers
(14-17) of items: American children were successful 33% of the time as opposed to 60% for Chi-
nese children. This result is already suggestive that the mastery of counting, and the complexity
of the numeral system, may be causally connected to the acquisition of number concepts and
children’s performance on numerical tasks, which is of course the major theme developed here.

Two additional predictions can be made under the current approach to numerical develop-
ment. First, and rather straightforwardly, we account for the protracted development of numbers
(Wynn 1992b). On the present account, this is because the acquisition of the numeral system is
protracted. The statistical distribution of numerals is similar to that of English verbs in past
tense, only even more irregular-heavy in the highest frequency range; see Dehaene and Mehler
(1992) for a cross-linguistic study of similar results. Figure 1 shows the distribution of the nu-
meral words in a five million word corpus of child-directed English. The most frequent regularly
formed numeral is “nineteen” and the more frequent rote-learned numerals overwhelmingly
dominate: just the three words “one”, “two” and “three” account for over 75% of all tokens. With
the help of Kyle Gorman, I also extracted all the numeral expressions from the same corpus.3

Remarkably, about 95% of the numeral tokens, spread over the 17 types in (6a), are rote-learned.
The acquisition of a numeral system, then, can only proceed slowly, much like the acquisition of
the productive “-ed” rule in English past tense, where a learner’s early verb vocabulary will con-
sist of many high frequency irregular verbs. If, as proposed, the acquisition of SF is enabled by
the acquisition of a productive numeral system, we can readily account for the correlation found
between children’s numerical knowledge and their numerical vocabulary (Negen and Sarnecka
2012).

Second, and more interestingly, the Tolerance Principle makes strong predictions about the
distribution of children’s counting ranges. Roughly speaking, we expect a U-like distribution. At
the one end, there should be children that cannot go beyond the rote-learned numerals spread
over an extended range, as they have not yet reached the productivity threshold. At the other
end, there should be children who have acquired the productive numeral system. Critically, we
expect a no-child’s-land between the tipping points — approximately 73 for English and 46 for
Chinese –and the ceiling, i.e., an infinite system, typically capped at 100 in empirical studies.
This was exactly what Lipton and Spelke (2005) found. In their study, over half of the 5-year olds
can count up to 100 but interestingly, they did not find any child who could count to 80 but not
all the way to 100.

Data recently collected by Pierina Cheung and colleagues (2016) provides broad evidence for

3For instance, the numeral word analysis in Figure 1 treats the adult utterance “thirty-nine” as “thirty”and “nine”.
The numeral analysis, which uses a regular expressin extractor based on the English system of numeral formation,
treats it as a single number 39. The corpus contains only a finite number of numeral words but many more numerals.
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Figure 1: Distribution of English numeral words in child-directed speech.

these predictions in a comparative study of English and Chinese learning children. All children
are between the age of 4 and 5. Of the 67 English-learning children, 57 (85%) can not count past
70, but 9 (13.4%) jump to the ceiling range of 91-100, with only one child each in the 70-79, 80-89,
90-99 range. Of the 126 Chinese-learning children, 47 (37.3%) can not count past 50. For the rest,
a whopping 60 (47.6%) can count to 100, with only 19 children (15% overall) spread across the
four decades between 51 and 99.4

Indeed, cross-linguistic studies have consistently pointed to the regularity of numeral sys-
tems and its effect on children’s counting and related numerical tasks (for English vs. French,
Lefevre et al. 2002; Welsh, English, and Tamil, Dowker et al. 2008; the, base-5, Belgian Sign Lan-
guage vs. Belgian French, Leybaert and Cutsem 2002). Future research may follow the methods
of Lipton and Spelke (2005), Wagner et al. (2015), Cheung et al. (2016) to systematically assess
the children’s counting and numerical development across languages. If the current proposal is
correct, we expect to observe parallel trajectories, with a quantal change at the point predicted
by the Tolerance Principle. In Section 4 I review some preliminary evidence to this effect, before
giving a detailed account of the inductive process in Section 5.

4It is conceivable that these few children in the range of 73-100 for English and 50-100 for Chinese could in fact
count higher. Cheung et al. (2016), following Davidson et al. (2012), Wagner et al. (2015), asked children to count
continuously and determined the highest count as the number before the first error. By contrast, Lipton and Spelke
(2005) initiated the counting in specific ranges (e.g., “55, 56, 57”) and children were instructed to continue. This
methodological difference appears to have an impact on the estimation of children’s counting range. For Lipton and
Spelke (2005), the mean age of children who can count to 100 is 5;6. For Cheung et al. (2016), however, the mean age
of children who can count to 100 is 6;3. Thus it is possible the number of Chinese-learning children who can only
count to 51 but not all the way to 100 would be even fewer if assessed with a less demanding task.
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4 From Counting to Successor Function

I should make clear that I do not claim that learning to count with a numeral system neces-
sarily or immediately leads to the acquisition of the successor function. Being able to count to 10
or even 20 in a language like English is pretty useless for the purpose of establishing a productive
numeral system. Analogously, if a child knows only 10 verbs out of which 9 are irregular, there is
no way for them to learn the “add -d” rule is regular. The claim is that the successor function be-
comes available only after the child can count to a sufficiently high number such as productivity
is guaranteed: How high that number is can be provided by the Tolerance Principle. I believe
that this claim is supported by the findings on counting and successor function in the previous
literature.

In the so-called subset-knower stage, children who can recite a count list may fail to give the
exact number of objects that is lower than their counting range (the Give-N task; Wynn 1990).
Nor can children in this stage describe precisely the number of objects on cards (Le Corre et al.
2006; see also Gelman 1993). What follows is the CP-knower stage, named after Gelman and
Gallistel’s Cardinality Principle (1978), where children can reliably produce any number within
their counting range and can use the last number to represent the cardinality of the set. For
some authors, the CP-knower stage is identified with the acquisition of SF (Wynn 1990, Condry
and Spelke 2008, Sarnecka and Carey 2008, Carey 2009). But children at the beginning of the CP-
knower stage typically have a very short counting list, while a true understanding of the successor
function ought to extend to arbitrary numbers.

Davidson et al. (2012) provided a systematic study of the connection between CP-knowing
and the successor function. They asked whether children knew that adding one item to a set
corresponds to the next word on the counting list (the Unit task). Unlike previous studies (e.g.,
Le Corre and Carey 2007, Sarnecka and Carey 2008) that focused on small values of cardinality,
these authors tested children on small (4, 5), medium (13, 14, 15), and large numbers (24, 25).
They found that CP-knowers very often fail on the Unit task. For instance, there are children
who can count past 30 yet fail on the Unit task for numbers below 10. Overall, for children in
the low (10-19) and medium (20-29) counting range, their modal response on the Unit task is
only at chance even for small numbers. By contrast, children in the high (≥ 30) counting range
performed better across the board. This study casts doubt on the proposal that CP-knowing
necessarily leads to the successor function; see also Le Corre (2014) for similar findings on a
smaller range of CP values. Moreover, Izard et al.’s recent study (2014) using a non-linguistic
task shows that three-year-old children who can track a set of 5 to 6 objects nevertheless fail to
understand the change of cardinality when an object is added to or subtracted from the set: it
is possible that CP-knowing does not necessarily lead to successor function even for very small
numbers.

Having a sufficiently long counting list, however, does seem to activate SF in numerical de-
velopment. To the best of my knowledge, Cheung et al. (2016) is the first systematic study of
counting range and the acquisition of SF when assessed on a large range of numeral values, and
it lends direct support for the current proposal. Building on Davidson et al. (2012), Cheung et al.
found an almost two year gap between becoming CP-knowers and learning the successor func-
tion, the latter of which typically occurs between 5 and 6. These authors tested the successor
function with the Successor Task (after Sarnecka and Carey 2008). Children were told the num-
ber of objects that the experimenter had put in an opaque box: “I have N bears. I’m putting N
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bears in the box”. Another object (e.g., bear) was added to the box, and the child was to choose
between N +1 and N +2 as the answer. The task was carried out on four ranges of N : Small (4, 5,
7), Medium (12, 16, 18), Large (23, 24, 28, 31, 35, 36) and Very Large (53, 57, 76, 77). One hundred
children were tested (mean age 5;6; range = 4;0–6;11); all were CP-knowers. The children were
divided in four groups by counting range: Low Counters (8-19), Medium Counters (20-39), High
Counters (40-79), and Very High Counters (80-100). The results are as follows. While all children
performed above chance on the Small Number test, only half of Medium and High Counters con-
sistently answered correctly for numbers in their respective counting range. Most revealingly, the
Very High Counters as a group performed near ceiling on all numbers on the Successor Task. It is
as if 80 marks a decisive phase transition into the successor function region.5 The discrete nature
of this development, as well as the critical point at which such transition takes place, are strongly
consistent with the approach developed here.

Before proceeding, I should also note that it is possible for children to develop exact numeral
knowledge for a finite, and likely small, range of numbers. Many children are explicitly taught
how to count, with fingers, small objects, or abacus (the CHILDES corpus records numerous ex-
amples). They may learn that, for instance, 8 follows 7, 13 follows 12, etc. Thus, children may
appear as if to have acquired a “bounded” successor function for a small set of numbers. Exam-
ples of a bounded successor relation include the days of the week, the months of the year, etc.,
as Wednesday follows Tuesday, and October follows September. Such knowledge would be item-
specific and learned by rote, rather than what is entailed by the unbounded successor function.
I suspect this is the beginning stage of CP-knowing: children appear to have developed the suc-
cessor function for very small numbers tested in earlier studies (e.g., Wynn 1990, Condry and
Spelke 2008, Sarnecka and Carey 2008), but fail to generalize beyond those, not even to numbers
within their counting range (Davidson et al. 2012). As we shall see in the next section, such item-
based knowledge is in fact a typical stage of language development and is expected under the
current proposal that grounds numerical capacity in language acquisition.

To fully test the predictions of the current proposal, more studies like Cheung et al. (2016)
are needed for additional languages. We predict critical points for the acquisition of language
specific numeral systems, which can be verified by children’s counting range. If a productive
numeral system is indeed the cause for the successor function, then we expect to see dramatic
and across-the-board improvement in the performance of numerical tasks much like the Very
High Counters in Cheung et al.’s study (2016).

I will now spell out how the numeral system facilitates the inductive processes in the acqui-
sition of the successor function.

5 Linguistic Acquisition and Numerical Induction

5.1 Rule learning as induction

To learning a language is to learn its rules, which provide a systematic mediation between
form and meaning. To a learn rule is to carry out an induction: the capacity to form abstractions
such that the properties of a finite number of items can be extended to an entire class with in-
finitely many members. For instance, when the child knows the English noun phrase rule “NP→

5This work does not provide a finer classification among the High Counters (40-79). A stronger prediction is that
children in the range of 73-79 ought to behave like the Very High counters.
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Det Noun”, they know that two classes of words, determiners and nouns, can be combined freely.
During language acquisition, the child will establish such rules based on a finite number of ex-
amples: obviously no one can ever hear all possible determiner-noun combinations. Induction
immediately follows the successful acquisition of the rule.

The inference process can be turned the other around. If the child knows the NP rule and
encounters an expression such as “the dax”, then “dax” will be instantly analyzed as a noun as
befitting the word category that follows the determiner (Shi and Melançon 2010). In other words,
forms can be used to deduce meanings, as shown by Roger Brown in a pioneering study (1957)
and more recently in the literature known as syntactic bootstrapping (Gleitman 1990): If a novel
word appears between two noun phrases, it is most likely a verb, and it will have the transitive
semantics of agency.

Of course, the child must learn the language-specific rules that enable the induction from
finiteness to infinity and the inference from form to meaning. In many instances, the rules are
available from very early on (Valian 1986, Golinkoff et al. 1987, Yang 2013): this is important
for theories such as syntactic bootstrapping but it deprives us the opportunity to observe the
transition from a finite list of items to a general class. Occasionally, however, we do capture the
moment when a rule becomes productive: the effect of generalization is quite dramatic and can
only be described as a moment of epiphany. I return once again to the acquisition of English
past tense.

As noted earlier, the acquisition of the “add -d” rule can be protracted process: Adam pro-
duced his first instance of over-regularization just before his third birthday. But the sudden
emergence of productivity triggers a wholesale change to the child’s grammar. It is widely ob-
served that children acquiring languages such as English have a strong tendency of using nonfi-
nite matrix verbs when the finite form is obligatory; see Wexler (1994), Legate and Yang (2007),
Phillips (2010) for reviews. The examples in (5) are naturally occurring examples from the CHILDES
database where the verb should have been marked for past tense. Figure 2 shows Adam’s longi-
tudinal development of past tense marking.

(5) The dollies we have last week.

I go under the tunnel yesterday.

He walk around and he said and he’s my frog.

Adam’s regular past tense marking (“Regular”) was initially very sporadic: that is, almost all
instances where the target form should be “He walked around” surfaced as “He walk around”
instead. These forms are almost certainly rote-learned and item-specific despite the appear-
ance of regular inflection. Then, and apparently abruptly, the rate of regular past tense marking
increased significantly, exactly around the point where he produced the first instance of over-
regularization (the first dip in “Overregularization”). When Adam discovered that the “add -d” is
productive, he started to use it across the board for verbs, with the irregulars as collateral dam-
age. The “add -d” rule, which defines a formal relation between pairs of words (i.e., X-Xed),
becomes the inductive basis about the meanings of such pairs: that the walked denotes the se-
mantics of walk in past time can be extended to pairs such as rick-ricked, the novel verb created
in Berko (1958)’s classic study and its past tense realization effortlessly created by young children.

In what follows, I propose that the induction of numbers follows exactly the same logic and
process of linguistic rule acquisition.
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Figure 2: Past tense marking for regular and irregular verbs (from Pinker 1995: p116).

5.2 Successor induction: From form to meaning

In a nutshell, I suggest that the numeral system establishes an ordered list of number con-
cepts: the predictability in the forms of successive numbers provides the inductive base for
the semantics of successive numbers, which enables child to generalize the semantic relation
between some successive numbers to all successive numbers, thereby acquiring the successor
function.

On this view, the acquisition of numbers (as concepts) is similar to the acquisition of words.6

To learn a word is to learn its form and meaning; thus, to acquire a number is to learn its phonol-
ogy and semantics. I use the Arabic numeral (e.g., 79) to denote a number concept and useϕ and
ψ to represent its phonology and semantics respectively. For instance, ϕ(79) = “seventy-nine”,
andψ(79) =ψ(78)+1, which is provided by the successor function.

One reason for supposing that number concepts are acquired like words comes from chilren’s
interpretation of numerals. Children appear to follow the Mutual Exclusivity constraint (Clark
1987, Markman and Wachtel 1988), a well-established principle for word learning,7 which has
the effect of the one-to-one correspondence principle in the study of numerical cognition (Gel-
man and Gallistel 1978). The Mutual Exclusivity constraint is operative in very young infants
(e.g., Halberda 2003): if concepts are like words, we expect children to know different numer-
als (e.g., “fifty-nine” and “seventy-eight”) should denote different quantities. This would be so

6Indeed, there are similarities in the brain activation patterns during the processing of words and exact numbers
(Dehaene et al. 1999).

7Mutual Exclusivity is understood as a very strong preference but not a categorical rule so as to allow (near) syn-
onyms such as pail and bucket. It is also possible for multiple numerals to refer to the same quantity, as in the case of
twelve and dozen, but such pairs are rare and do not represent the general case.
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even if children do not know the exact quantity of these numerals as long as they know these
are numerals, presumably from the syntactic cues (“there are N bears”), which is fundamentally
the same behavior when a child regards “dax” and “bem” as the label for different objects. Mu-
tual Exclusivity accounts for findings such as those in Lipton and Spelke (2006)’s study. Children
were tested on two tasks. In the mapping task, they were instructed to identify a card that has
N rectangles against a distractor card that only contains half or twice the rectangles. In some
of the trials, N is beyond their counting range, which is assessed by the method of Lipton and
Spelke (2005: see Fn 4). In the logic task, they were told that there are N objects in a set, again
with some values of N greater than their counting rage. These objects then undergo various
transformations, some are quantity perserving (e.g., stirring, taking half of the objects away then
putting them back) and others are quantity changing (e.g., removing one, removing half). Chil-
dren were then asked if there were still N objects. Consistent with previous findings, children
were at chance with the mapping task, showing that they did not know the exact quantity rep-
resented by N . But for the logic task, they were nearly categorical in recognizing that stirring
and putting half back did not change N but removing one and removing half of the objects did.
Importantly, since the values of N are beyond the children’s counting range, and they were only
at chance in distinguishing N from N /2 or 2N , they clearly do not know the precise semantics of
N . Yet, as one would expect from the Mutual Exclusivity constraint, they understand that N , or
more precisely, the phonological form of N , cannot refer to multiple quantities.

Like all inductive processes, the induction of numbers requires a base case that must be inde-
pendently established. I suggest that the base case is provided innately (Wynn 1992a). Children,
and possibly other animals, innately know the semantics of 1 and 2: ψ(1) = 1,ψ(2) =ψ(1)+1. It
is possible that children’s innate knowledge about exact numbers extends slightly higher than 2
(e.g., 3=2+1), but 1 and 2 alone are sufficient for the purpose of my argument. For these num-
bers, all the child needs to learn is their phonological form: ϕ(1)= “one”,ϕ(2) = “two”, orϕ(1)=
‘‘一”,ϕ(2) = ‘‘二”.

The inductive step is enabled by the numeral system, which is a set of morpho-syntactic rules
R such thatϕ(N+1) =R(ϕ(N )). That is, the form of the next number is always predictable on the
basis of the previous number. The Mutual Exclusivity constraint ensures that the semantics of N
and (N +1)must be different, i.e., they represent different quantities. The inductive step extends
the property that holds for some successive members on the ordered list to successive members
on the same list. Specifically, what is true of 1 and 2, ψ(2) =ψ(1) + 1 (that 2 is exactly 1 plus 1),
is generalized toψ(N +1) =ψ(N )+1. On this view, only a few concepts that represent numbers
need to be innate: minimally, 1 and 2. The numeral system (R) and the inductive process provide
a way of constructing infinitely many number concepts in both form and meaning: ϕ(N + 1) =
R(ϕ(N )), which is a linguistic expression, andψ(N +1) =ψ(N )+1, which is a discrete quantity.

Thus, the acquisition of numbers involves a qualitative conceptual change (Carey 2009, Sar-
necka and Lee 2009). Prior to the discovery of a productive numeral system, children’s num-
ber concepts are in effect item specific. That is, they may know, from explicit instructions (e.g.,
counting with objects), that 9 is exactly one more than 8: it gives the appearance of knowing the
successor function but is in fact rote-learned and does not generalize beyond direct experience.
Likewise, they may be able to produce, on their counting list, a numeral word such as seventeen,
which follows the target system of numeral formation but is in fact holistically stored.8 This stage

8 I leave open the possibility that children may be able to extract regularities within a bounded range. For instance,
an English-learning child may attempt to construct productive rules within the subdomain of teens and decades. A
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is similar to how children represent regularly inflected verbs prior to the emergence of “add -d”
(Figure 2): although they may have learned that talked refers the act of talking in the past, this
knowledge is limited to the particular verb talk. The generalization that all verbs express the
meaning of past by adding “-d” only becomes available when the rule “add -d” becomes pro-
ductive. For past tense, this happens when the child has learned a sufficiently large number of
regular verbs to overcome the irregulars. For numbers and their successor relation, I suggest that
this takes place when the counting list has gotten sufficiently long: for English, this is around 73.

The proposal developed here, which I believe is novel, shares many features with previous
theories of numerical development. The Tolerance Principle, which I have argued to be the key
mechanism for the acquisition of numerals, provides a formal mechanism for theories of count-
ing that have consistently emphasized and documented the effect of linguistic regularity (e.g.,
Fuson 1988, Miller et al. 1995, Nunes and Bryant 1996). Like Gelman and Gallistel (1978), Gel-
man (1993), Leslie et al. (2008), I regard numbers as discrete symbolic representations and the
acquisition of an ordered list is essential to the development of numbers. Unlike these authors, I
do not regard (all) number concepts to be innately available or independently of language, only
to be “triggered” (a la Fodor 1975) by experience, including the mapping them to words. As dis-
cussed in Section 6, I claim that numbers and the successor function are the product of language
and language acquisition, which also provide a way to recursively construct numbers from very
few innate concepts. In this sense, my proposal is similar to Carey (2009). Like Carey, I assume
that the acquisition of a counting list is the key to the development of numbers, which is charac-
terized by a developmental discontinuity when the successor function is acquired. I differ from
Carey on what enables such a change and how long the list needs to be. For Carey, this involves
an inductive process (“Quinian bootstrapping”) on semantic grounds which need relatively few
exemplars. Under the present proposal, the induction is facilitated by the formal system of nu-
merals, which typically requires dozens of numeral expressions for most languages. My position
on the relationship between language and number is probably closest to Spelke’s theory (2003;
cf. Bloom and Wynn 1997). Spelke also regards the productive use of language as the center of
numerical cognition. For her most recent account (2016), the role of language is realized in the
acquisition of noun phrases that make reference to objects and/or sets of objects, including the
use of conjunction, quantifiers, as well as numerical expressions. This aspect of linguistic knowl-
edge interacts with other domains of core language, such as the approximate number system, to
provide the child with the system of natural numbers. Since Spelke’s and my proposal make use
of different linguistic structures for the acquisition of natural numbers, future empirical work
may test and distinguish these positions.

6 Language, Culture, and Evolution

Before concluding, I must confess a slight sense of unease by the strongly Whorfian character
of my proposal. For English-learning children with a small numeral vocabulary, which presum-
ably contains mostly of the 17 rote-learned items, the successor function is impossible. By this
logic, I am forced to claim that monolingual speakers of a language without a productive numeral

recursive application of the Tolerance Principle suggests that they are unlikely to succeed. For the 10 numbers in the
teens (11-20), 5 are not predictable and must be rote-learned (11, 12, 13, 15, 20), which exceeds the threshold θ10 = 4.2.
The decade numerals have 4 rote-learned items (10, 20, 30, 50), so the child needs to reach at least 90 to discover the
productive rule of -ty.
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system cannot acquire the successor function and do not have the knowledge of exact numbers.
While this is consistent with previous findings on Piraha (Gordon 2004) and Munduruku (Pica
et al. 2004), I emphasize that I do not claim that these speakers lack the capacity of a natural
language system. In fact, there is suggestive evidence that they do have such a capacity. First,
Kenneth Hale found that for speakers of Warlpiri, which only has number words one, two, few,
and many, “the English counting system is almost always instantaneously mastered by Warlpiris
who enter into situations where the use of money is important (quite independently of formal
Western-style education” (cited in Gelman and Butterworth 2005). Second, Spelke (2016) reports
a study by Véronique Izard in which Munduruku speakers were introduced to an exact number
system using the combinations of Munduruku number words. Once the task was made clear
to the subjects, mononlingual Munduruku speakers showed some ability of representing exact
numeral values when supported with combinatorial rules; see Fn 8 for related discussion.

I suggest that there is another way of looking at numerical cognition and language, one which
does not commit one to a strong form of linguistic determinism, which has had a very mixed
track record to say the least. The Whorfian hypothesis maintains a causal relationship between
language and the non-linguistic aspects of perception and cognition; numerical capacity is typi-
cally considered to fall into the latter category. This somewhat awkward perspective is avoided if
numbers are actually linguistic. If so, cross-linguistic differences in numerical cognition are re-
ally just cross-linguistic differences in the numeral systems. Thus, the fact that some languages
have a productive numeral system while other do not says nothing about the generative capacity
of these languages nor the cognitive capacity of the speakers of these languages. Some examples
from more familiar languages can make this point succinctly.

(6) a. Maria’s neighbor’s friend’s house

b. Marias Haus

c. *Marias
Maria’s

Nachbars
neighbor’s

Freundins
friend’s

Haus
house

In English, noun phrase allows unlimited embedding of possessives as in (6a). In German and in
fact most Germanic languages (Roeper 2011), the embedding stops at level 1 (6b) but not further
(6c). Presumably, German children do not allow the counterpart to (6a) because they do not
encounter sufficient evidence that enables such an inductive generalization, whereas English
children do: an interesting acquisition problem in its own right. But no one would suggest that
German children lack the capacity for infinite embedding on the basis of the examples in (6).
The fact that not all languages have recursive expressions in every domain is not particularly
surprising (Everett 2005, Nevins et al. 2009, Legate 2011).

I do not wish to trivialize the centrality of numerical cognition and its profound impact on
human history and civilization. Clearly, language alone is not sufficient for numerical capacity
to emerge. Indeed, many components in the present theory of numerical induction appear to
be evolutionarily ancient and shared across species. These include the exact knowledge of very
small quantities (Gallistel 1990, Hauser et al. 1996, 2000, Sulkowski and Hauser 2001) and the
ability to establish an ordered number list (Brannon and Terrace 1998, Terrace et al. 2003, Mat-
suzawa 2009). Even the Mutual Exclusivity constraint, which ensures the one-to-one mapping
between numerals and the quantities that they denote, may not be specific to language either
and is possibly present in non-human species (Markman 1992, Kaminski et al. 2004). There-
fore, once language became available as a biological capacity, numerical capacity also became
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available even though it presumably took thousands of years of human social and cultural evo-
lution to be activated (Carey 2009). Despite having the evolutionary prerequisites for numbers,
non-human species never develop an infinite number system precisely due to the absence of a
linguistic system. The current proposal takes the shared origin of language and numbers a step
further: the mechanisms for number acquisition are exactly the same mechanisms for language
acquisition. Viewed in this light, the numerical difference between a Chinese and a Piraha speak-
ing child is no more remarkable than the syntactic difference between an English and German
speaking child.
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