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Distincte de la logique, distincte de la psychologie, 

 la syntaxe n’a à chercher sa propre loi qu’en elle même.  

Elle est autonome. 

Lucien Tesnière (1959) Éléments de Synaxe Structurale. Chapitre 20, §21. 

Abstract 

In this work we explore the consequences of questioning and replacing long-held assumptions about 

the way in which syntactic structure is built. Rather than minimizing connectivity between nodes in 

order to get ‘unambiguous paths’, we will pursue the consequences of the idea that syntactic structure 

grows by maximally connecting sub-graphs in local domains. The result will be a model of grammar 
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in which aspects that have proven problematic for mainstream generative grammar (MGG), like 

discontinuity and crossing dependencies, have a natural place.  

Keywords graph theory; discontinuity; multidominance; syntax 

1. Introduction 

Diagrams of structural descriptions for natural language strings may adopt many forms. A structural 

description for a string is an annotated analysis of said string, in which local hierarchical relations are 

indicated by various means: phrase structure grammars appeal to a combination of phrasal labels (NP, 

VP, and the like) and configurational information. These configurations are defined in mathematical 

objects which Postal (2010: 7) refers to as L-trees. An L-tree is a set of nodes and arcs (or ‘edges’, or 

‘branches’), and should not be confused with diagrams of L-trees (which are merely pictures 

composed of lines and symbols; typographical objects rather than mathematical objects); as 

McCawley (1998: 47-48) warns. L-trees are generated (read: recursively enumerated) in the sense of 

Post (1944: 285-286) by a system of ordered rules operating over a set of symbols (an alphabet), 

which is customarily referred to as a grammar. The role of the grammar, in this view, is to recursively 

enumerate the grammatical strings of a language (Chomsky & Miller, 1963: 283). The full set of non-

isomorphic L-trees generated by a grammar Gr (i.e., the full set of structural descriptions) defines the 

strong generative capacity of that Gr (Chomsky, 1965: 60). Frameworks that operate with rules of 

inference applying from axioms and yielding sets of strings are called ‘proof-theoretic’ or ‘generative-

enumerative’ (Postal, 2010; Pullum & Scholtz, 2001 respectively). A derivation in Gr is the ordered 

sequence of strings obtained by applying the rules of Gr stepwise: these rules rewrite the symbols on 

the left-hand side of the rule as the symbols on the right-hand side sequentially (a symbol at a time). 

For example: 

1) Alphabet: {S, A, B, P, Q, a, b, c} 

Rules: S → A, B 

A → a, P 

P → c 

B → Q 

Q → b  

Derivation: S 

AB 

aPB 

acB 

acQ 

acb 

Now, given a derivation like the one above (which contains exclusively context-free phrase structure 

rules PSR), a tree can be constructed by relating nodes in any line to nodes in the line immediately 

above, such that the relation rewrites as becomes is the mother of (see McCawley, 1968: 245 for 

discussion and more details). The L-tree corresponding to the derivation above can be diagrammed as 

follows:   
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2)  

 

 

 

 

A work as early as Bach (1964: 71) already formulates conditions on phrase markers (P-markers) in 

terms of their ‘topological’ [sic] properties: 

A proper P marker (when represented in tree form) is a topological structure of lines and nodes 

conforming to the general requirement that a unique path be traceable from the termination of 

every branch to the point of origin of the whole tree (or for that matter from any node to any 

other node) 

It is crucial to note that the requirement that there be unique, unambiguous paths (with the additional, 

but at this point covert, assumption that any node in such a path must be visited only once) is a staple 

of phrase structure in transformational generative grammar.  

Formal grammars of the kind in (1) have been the object of studies since the very early days of 

generative grammar, and a big part of the early generative literature was devoted to proving the 

limitations and inadequacy of phrase structure rules to generate structural descriptions for all and only 

grammatical strings in natural languages (Chomsky, 1956, 1959; Postal, 1964, among others). To 

address the shortcomings of pure context-free PSRs, Harris (1952) and Chomsky (1955) introduced a 

further type of rule in the design of grammars for natural languages: transformational rules. These do 

not map symbols onto symbols, but rather trees onto trees (in what follows we will omit the L- 

qualification when talking about trees, presupposing it):  

A transformational rule may be thought of as an ordered triplet [T, B, E] consisting of an IC 

[Immediate Constituent] derivation tree T, a particular analysis of bracketing B of the last line 

of T, and an elementary transformation E indicating how the elements of B are to be converted 

so as to yield a new, derived tree T’ (Lees 1976: 36) 

More specifically, they map a structural description into a structural change, specifying the positions 

of terms before and after the transformation. Consider that each of the elements (or ‘terms’) of B is 

assigned a positive natural number (an ‘integer’), which corresponds to its place in the sequence, such 

that B is an ordered set (X1, X2, X3, …, Xn). Then, 

If the structural index of a transformation has n terms, al, a2, an, it is a reordering 

transformation if its structural change has any ai as its kth term, or if ai is adjoined to its kth 

term, where i ≠ k (Ross, 1967: 427. Emphasis in the original) 

Transformations must always preserve the ‘topological’ properties of the P-marker: if branches cannot 

cross in a kernel sequence, they cannot be made to cross by means of a transformation; similarly, 

transformations cannot yield ‘ambiguous paths’, such that there is more than a unique path between 

any two nodes in the L-tree. In this sense, transformations are homomorphisms, as they preserve 

(topological) relations within selected structure. The generative power of transformations was greatly 

increased with the introduction and definition of variables, which can range over strings or arbitrary 

complexity (Ross, 1967). For example: 

S 

A B 

c 

a P Q 

b 
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3) Interrogative: 

S[tructural]D[escription]: {

(a) 𝑁𝑃, 𝐶, 𝑉𝑃
(b) 𝑁𝑃, 𝐶 + 𝑀, 𝑋

(c) 𝑁𝑃, 𝐶 + ℎ𝑎𝑣𝑒, 𝑋
(d) 𝑁𝑃, 𝐶 +  𝑏𝑒, 𝑋

} 

 

S[tructural]C[hange]: X1 – X2 – X3 → X2 – X1 – X3 

        

[where C = Pres/Past and M = modal auxiliary] 

Chomsky (1964: 227) 

Derivations in transformational generative grammar instantiate a more general Immediate Constituent 

view on natural language structure (Wells, 1947; see Schmerling, 1983b for discussion) and the even 

more general view of language as a recursively-enumerable set (Pullum & Scholtz, 2001; Pullum, 

2007). One of the roles of transformations is precisely to impose underlying continuity on superficial 

discontinuous dependencies (such as verb-direct object in a partial interrogative like what did John 

buy?, where the direct object what appears linearly away from its governor, the transitive verb buy), at 

the cost of multiplying the levels of representation in the grammar. The development of the theory of 

displacement-as-movement in the 70’s and 80’s gave rise to traces to mark the position from where a 

syntactic object had been displaced by a transformational rule (Fiengo, 1977), and later on, copies 

(Chomsky, 1995: 202)1. Now, we need to note that transformational rules (as conceptualized in the 

Standard Theory, Government and Binding, and Minimalist frameworks) because they map (kernel) 

trees to (derived) trees, alter the configurational relations between nodes in these trees. In this sense, 

transformations are not homomorphic mappings: they do not preserve relations within selected 

structure; rather, they create new relations, deleting old ones. Let us illustrate. Imagine we have a 

phrase marker in which objects X and Y are in a local relation, as represented in (4): 

4)  

 

 

                                                      

1 Strictly speaking, trace theory and copy theory are not always too different. The version of trace theory in 

Fiengo (1977: 44-45) decomposes movement as follows: 

…movement of NPi to position NPj (where A and B are the contents of these nodes) in (30) yields (31) as 

a derived constituent structure.  

(30) … NPj … NPi … 

               |           | 

              A         B  

 

(31) … NPi … NPi … 

               |           | 

              B          e  

On this view, NPi and its contents are copied at position NPj, deleting NPj and A, and the identity 

element e is inserted as the contents of (in this case the righthand) NPi, deleting B under identity. 

X Y 

Z 
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Now suppose that there is some relation R between X and Y: for instance, say X theta-marks Y. That 

relation needs to be maintained throughout the derivation, or reconstructed at the level of semantic 

interpretation if disrupted by a reordering or deletion rule. We have seen some problems with the 

latter option, so we would like to give some general prospects to explore the former. Let us now 

introduce a further element in the derivation, W, which requires a local relation with Y in order to 

satisfy some requirement (which one in particular is not relevant for the present argument). W is 

external to {X, Y}, following a cumulative approach to derivational dynamics (which Chomsky, 

1995: 190 encodes in the so-called ‘Extension Condition’): 

5)  

 

 

 

But, what happens if a local configuration between W and Y is required (because, for instance, Y 

satisfies a criterial feature on W), and such relation cannot hold if X is in between? A displacement-

as-movement approach can either (a) move Y to a higher position in the checking domain of W 

(extending U), outside the scope of X leaving a co-indexed trace behind (the so-called trace theory), 

or (b) copy Y and re-introduce Y in the derivation (the so-called Copy Theory of Movement, or 

Copy+Re-Merge theory; Chomsky, 2000; Uriagereka, 2002; Nunes, 2004 and much related work). 

Both options are diagrammed below: 

6)  

 

 

 

 

 

In the most recent generative framework (the Minimalist Program), in which the Copy Theory 

emerged, derivations operate from the bottom-up, via a strictly binary, stepwise operation called 

Merge, which takes X, Y of arbitrary complexity, and forms an ordered set {Z, {X, Y}}, where Z is 

the label of {X, Y} (more on this in Appendix A). Chomsky (1995: 225) presents the conception of 

the syntactic computation in the Minimalist Program as a procedure that maps an Array of lexical 

items to phonological and semantic representations. In this context, the operation Merge manipulates 

elements present in what is called the Numeration, a set of pairs (LI, i), where LI is a Lexical Item and 

i is an index (specifically, an integer) indicating how many times LI is used in the computation. 

Chomsky (1995, 2000) correctly claims that the inclusion of traces in a derivation violates the 

Inclusiveness Condition (which bans the inclusion of elements that are not present in the Numeration 

during the derivation), and therefore, that they are to be replaced by Copies. However, as we observed 

in Krivochen (2015b), the operation Copy also introduces new elements in a derivation, provided that 

the copies are not present in the initial Lexical array or Numeration; therefore, copies also violate the 

Inclusiveness Condition if this condition is to be understood strictly: information cannot be deleted or 

lost, but it should also be impossible to add information (in the form of syntactic terminals, for 

X Y 

Z W 

U 

X ti 

Z W 

U 

(a) 

Yi 

U 

X Y 

Z W 

U 

(b) 

Y 

U 
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instance) that is not present in the Numeration, including distributional specifications for copies2. If an 

element of arbitrary complexity is copied and then Merged, there is no reason to believe that element 

was present in the Numeration (unless we assume a massive amount of looking ahead that allows the 

Lexical Array/Numeration to see what is going to be the output of the derivation and thus have all 

needed elements, including copies, ready beforehand), it is therefore treated as a whole new element: 

after all, until we get to the interface levels, we have no possibility of establishing a referential 

connection with an object already introduced in the derivational space, except under special 

stipulations which depart from the simplest scenario and require justification. Conversely, if copies 

were indeed present in the NUM, the operation Copy would be superfluous, since there would be 

nothing to copy: all usable elements would be already predicted (somehow) in the NUM. It must be 

noted that copies are not identical elements: obviously they are distinct in their syntactic contexts (the 

structural relations they establish with their neighbours, what each copy is mother of, daughter of, 

sister of…), but also in their internal composition. LIs in Minimalism are assumed to be bundles of 

features (phonological, semantic, formal), which come in two variants: interpretable features can be 

read by the systems in charge of semantic and phonological interpretation, whereas uninterpretable 

features need to be discharged in the course of the derivation to prevent it from crashing (Chomsky, 

1995: 232, ff.). This discharge requires a local relation between at least two categories sharing a 

feature, and if such a local relation does not hold in a tree, a term may be moved in order to create 

such a configuration (see Chomsky, 2000: 100-101). In the light of the Copy theory of movement, 

syntactic objects move up a tree by checking / valuating and discharging features that form lexical 

items and cannot be interpreted by the semantic or the morphophonological systems (so-called 

‘uninterpretable’ or ‘formal’ features; see Chomsky, 1995: 276, ff.). This means that in any 

configuration, no two copies of a syntactic object are defined by the same feature specification if 

operations are indeed driven by the necessity to valuate/check features. Identity is not possible in a 

system that admits feature checking relations, since the feature matrix of an element varies as the 

derivation unfolds and copies are (Internally) merged in places in which they can valuate and erase 

uninterpretable features. The systems in charge of phonological and semantic interpretation (the 

‘interfaces’) cannot establish a dependency between two objects, say, α and β, as in (7): 

7) α = {i-F1, i-F2, u-F3, u-F4} 

β = {i-F1, i-F2, u-F3, u-F4} 

Where i = interpretable, u = uninterpretable. 

because there is nothing inherent to α and/or β that suggests they are linked. Any link should be 

encoded as a diacritic of sorts (e.g., a referential index that is carried throughout the derivation, which 

would of course violate the Inclusiveness Condition).  

                                                      

2 Stroik & Putnam (2013: 20) express a similar concern:  

To “copy X” is not merely a single act of making a facsimile. It is actually a complex three-part act: it 

involves (i) making a facsimile of X, (ii) leaving X in its original domain D1, and (iii) placing the 

facsimile in a new domain D2. So, to make a copy of a painting, one must reproduce the painting 

somewhere (on a canvas, on film, etc.), and to make a copy of a computer file, one must reproduce the 

file somewhere in the computer (at least in temporary memory).  

The nature and internal dynamics of such temporary memory is not addressed in MGG. 
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All in all, transformational grammar followed closely on the structuralist conception of clause 

structure in terms of immediate constituency, phrase structure, and dominance. But that conception 

was not unchallenged: as Perlmutter (1983: ix) points out, ‘there are significant generalizations, both 

cross-linguistic and language-internal that can be captured in terms of grammatical relations but not 

in terms of phrase structure configurations’. This work essentially agrees with Perlmutter’s insight, 

and explores an alternative to constituency-based frameworks (including all frameworks based on 

phrase-structure grammars), transformational and non-transformational. The shortcomings of 

assuming a unique, strictly binary and stepwise operation to generate structure via discrete recursive 

combinatorics have been analysed in past works (Krivochen, 2015a, b; 2016; 2017; Krivochen & 

Schmerling, 2016; Bravo et al., 2015, among others), and we will not repeat that case. In this work we 

will propose a radically different view of syntax, its role, and the kind of objects that we can use to 

assign strongly adequate structural descriptions to natural language strings while minimizing the 

primitives of the theory. We begin by considering the following quotation from McCawley (1982): 

I will assume that the deepest relevant syntactic structures are ordered continuous trees and 

will investigate the possibility of discontinuity arising in the course of derivations through 

movement transformations that alter left-to-right ordering without altering constituency 

(McCawley, 1982: 94) 

The possibility of having linear order divorced from constituency is essential, and we can go even 

further if we give up the requirement of structures being trees while keeping order as a basic 

admissiblity condition for structural descriptions. In this sense, McCawley’s quotation is an excellent 

transition between traditional PSGs and the strongly representational, derivation-less approach that 

we will present.  

Let us draw a direct comparison with PSG-based MGG to start making things explicit. In the view 

that we explore in this paper, the whole point of ‘syntax’ is not to not ‘form set’ (as Chomsky 1995: 

243 suggests; see also Collins, 2017 and much related work; in this view the ‘syntax’ is a discrete 

combinatoric system) or recursively enumerate expressions; rather, the ‘syntax’ establishes 

connections between nodes and make the most out of the smallest amount of nodes by maximizing 

connectivity rather than introducing new nodes. Similarly, the whole point of ‘doing grammar’ is to 

fully specify these connections and formulate necessary conditions on the admissibility of structural 

descriptions. This is what we are trying to provide a map of: the full set of connections between 

semantically relevant syntactic objects in the structural description of a natural language string. In this 

sense, the theory we will sketch here applies model theory rather than proof theory: 

 Model theory is concerned with finding interpretations for well-formed formulae (WFF 

henceforth) which make such formulae true: if an interpretation I makes a WFF S true, we say 

that I is a model of S (or, alternatively, that I satisfies S). Model theory is concerned with 

expressions, not with sets of expressions: an expression, but not a set of expressions, can be a 

model. Grammars, in this view, consist of finite sets of admissibility conditions (Pullum, 

2007: 1).  

 Proof theory is concerned with the enumeration of WFF by means of recursive operations 

implemented through a Turing machine. More often than not, these operations are 

combinatoric, and inspired in the syntactic rather than the semantic side of logic: a grammar 

is a set of rules that recursively enumerates the set of sentences which constitutes a language 

L. Proof-theoretic models of syntax adopt a procedural view, which translates in the central 

role of derivations.   
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Our view incorporates elements from both meta-theories: we formulate rules as statements about 

expressions, rather than production functions (thus, aligning with model-theoretic frameworks). 

However, because our focus is set on descriptive adequacy, we will make use of terminology and 

concepts from proof-theoretic theories, like the idea of ‘syntax’ being computational (Standard 

Theory, Categorial Grammar, and LFG), as well as insights from model-theoretic syntactic theories 

(Arc-Pair Grammar, Relational Grammar, and Dependency Grammar), like the idea of ‘grammar’ 

being a set of admissibility conditions over graphs. The fact that a(n admittedly strongly 

representational) theory that was devised in the generative-transformational tradition, namely 

Government and Binding (Chomsky, 1981 and much related work) could indeed be ‘translated’ into 

model theory (Rogers, 1998) reveals that we can indeed take advantage of the best of each. The theory 

presented here clearly contrasts with the modern Chomskyan perspective of linguistic structure built 

step by step by means of bottom-up discrete recursive combinatorics over strictly binary sets. A 

consequence of adopting a strong proof-theoretic stance is that, because the grammar is a set of 

production rules that recursively enumerate structural descriptions, there arises the question of where 

in the Chomsky Hierarchy the grammar is located: are natural languages finite-state? Context-free? 

Context-sensitive? Turing-complete? We have argued in past works that, empirically, the question 

makes very little sense, for descriptively adequate structural descriptions for natural language strings, 

which represent semantic dependencies between elements in strings, need not be confined to a single 

level of the Hierarchy. At times, restricting the generative engine (where, again, ‘generative’ is 

understood in Post’s sense) to a specific level in the Chomsky Hierarchy assigns too much structure to 

substrings (as is the case with CFGs and simple iterative patterns, see Lasnik, 2011; Krivochen, 

2015a, 2016c); at times, that restriction falls short (as is the case with CFGs and crossing 

dependencies, see Joshi, 1985 and much related work). That empirical inadequacy of proof-theoretic 

grammatical systems, which are based on the theory of computable functions developed, among many 

others, by Alan Turing (1936) can be either avoided or circumvented. It can be avoided by radically 

changing the perspective and adopting a model-theoretic approach. It can be circumvented by 

allowing the grammar, conceived of proof-theoretically, to oscillate between different levels in the 

Chomsky Hierarchy when assigning structural descriptions to natural language strings. This latter 

option, which entails rejecting the function-based nature of syntactic computation that is at the heart 

of generative grammar, has been explored in past works (particularly Krivochen, 2017). In this paper 

we explore aspects of a graph-theoretically informed grammatical theory that aligns with the former: 

the conditions and definitions that we will propose are not transition functions that take a SD input 

and generate a SC output. This forces us to reinterpret the role of ‘transformations’, which we will 

keep as merely descriptive devices, pretty much in the same way Postal (2010) uses ‘passivization’, 

‘raising’ or such terms. The names of constructions will be taken from the aetas aurea of the 

generative tradition, roughly the period identified with the Standard Theory and its expansions. What 

matters is that rules and constraints are not formulated in derivational terms: there is thus no notion of 

rule ordering or indeed of time (either real or proof-theoretic). This does not mean that rules and 

constraints do not interact; they do, but in a different way: 

Taking any rule R as an implication of the form ‘A materially implies B’, R applies to any 

structure S if and only if R’s antecedent A is satisfied by S. That determines that S is well-

formed only if it satisfies B as well (Postal, 2010: 7) 
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In the present view, the grammar is a finite set of admissibility conditions over graphs, which are 

structural descriptions of natural language sentences. A graph3 is a set G = (V, E), where V is a set of 

vertices and E is a set of edges. v ∈ V is a vertex, and e ∈ E is an edge. An edge e joining vertices a 

and b is notated e = <a, b>, and a and b are said to be adjacent vertices. The neighbour set of v is the 

set of adjacent vertices to v, usually notated N(v), and the degree of v is the number of edges 

connected to it. Here we will indifferently refer to vertices as ‘vertices’ or ‘nodes’. Locally, our 

graphs are connected: within local domains (a notion that will be defined shortly), there is a walk 

from any point to any other point (we will see that these walks, in our model, need to be trails, 

technically). 

Let’s give some more definitions, which will be essential when considering relations between sub-

graphs in structural descriptions. A graph H is a subgraph of G iff V(H) ⊂ V(G) and E(H) ⊂ E(G). 

We will also need a definition of irreducible graph: 

A connected graph on three or more vertices is irreducible if it has no leaves, and if each vertex 

has a unique neighbor [sic] set. A connected graph on one or two vertices is also said to be 

irreducible, and a disconnected graph is irreducible if each of its connected components is 

irreducible (Koyama et al., 2007: 35)  

This does not imply, though, that irreducible graphs are complete (or strongly connected): a graph G 

is complete iff every vertex is adjacent to every other vertex (that is, if there is an edge between any 

and every pair of vertices; see also Gould, 1998: 10, who uses the term strongly connected). 

Irreducible graphs can, however, be cyclic without being complete. It is in this respect that we find a 

first major difference between tree-based syntax and the kind of formalism we advance here: we do 

not require for graphs to be acyclic (cf. Huck, 1984: 64), but acyclicity may emerge depending on the 

specific connectivity patterns of a specific piece of data.  

Given this scenario, we have two possibilities when formalizing the theory of grammar in the form of 

a set of well-formed graphs:  

8)  

a) Tend towards maximizing connectivity (at the cost of giving up ‘unambiguous paths’ in c-

command relations) 

b) Tend towards maximizing unambiguous paths (at the cost of introducing extra nodes) 

                                                      

3 Accessible introductions to Graph Theory, in which some of the concepts we use here are defined in more 

detail, are van Steen (2010), Wilson (1996), and Gould (1988).  
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(8 b) is the option chosen by most works on generative grammar since GB4, as well as LFG, HPSG, 

and (locally), APG. Since the base component of a generative grammar5 is a context-free grammar of 

the type Σ → F (rewrite a possibly unary sequence of non-terminal or ‘intermediate’ symbols as a -

possibly null- sequence of terminal and/or non-terminal symbols; see e.g., McCawley, 1968), further 

restricted by axioms imposing binarity as a condition over the format of rules (Kayne, 1984; 

Chomsky, 1986 et seq.) such that F is always a string of two symbols, the following conditions ensue: 

a) Every node has only one mother 

b) Every branching node has at most two daughters 

That means that any terminal (i.e., nonbranching) node t has a neighbour set N(t) = 1, and any 

nonterminal (i.e., branching) node n has a neighbour set N(n) = 3 (two daughters and a mother), apart 

from the root node S, whose neighbour set is N(S) = 2 (two daughters, but no mother). Given these a 

priori conditions (we call them a priori since they would be given by Universal Grammar, see Kayne, 

1994; Chomsky, 1995), phrase markers grow introducing extra nodes in the form of nonterminals or 

empty categories (phonologically null terminals). The graphs generated by a generative context-free 

grammar are connected, rooted, and labelled binary branching trees. This view of structure building, 

while common to transformational and non-transformational models alike is perhaps best exemplified 

by Kayne (1984), in which explicit conditions pertaining to unambiguous paths in c-command 

relations between terminals and nonterminals are introduced into the grammar. Kayne’s relevant 

definitions are the following: 

Let a path P (in a phrase structure tree T) be a sequence of nodes (A0…Ai, Ai+1, …An) such that: 

a. ∀ i, j 0≤i,j≤n Ai = Aj → i = j 

b. ∀i 0≤i<n Ai immediately dominates Ai+1 or Ai+1 immediately dominates Ai (Kayne, 

1984: 131-132) 

Condition (a) amounts to saying that a path is a sequence of distinct nodes; there are no loops and a 

path does not double back on itself (which is consistent with the graph theoretic notion of path, which 

requires that no vertex be visited more than once, as well as with that of trail, which requires that no 

edge be walked on more than once). Condition (b) means that a path is a sequence of adjacent nodes. 

Let us now proceed to the definition of ‘unambiguous path’ 

An unambiguous path in T is a path P = (A0, …Ai, Ai+1, …An) such that: 

                                                      

4 Although we do have to note that Chomsky & Miller (1963) and Katz & Postal (1964) assume that 

Generalized Transformations apply to a pair of strings: 

The basic recursive devices in the grammar are the generalized transformations that produce a string 

from a pair of underlying strings (Chomsky and Miller, 1963: 304. Our highlighting) 

 

The recursive power [of a generative grammar] resides in Generalized Transformations, i.e., those which 

operate on a set of P-markers [phrase markers] (probably always two) to produce a single new derived 

P-marker (…) (Katz & Postal, 1964: 12. Our highlighting) 

The roots of binarity, which is at the heart of unambiguous c-command paths and more recently also labelling, 

would then be much older than X-bar theory.  

5 Or, more specifically, the constituent structure subcomponent of the base, since the Lexicon (i.e., the alphabet 

of allowed terminal and non-terminal symbols) was also part of the base in the Aspects model and later 

incarnations of the generative-transformational theory.  
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∀ i 0≤i<n 

a. If Ai immediately dominates Ai+1, then Ai immediately dominates no node in T other 

than Ai+1, with the permissible exception of Ai-1 

b. If Ai is immediately dominated by Ai+1, then Ai is immediately dominated by no node 

in T other than Ai, with the permissible exception of Ai-1 (Kayne, 1984: 132) 

Kayne’s conditions forbid upward branching (the so-called ‘Single Mother Condition’ SMC), non-

binary branching, and –when labels are introduced-, discontinuity. In this context, the ‘permissible 

exception of Ai-1’ in (b) is only added ‘for symmetry’ [sic], because it never comes into play (as the 

SMC is respected throughout).  

In Kayne’s vision, representative of the GB/MP tradition, terminals need to be nodes with degree 1, 

and nonterminals are nodes with degree 3, except for the root which has degree 2 (as seen above). 

Moreover, in the more recent (1994) version of the theory, the most deeply embedded node in a tree T 

must be an empty category (either a trace or a base-generated e) so as to comply with the so-called 

Linear Correspondence Axiom: d(A) is a linear ordering of T. [for A a set of non-terminals, T a set of 

terminals, d a terminal-to-nonterminal relation] (Kayne, 1994: 6). Here, d is a syntactic relation 

known as asymmetric c-command, applying to the set of nonterminals. In simple terms, the LCA 

states, on the weak interpretation, that ‘when x [asymmetrically] c-commands y, x precedes y’ 

(Uriagereka, 2012: 56), and on the strong interpretations, that x precedes y iff x [asymmetrically] c-

commands y, c-command being both necessary and sufficient. The resulting model of phrase structure 

is one in which each and every object is of one of these types6: 

a. A terminal node 

b. A nonterminal node dominating two terminals (one of which must then be a trace in the sense 

of Fiengo, 19777) 

c. A nonterminal node dominating a terminal and a nonterminal 

We have provided empirical arguments against that rigid conception of phrase structure, based on 

mixed computational dependencies being established within local derivational units in natural 

languages in previous works (Krivochen, 2015a, 2016; Bravo et al., 2015; Krivochen & Schmerling, 

2016, among other works). ‘Mixed computation’ means that  

phrase markers, as structural descriptions of strings, are not computationally uniform but 

mixed. By saying that a system is ‘computationally mixed’, we mean that the structural 

descriptions assigned to substrings in L(G), for L an enumerable set of strings and G a 

grammar […], need not all be formally identical. […] a computationally mixed system assigns 

                                                      

6 As David Medeiros (p.c.) pointed out to us, there is nothing in the LCA that prevents a fourth scenario (d) A 

nonterminal node dominating a single terminal. However, if the LCA applies to structures generated via Merge 

(Chomsky, 1995), unary branching is banned on independent grounds: Merge is by definition binary (Chomsky, 

1995: 226; 2000: 81, and much subsequent work, even going back to Chomsky, 1955; see also Collins & 

Stabler, 2016, Definition 13).  

7 In a theory that models displacement via literal movement of constituents, the notion of ‘trace’ is defined as 

follows: 

Let us call the position from which movement occurs […] the trace of the node that moves, and let us 

define proper binding as a relation that holds between a node and its trace only if the node precedes its 

trace (Fiengo, 1977: 45) 
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a substring the simplest structural description that captures and represents the formal and 

semantic relations between syntactic objects. (Krivochen & Schmerling, 2016: 36) 

This proposal comes as an answer to a computational conundrum: structural descriptions must be 

minimally appropriate, that is, they should assign no more structure than strictly needed for substrings 

in L. But phrase structure grammars are in a very specific sense procrustean, only allowing for a 

single kind of computational dependency in structural descriptions for natural language strings: those 

allowable in Context-Free languages, nothing more and –crucially- nothing less. Because of this, it 

has long been recognized that they can be too powerful: 

a constituent-structure grammar necessarily imposes too rich an analysis on sentences 

because of features inherent in the way P-markers are defined for such sentences. (Chomsky, 

1963: 298. Highlighting ours) 

But they can also fall short when assigning structural descriptions to natural language strings (Joshi, 

1985). So, what can be done about this? A possibility that has just begun to be explored is that 

linguistic computation is an oscillatory process, which moves up and down the Chomsky Hierarchy in 

local domains. Some antecedents of this view can be seen in works by Howard Lasnik and Juan 

Uriagereka (see also Saddy, 2017; Saddy & Krivochen, 2017): 

[…] what we need should be, as it were, ‘dynamic flatness’. But this is the sort of concept that 

sounds incomprehensible in a classical computational view, while making sense to those for 

whom syntactic computations are psychologically real. (Lasnik & Uriagereka, 2012: 21) 

In a manner of speaking, what we really want to do is move down the [Chomsky] hierarchy. 

Finite-state Markov processes give flat objects, as they impose no structure. But that is not 

quite the answer either. While it would work fine for coordination of terminal symbols, phrases 

can also be coordinated, and, again, with no upper bound. (Lasnik, 2011: 361) 

In this work we pursue a line of thought that is an even more radical departure from Immediate 

Constituency tenets than the works referred to above. We eliminate empty nodes (including traces), 

restrictions on the degree of vertices, and the requirement of graphs minimizing connectivity (as per 

the SMC and strict binarity requirements), thus proposing a theory aligned with tendency (1 a).  

We have formulated (8 a) and (8 b) as ‘tendencies’, because derivations as global processes can 

dynamically oscillate between those extremes; this is another way of capturing the computationally 

mixed properties of natural language structures. This view of grammar as a dynamical oscillatory 

process yields graphs that can be evaluated as maximizing or minimizing connectivity only within 

local domains. That means that a model that embraces n-ary branching, discontinuity and multiple 

motherhood does not necessarily need to reject binarity and monotonicity altogether: these are 

properties of phrase markers at a local level, whereas computational mixture is a global property of 

structural descriptions. More on this below.  

Formalisms that position themselves at the (8 b) end of the spectrum, which include transformational 

generative grammar as well as LFG, HPSG and CG, assume -explicitly or implicitly- what Sampson 

(1975) calls the ‘Single Mother Condition’: 

D is a set of NODES, α is a function from D into a vocabulary of symbols (if α (d) = s we say 

that s is the LABEL of d), and δ is a partial function from D into strings over D (…) 
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(iii) for any d, d’ in the domain of δ, if δ(d) = e1, e2, …, en, δ(d’) = e’1,e’2, … e’n, and ei = e’i, 

for some 1 ≤ i ≤ n, 1 ≤ i’ ≤ n’, then d = d’ and i = i’. That is, nodes may not branch upwards. 

We shall call property (iii) the SINGLE MOTHER CONDITION (SMC). 

For LFG, Bresnan et al. (2016: 46) claim that c-structures (which are generated by means of a CFG) 

also obey the SMC. As for CGs, Partee (1974), among others, argues that traditional CGs have the 

strong generative power of CFGs: it is possible to use a ‘pure’ [sic] CG (i.e., Ajdukiewicz / Bar-Hillel 

style) as a model for the base component of a transformational grammar (Partee, 1974: 7). The 

general CF format of CG rules is translated into Chomsky Normal Form as follows: 

9) c → (c/c1…cn) + c1 + … + cn (Lewis, 1972) 

Which is a Context-Free rule (things may not be all that simple, though: not all variants of CG have 

the same generative power. See Van Benthem, 1988 and Buszkowski, 1988 for detailed discussion 

about the generative power of different variants of CG, including Ajdukiewicz-style and Lambek 

calculus). In CGs the SMC is respected, although diagrams have a much less significant role (if any at 

all) than in PSGs.  

A similar condition to the SMC was initially assumed by McCawley (1968) in his formalization of the 

base component of a transformational generative grammar. Let x and y be nodes, ρ be a dominance 

relation between nodes, and λ be a precedence relation. Then: 

if xρy and x’ρy, then x = x’ 

for any two nodes x and y, if x ≠ y, then either xρ*y or yρ*x or xλy or yλx (see also Wall, 1972: 

149 for an equivalent condition) 

Both Sampson (1975) and McCawley (1982) argue against SMC-based theories (see also Jacobson, 

1977), yet they do not go as far as proposing a theory of the (8 a) type. The expansion of phrase 

structure grammars in Peters and Ritchie (1981), called ‘Phrase Linking Grammars’ also allows for 

multidominance locally, and is thus closer to (8 a) than MGG and LFG. Arc-Pair Grammar (APG 

henceforth; Johnson & Postal, 1980) and Metagraph Grammar (Postal, 2010: 20) also reject the SMC. 

We share some of their arguments and conclusions, but not all; importantly, our proposal is not 

equivalent to theirs.   

Since LSLT (Chomsky, 1955), a generative grammar –in principle, any fully explicit grammar- has 

incorporated a transformational component which mediates between kernel sequences (which are 

derived only by means of phrase structure rules) and morpho-phonological interpretation. Here, as 

will become obvious below, we will take transformations to have an exclusively descriptive value. In 

this sense, we would like to propose that transformations, i.e., mappings from structural descriptions 

to structural changes using traditional terms, can be divided in two types: 

10) a. Transformations that introduce new vertices and new edges  

b. Transformations that introduce new edges between already existing vertices 

And that this division corresponds to McCawley’s, in the sense that transformations of the type (10 a) 

also change constituency (‘relation-changing transformations’ for McCawley, RCT henceforth); 

whereas transformations of type (10 b) do not (‘relation-preserving transformations’, RPT henceforth, 

an obviously derivative term). In this work, we are not concerned with the linearization of graphs, our 

goal is to provide exhaustive descriptions of connectivity patterns in representations (thus, strictly 

speaking, it would be a bit misleading to use McCawley’s term order-changing transformations for 

transformations of the type (10 b)). By ‘constituency’ –above- we simply mean ‘grammatical 
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relations’ (but see below for some discussion): if relations are indeed defined in a pre-

transformational structure, as in Chomsky (1965: 71), ‘be in construction with’ is equivalent to ‘be F 

of’, where F is a grammatical function or relation (‘subject of’, ‘object of’, etc.). But there is no need 

to resort to base structures (which need to be reconstructed when linearity is disrupted) if grammatical 

relations are in fact primitives: MGG has the X-bar format (or some version of that, more or less 

representationally oriented) as a primitive given by UG, and grammatical relations are defined over 

structural templates generated by X-bar. On the contrary, Relational Grammar (and its descendants) 

takes grammatical relations as primitives, and eliminates derivations (and the need for triggers for 

derivational operations with them; that means no features, no Agree, no Merge, etc.). There is still the 

question of how to link roles with lexical items, and that is a question that we will return to below. 

2. Definitions and generalities 

A grammar, we said, is a finite set of conditions over what is an expression of the language: well-

formed expressions are models of the language. Thus, the conditions that the structure of expressions 

must satisfy need to be made explicit. In this section we present some (semi-formal) definitions and 

conditions over allowable structures, to be complemented by conditions over possible dependencies 

within graphs, to be explored in detail in the following sections: 

1. Let X, Y, …, n be variables over sub-graphs, where each sub-graph is understood as a 

connected set of vertices v by means of edges e. We distinguish vertices by using numerical 

subscripts: X = (v1, v2, …, vn). The subscripts vx, vy, vz, … will be used to denote variables 

over vertices. We will use ‘vertices’ and ‘nodes’ indistinctly. 

2. Edges specify the directionality of the connection: e <v1, v2>. Thus, e <v1, v2> ≠ e <v2, v1>. 

If a graph contains a function i from E → V × V, i is called an incidence function, and the 

graph is called a digraph (short for directed graph).  

In this sense, our edges are not unlike arcs in Arc Pair Grammar (Johnson & Postal, 1980): 

An arc represents the existence of a relation at a nonnull [sic] sequence of levels (Johnson & 

Postal, 1980: 37) 

We assume throughout that there is only one level at which relations are established, because 

essentially what we are doing is creating a full map of the state of the derivational engine generating 

natural language structures conceived as a dynamical system at a given point in time (more on this 

below). Our graphs might be thought of as exhaustive descriptions of ‘snapshots’ of a dynamical 

system, once it has reached a stable state. 

The reader will note that whereas all our graphs are connected and directed (thus, strictly 

speaking, we should call them digraphs, but we will stick to just ‘graphs’), not all of them are strongly 

connected (only irreducible graphs are), where a graph G is strongly connected iff there exists a 

directed path between any pair of distinct vertices in G (Gould, 1988: 10; Van Steen, 2010: 61). 

3. Let ρ be a binary relation ‘immediately dominates’. Let ρ* be a binary relation ‘transitively 

dominates’, where v1 dominates v2 iff there is some e <v1, v2> (i.e., there is a directed edge 

from v1 to v2) 

4. The ρ-domain of a vertex v is the set {v1, v2, …, vn} that v dominates either directly or 

transitively. The ρ-set of a graph is the full set of dominance relations between vertices in that 

graph.  

5. Let τ be an n-ary relation ‘sister of’, as an abbreviation for: 

11) τ(v1, v2, …vn) iff ∃(vx) ∈ X | vxρ(v1, v2, …vn) 
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Here we do not require that sisters do not dominate each other, which seems counter-intuitive from 

the perspective of tree-based syntax. Thus, in the following treelet (where directed edges have been 

marked with arrows) 

12)  

 

 

 

We have that  

ρ = {(A, B), (A, C), (A, D), (B, C)} 

And, since Aρ(B, C, D) holds, we say that B, C, and D are sisters because they share the mother A, 

regardless of the fact that (B, C) ∈ ρ. In a slightly different case: 

13)  

 

 

B, C, and D are sisters by virtue of sharing the mother A, and C and F are sisters by virtue of sharing 

the mother E. We might notate this using a subscript on τ, such that τA(B, C, D) is the set of nodes that 

are sisters because they share the mother node A.  

6. X ⊂ Y iff ∃(v) ∈ Y | yρ*X 

7. ∃(v0) ∈ X | ∀(vx) ∈ X v0ρ*vx (i.e., sub-graphs are rooted; adapted from McCawley, 1982: 93) 

This definition does not imply that there is always a unique root in a graph, as a matter of fact, the 

second sample graph above has two roots (A and E). This diagram is an example of what Morin & 

O’Miley (1969: 182) call a vine: a directed, acyclic, labelled, rooted graph.8 However, in the 

definition of linguistic cycles the restriction of the existential quantifier in definition 7 from at least 

one to one and only one is relevant: a cycle is, in purely configurational terms, a single-rooted graph. 

Multi-rooted graphs, thus, are obtained by relating cycles: concretely, by conjoining transformations 

(in the sense of Fillmore, 1963) and identification of common vertices. In this work, we will use cycle 

in the sense that it has in generative linguistics since the 1960s; in graph theory, a cycle is a closed 

path (Gould, 1988: 10), but we will not use this definition. The condition that a single-rooted graph 

be a cycle becomes important in a strongly cyclic model in which sub-graphs connect but do define 

opaque domains, if connections occur at the root. We will come back to this below.  

8. A relation ℝ between sub-graphs X, Y, …, n is total and transitive, but not antisymmetric 

(see also Ojeda, 1987: 258).  

9. X is ‘in construction with’ Y if either (a) ∃(Z) | ZρX ∧ ZρY or (b) XτY. 

                                                      

8 We need to note that Morin and O’Miley’s work was primarily focused on the inadequacies of single-rooted 

trees headed by a single performative verb in an early Generative Semantics framework (that is, they argue 

against representations of the kind assumed by Ross, 1970); their concern was more semantic than syntactic (in 

the contemporary use of the terms). The consequences that their formal framework have for syntax are as far-

reaching as they are usually ignored (a point also made in Postal, 2010: 394). 

B D 

A 

C 

B D 

A 

C 

E 

F 
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10. Let π be an ordering of X, such that π(X) is the (possibly unary) set of trails within X starting 

at the root and following the direction of edges.  

The notion of trail is weaker than that of path: a path is a walk in which no vertices are repeated, 

whereas a trail is a walk in which no edges are repeated (Gould, 1988: 9; Wilson, 1996: 26; Van 

Steen, 2010: 37). Because we will make use of repeated visits to certain vertices, as a crucial aspect of 

our model, we settle here for the weaker notion of trail.  

11. A vertex v1 is ordered with respect to v2 iff either ρ(v1, v2) or ρ(v2, v1) or ρ*(v1, v2) or ρ*(v2, 

v1). If v1 is ordered with respect to v2, either v1 is in the ρ-domain of v2 or v2 is in the ρ-domain 

of v1. 

Note that the notions we have introduced here use only very basic set-theoretic notation. For the 

phenomena analyzed here, we will see that it is enough. Unlike some previous graph-theoretic or 

geometrical analyses of syntax (e.g., Kracht, 2001; Beim Graben & Gerth, 2012) we do not attempt to 

encode GB/MP-type derivations in graphs, because –as we have seen- we depart from most basic 

assumptions in that framework (monotonicity, the SMC, movement). We will thus not define notions 

that are crucial for GB/MP approaches to syntax (e.g., c-command, or chain), but which play no role 

in a representational model (on the nature of the representations assumed here, see below). The 

framework presented here is orthogonal to MGG in more ways than one. Generative Grammar is an 

Item-and-Arrangement (IA) framework, in which endocentric constituent structure is monotonically 

built by means of discrete recursive combinatorics. Moreover, MP-style formalisms follow two 

additional conditions: the No-Tampering Condition NTC (operations over X and Y, for X and Y 

syntactic objects, leave X and Y unchanged; Chomsky, 2007: 8) and the Extension Condition EC 

(prevent counter-cyclic operations; Chomsky, 1995: 190). IA frameworks must be distinguished from 

Item and Process (IP) grammars, in which 

A language L is a system consisting of the following:  

1) an algebra consisting in a non-empty set A of expressions and a (possibly empty) indexed set 

of operations defined over A; A is the smallest set containing as members all the basic 

expressions of L and closed under the operations, 

2) a Lexicon, or set of basic expressions indexed by a set of category indices, and  

3) a set of syntactic rules that recursively assign any derived expressions of L to indexed 

syntactic categories. An n-place rule is a triple whose first member is the index of an n-place 

operation, whose second member is an n-place sequence of category indices (those of the 

inputs to the rule), and whose third member is the index of the output category of the rule. (2) 

and (3) constitute a recursive definition of the subset of A that is syntactically well formed 

(Schmerling, 1983a: 395) 

The proposal we put forth here is somewhat anomalous in the syntactic landscape. In this work we 

remain agnostic with respect to the IA vs. IP debate (because graphs can be used to represent 

diagrams corresponding to structural descriptions in either kind of theory), make no use of 

endocentricity (against a generalization of which we have argued in past works, particularly 

Krivochen 2015a) or structure building by recursive discrete combinatorics. Furthermore, because we 

allow for multidominance, discontinuity, and indirect loops, both the NTC and the EC are violated; 

the theory advanced here contrasts heavily with GB/MP-inspired MGG. We will see that there are 

some simplifications on representations assigned to natural language strings that follow directly from 

these violations. 
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At this point, we need to stress that discontinuity and multidominance have to be carefully 

distinguished. Discontinuity can be captured without multidominance (an example would be 

transformational accounts of Right Node Raising, as in Postal, 1997), and in the same way, 

multidominance structures do not necessarily allow for discontinuity: it is possible to have 

multidominance theories of Immediate Constituency grammars (e.g., TAGs with links, as in Joshi, 

1985; see also the multidominance expansion of GB grammars in Kracht, 2008). In this work, we 

allow for both; this separates the proposal made here from MGG-inspired graph-theoretic works9, and 

puts us closer to APG and Metagraph Grammar (Johnson & Postal, 1980; Postal, 2010). Furthermore, 

multidominance does not necessarily generate cyclic graphs, as can be seen in the sample 

multidominated trees after (3): a multidominated node can have two mothers in different treelets (each 

mother can be the root of said treelet, as in our example), in which case the graph is directed and 

acyclic. A directed cyclic graph can be rooted if we have a designated node which is not dominated 

by any other node, in the sense that there is no edge towards that designated node (as we defined root 

above). If there was no encoding of directionality in edges, we would have to give up either roots or 

cyclic graphs. Thus, discontinuity, multidominance, and cyclicity (in the graph-theoretic sense) must 

be carefully kept apart.  

Nodes in our graphs, relevantly, do not correspond to terminal or nonterminal nodes (or lexical 

items): rather, they correspond to the translation of terms into intensional logic, following 

Montagovian practice (Montague, 1973: 25-26, ff.; also Schmerling, 1988). Thus, definitions 1 and 2 

above should incorporate the following corollary: 

Corollary: 

Variables over sub-graphs and nodes belonging to sub-graphs stand for their translation into 

intensional logic. Thus,  

dx ∈ X is semantically interpreted as λPP{^dx} ∈ λPP{^X} or, abridged, dx’ ∈ X’ 

λPP{^dx} is in turn an abbreviation (omitting parentheses) of λP[[˅P](^x)]. The lambda tells us that 

this denotes a function from things of type P, which is the type of properties (which are the intensions 

of (the propositional functions of) sets) to propositions, which in turn consist of a set variable (˅P 

denotes the extension of P -of the type of the characteristic function of a set- applied to the intension 

of x. This means that we have a function that is looking for a set (something of type ˅P) as its 

argument.  

Now, because we are not concerned with issues of ‘reference’ in any sense that is external to the 

algebra itself, there is no need to differentiate between de re and de dicto readings when it comes to 

the translations of the nodes: as far as the present model is concerned, there is only one graph (or, 

equivalently, two isomorphic graphs10) corresponding to (14):  

                                                      

9 The present paper also differs from the more mathematically oriented works in dealing more with concrete 

linguistic examples rather than with proving theorems about the structures generated by the system. For the 

linguist, that might be a relief. For the mathematician, a nuisance. The reader is encouraged to compare the 

presentation here with the rigorous axiomatization of Copy-Chain and Multidominance Structures in Kracht 

(2001).  

10 Where isomorphism is defined as follows: 
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14) John seeks a unicorn (Montague, 1973: 22) 

The two corresponding interpretations, namely: 

14’) a. There is a specific unicorn such that John seeks him 

b. John seeks any entity belonging to the set of unicorns 

Do not seem to require us to change the dominance relations in the graph, such that in both cases we 

have 

15) ρ = {(seek, John); (seek, unicorn)} 

Where John and unicorn stand for λPP{^John}and λPP{^unicorn} respectively. This is so because we 

are modelling syntax, not logical form. Our syntax is not multi-layered, which does not mean that 

there is only one kind of representation corresponding to each sentence: the reader may think of the 

present work as a specification of the c- and f-structures of the structural description corresponding to 

a given string (in LFG terms); or a full specification of syntactic structure and grammatical function 

tiers in Simpler Syntax (Culicover & Jackendoff, 2005); or a map which provides all relevant 

information about theta structure + surface structure + predicate structure in terms of configurational 

properties in graphs (three of the levels in Williams’ 2003 Representation Theory), etc.. The theory of 

the grammar may (but need not) be multi-layered; what is crucial here is that the syntactic component 

of the theory of the grammar is not.  

Similarly, we are not concerned with the phenomenological existence of unicorns. We only care, for 

purposes of the formalization in this work, about the connectivity patterns that we can find and model 

in natural language sentences. What those sentences are used for fall outside the scope of this work.  

The fact that vertices do not correspond to ‘lexical items’ or ‘phrases’ (or ‘constituents’, in Item-and-

Arrangement grammars of the kind described in Schmerling, 1983a, b), however that turns out to be 

encoded, will be essential in the formulation of transformations and the analysis of crossing 

dependencies, below. In this model, vertices correspond to basic expressions, which, as we will see, 

are not equivalent to words or phrases, being defined in a different kind of grammatical system (Item-

and-Process grammars; see Hockett, 1954, Schmerling, 1983a, b for discussion). This aspect sets our 

proposal apart from other graph-based theories, including Relational Grammar (see Perlmutter, 1983) 

and its heirs, Arc Pair Grammar (Johnson & Postal, 1980) and Metagraph grammar (Postal, 2010): in 

these, nodes represent ‘substantive linguistic elements’ defined in terms of their lexical or phrasal 

status (although this is often not explicitly said). The choice of what counts as a suitable element to be 

a vertex or node in an L-graph (be it a minimally connected tree or a network) impacts on the 

generative power and descriptive adequacy of the theory, as we will see in some detail below. 

The core idea that we want to put forth is that most ‘transformations’, understood here as purely 

descriptive devices (see fn. 10), actually do not change relations: at most, they create new relations, 

but without disrupting those already existing. In order to describe these relations, locally and globally, 

we make use of the tools that graph theory puts at our disposition, plus the empirical insights obtained 

through careful analysis in both transformational and non-transformational theories.  

                                                      

Consider two graphs G = (V, E) and G* = (V*, E*). G and G* are isomorphic if there exists a one-to-

one mapping ϕ: V → V* such that for every edge e ∈ E with e = <u, v>, there is a unique edge e* ∈ E* 

with e* = <ϕ(u), ϕ(v)> (van Steen, 2010: 33) 
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The grammar, in the present conception, aims at maximizing connectivity and minimizing the number 

of distinct nodes within local domains, and not create any more walks than necessary to represent 

semantic dependencies between nodes. Only when adding a new edge connecting nodes already 

present in the graph is not enough because we are indeed changing grammatical function and not 

adding relations to those already existing do we resort to introducing a new node in the graph, 

following the usual MGG ‘unambiguous path’ requirements (rather, unambiguous trail, under the 

present assumptions). But this kind of operation seems to be the exception rather than the rule, and a 

quite rare exception also. 

This approach to the analysis of dependencies in natural language strings yields an 

unexpected result for the transformationalist: most transformations actually do not change 

grammatical relations which were created by lexical insertion. A caveat on the status of 

transformations in this framework is necessary: transformations are taken here simply as descriptive 

devices, without implying that syntactic objects actually move or anything remotely similar. This 

view on what transformations are and what they can do was actually rather widespread in the early 

days of Transformational Generative Grammar11, but the line between description and purported 

explanation was blurred in more recent times, and in orthodox circles (but see, e.g., Postal, 1997: ix-x, 

1 for a take on ‘extraction’ as a purely descriptive term).  

Conceiving of phrase markers as connected cycles, where a cycle is an irreducible single-rooted 

directed graph, has the advantages already noted by Grindrod et al. (2014), Saddy & Grindrod (2016) 

in their formalization of neural networks. Connections between nodes can be expressed by means of a 

matrix (see also Van Steen, 2010: 60). Consider a graph G with n vertices: we need a square n × n 

adjacency matrix A(G): 

16)  

𝐺 = [

𝑣11 ⋯ 𝑣1𝑛

⋮ ⋱ ⋮
𝑣𝑛1 ⋯ 𝑣𝑛𝑛

] 

In A(G), vij = 0 if there is no edge between vi and vj. In other words: 

17) vij = 0 iff (i, j) ∉ ρ 

The adjacency matrix corresponding to a phrase marker is not symmetric (see definition 4): for any 

two vertices vi and vj, A[vi, vj] ≠ A[vj, vi]. The main diagonal of A(G) is composed just of zeros, 

because there are no direct loops: no v directly dominates itself: 

18) (vn, vn) ∉ ρ  

This is rather conventional, see, e.g., APG’s No Loop Condition (also Postal, 2010: 12); Dependency 

Grammar trees by definition also comply with this condition, because dependency is a ‘strict mother-

daughter relation’ (Osborne, 2008: 1122; see also Osborne et al., 2011; Kahane & Mazziotta, 2015), 

with mother of being a dyadic relation between distinct elements. However, we introduce the 

following condition, pertaining to transitive domination: 

                                                      

11 For instance, Rogers (1974: 556) lucidly says that: 

Transderivational constraints, global and interpretive rules, and transformations, it seems to me, don’t 

explain anything: they describe (underline in the original).  
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19) (vn, vn) ∈ ρ*  

This condition allows for a trail to visit a single node more than once, provided that said trail visits 

other nodes in between. This is a crucial aspect of our proposal, and intimately related to 

multidominance (i.e., the rejection of the SMC): we will see that this condition allows for a 

simplification of the chain mechanism that is present in transformational generative grammar (see 

also Kracht, 2001).  

The reader familiar with APG will note that the Bicircuit relation (decomposable into Branch(A, B) ^ 

Branch(B, A) for any A, B) does hold in the theory exposed here (or Circuit in Postal’s more recent 

Metagraph grammar; Postal, 2010: 12-13), however, our theory does not allow for the Parallel 

relation (where two arcs share both ‘heads’ and ‘tails’) to be reflexive (contra Johnson & Postal, 

1980: 41). This should help us give a proper definition of anti-locality conditions. We allow for less 

primitive relations than APG, but those we allow are n-ary and defined over a single level of 

‘representation’. Our modest graphs are syntactic connections defined over semantic vertices, without 

even a spare thought for linearity or the morpho-phonological exponents of vertices, at least in the 

initial version of the theory. In this respect, the reader might find it useful to check out work on 

linearization of Dependency trees, like Kahane & Lareau (2016); and the axiomatization of 

precedence relations in Postal (2010: 26).  

The representations whose connectivity patterns we try to describe exhaustively are subjected 

to the usual constraints over variables (a la Ross, 1967), which also apply to TAGs (Kroch & Joshi, 

1987) and other, non-transformational models; this is desirable, given the remarkable empirical 

robustness of some of Ross’ constraints (particularly insofar as English is concerned), however, these 

constraints have to be understood strictly as constraints over walks and more specifically trails rather 

than as filter over allowable trees. Essentially, we have a set of nodes, and we want to know if a walk 

between any two is legitimate (that is, we want to answer the question ‘can I go from A to B?’, where 

A and B are vertices): walking that trail is interpreting the structure, and if a trail is illegitimate, so is 

the interpretation of the relevant sub-graph. Consider Uriagereka’s (2012: 56) observation that any 

exhaustively binary branched tree is expressible in a finite state fashion (the so-called ‘Finite-State 

limit on phrase structure’), a point previously noted by Greibach (1965): 

a given finite-state language L can be generated either by a psg [Phrase Structure Grammar] 

containing only left-linear rules: Z → aY, Z → a, or by a psg containing only right-linear 

rules: Z → Ya, Z → a, and a psg containing either only left-linear rules or only right-linear 

rules will generate a finite state language (Greibach, 1965: 44) 

Consider now that a Markov chain M is irreducible if it is possible to get from any state i ∈ M to any 

other state j ∈ M (i ≠ j) without ‘leaving the chain’. The mutual accessibility of states i and j is 

expressed in terms of there being a non-zero probability associated to a transition function between i 

and j. The bottom line of the proposal here is that ‘form graph’ applies so as to maximize irreducible 

Markov chains (IMC) in derivations. The connection between these IMCs can be of a higher order 

(e.g., a PSG).  

In this conception, the grammar does not generate a set of surface structures (as in ST-EST-REST), a 

set of derivations (Generative Semantics; vanilla Minimalist Program), a set of form-meaning pairings 

(Categorial Grammar), a set of constituent structure-functional structure pairings (LFG), or a set of 

strings (Syntactic Structures-model and pre-ST). The grammar as understood in the present work 

(strongly) generates a set of graphs. 
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The following sections will be devoted to the analysis of linguistic phenomena using the notions 

introduced thus far. We will focus on data and paradigms that have proven difficult to analyze in 

Immediate Constituent-based, SMC-respecting frameworks. The first phenomenon that we will turn 

our attention to is a particularly challenging one for PSG: discontinuity. 

3. Some notes on discontinuous dependencies 

In general, ‘discontinuous constituency’ refers to a semantic or syntactic dependency holding between 

nodes that are not adjacent in linear structure. The notion has been part of IC analyses since pre-

generative times; that can be seen clearly in Wells’ (1947) definition of discontinuous sequence: 

A DISCONTINUOUS SEQUENCE IS A CONSTITUENT IF IN SOME ENVIRONMENT THE 

CORRESPONDING CONTINUOUS SEQUENCE OCCURS AS A CONSTITUENT IN A 

CONSTRUCTION SEMANTICALLY HARMONIOUS WITH THE CONSTRUCTIONS IN 

WHICH THE GIVEN DISCONTINUOUS SEQUENCE OCCURS (Wells, 1947: 104. Capitals in 

the original) 

Wells’ proposal for the revision of the IC system includes multiple immediate constituents depending 

on a single node, which translates into n-ary branching for tree representations. Quite more recently, 

Ojeda (2005) presents the issue in the following terms: 

Let A, B, C, D be four constituents of some word or phrase. A is said to be discontinuous if and 

only if (i) B is a constituent of A, (ii) C is a constituent of A, (iii) D is not a constituent of A, and 

(iv) D is linearly ordered between B and C.  

Note that ‘discontinuity’ pertains to linear order primarily: syntax and semantics are affected only 

insofar as they determine linear order: this is a prominent property of Minimalist syntax (see Kayne, 

1994; Moro, 2000), but it is not unheard of in other frameworks. For example, Kahane & Lareau 

(2016) propose a Dependency Grammar approach to the relation between linear order and syntactic 

structure, such that governor-dependant relations are subject to a linearization rule that converts linear 

precedence links in dependency trees. Linear dependency links determine the position of dependants 

with respect to their governors in terms of ‘same’ and ‘opposite’ directions in a left-to-right parsing 

model. We will see how our proposal differs from these, and how it can accommodate for different 

patterns of discontinuous dependencies. 

In the framework we pursue here, Ojeda’s definition would be represented as follows: 

ρ(*) = {(A, B); (A, C)} 

τ = {(B, C); (B, D); (D, C)} 

e<A, B>; e<B, C>; e<B, D>; e<D, C> 

Consider now the following phrase marker, which Ojeda offers as an example of discontinuity (see 

also Jacobson, 1987 and Bach, 1979 for an analysis of the operation Right Wrap which yields the 

V+NP+Prt pattern from V+Prt+NP): 
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20)  

 

 

 

 

Here, we have the following relations: 

21) ρ = {(VP, VERB); (VP, NP); (VERB, ROOT); (VERB, PARTICLE)} 

τ = {(VERB, NP); (ROOT, PARTICLE)} 

e = <VP, VERB>; <VP, NP>; <VERB, ROOT>; <VERB, PARTICLE> 

However, it is not clear that we need all that structure: we should be able to clean it up. The 

intermediate node [VERB], particularly, seems to be otiose. Moreover, Ojeda’s representation follows 

the Single Mother Condition, which we also challenge. An alternative structure would be: 

20’) ρ = {(VP, NP); (VP, ROOT); (VP, PARTICLE); (ROOT, NP)} 

τ = {(ROOT, NP); (ROOT, PARTICLE); (NP, PARTICLE)} 

e = <VP, ROOT>; <VP, NP>; <VERB, NP>; <VERB, PARTICLE> 

Note that we have eliminated VERB, and that the NP has two mothers: VP and ROOT. But, do we 

really need VP as a node in the graph? VP is the ‘name’ we give a subgraph (that is: the graph ‘VP’ is 

the set of nodes vROOT, vNP, and vPARTICLE), not a node in that subgraph. Thus, it seems we can dispense 

with VP as a node: VP is a set of connected nodes, in and of itself a connected subgraph; not a node 

within a subgraph. Thus, what we have is12: 

20”) ρ = {(ROOT, NP); (ROOT, PARTICLE)} 

τ = {(NP, PARTICLE)} 

                                                      

12 The rationale behind the ‘tree pruning’ undertaken in the paragraphs above, and which we will assume for the 

rest of the paper, is not too different from what underlies LFG’s Economy of Expression in c-structures: 

All syntactic phrase structure nodes are optional and are not used unless required by independent 

principles (completeness, coherence, semantic expressivity). (Bresnan, 2001: 91) 

As in LFG, the restriction assumed here applies to terminals as well as nonterminals: here, a terminal is a node 

whose ρ-domain is empty (note, incidentally, that this ‘theorematic’ conception of terminals differs from that of 

other graph-theory based frameworks like Arc Pair Grammar, in which terminals and nonterminals are 

primitives, see Johnson and Postal, 1980: 29, ff.). The whole point of this work is have as few terminals as 

possible, but also as richly connected as possible. It is important to note here that, strictly speaking, economy of 

expression is a condition over all expressions in the language (Pullum, 2007: 2), which makes it incompatible 

with model-theoretic theories. If economy of expression is understood in a meta-theoretical sense, however, as 

an admissibility condition over which structural descriptions can be proposed within the theory, it might survive 

(or, for instance, as a rule pertaining to sponsor and erase arcs in APG: something like ‘only S-graphs are well-

formed graphs’; Postal, 2010: 27; Johnson & Postal, 1980: 78, ff.). We will not attempt to reformulate the 

principle, however, because for all descriptive intents and purposes it is clear as it is, and because it is not clear 

that there would be any significant difference beyond purely theoretical concerns. 
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e = <ROOT, NP>; <NP, ROOT>; <ROOT, PARTICLE>; <PARTICLE, ROOT> 

The root selects the particle, and the particle delimits the event denoted by the root (wake up ~ heat 

up), thus the two edges from ROOT to PARTICLE and from PARTICLE to ROOT. The root 

subcategorizes for the NP, and the NP defines the Aktionsart of the root. In this example in particular 

that is not very clear because ‘wake’ is an achievement, just like ‘wake up’, so e <NP, ROOT> might 

not be needed, but consider ‘eat’, which is an activity, and ‘eat up’, which is an accomplishment. 

Similarly, it is the verb that agrees with the subject, not the other way around. An edge from the verb 

to the subject seems to be required to establish a dependency (in the technical sense, see Osborne, 

2005) in which a predicate selects its arguments; an edge from the subject to the verb seems to be 

required to guarantee agreement (another way to do that –possibly preferable to ours- would be a rule 

of functional application, as in Schmerling, 1983b: 35, ff.). In what follows, we will only indicate the 

V-S dependency (more generally, predicate-to-argument). 

Maximizing local connectivity and eliminating transformations has other advantages. Consider the 

following examples: 

22) a. A man entered who was wearing a black suit (Relative Clause Extraposition, RCE) 

b. *What colour was a man entered who was wearing? (violation of the Complex NP 

Constraint, CNPC; Ross, 1967: 127) 

Ojeda (2005) correctly identifies discontinuity in RCE cases, which ensues the CNPC violation that 

renders (22 b) ungrammatical (which in turn depends on the RC forming a constituent –the complex 

NP- with the N as observed by McCawley, 1998: 451; we will come back to this particular issue in 

Section 8 below). However, it is also necessary to ban the RC from being an adjunct to a 

phonologically null NP or a copy of the subject before raising to Spec-TP to satisfy some EPP 

property or any other intra-theoretical fancy. That is: we want to eliminate possible structures like 

(21), which contains a deleted copy of [a man]: 

23) A man entered a man who was wearing a black suit 

Discontinuity alone cannot do that, unless a further ban on null copies is introduced. Or, seen from the 

opposite side, if copies are never introduced to begin with. We have also more than a single 

derivational cycle, each of which corresponds to a connected irreducible single-rooted sub-graph. Let 

us try and make things explicit: 

24) Cycle 1: [a man1 entered]  

Cycle 2: [a man2 was wearing a black suit] 

ρ1 = {(entered, a man1)} 

ρ2 = {(wearing, a man2); (was, wearing); (wearing, a black suit)} 

e = <enter, a man1>; <a man2, a man1>; <wearing, a man2>; <was, wearing>; <wearing, a 

black suit> 

Let us make a preliminary analysis with what we have so far. Up to now, we have identified cycles 

based on purely configurational information, namely, (i) the presence of a single root node and (ii) 

irreducibility. But we have given no argument as to why these properties should matter at all in the 

generation of descriptively adequate structural descriptions for natural language strings: now we will 

give such arguments. Essentially, each sub-graph (each cycle) in a structural description contains the 

following elements (based on García Fernández & Krivochen, 2017): 

a. A predicative basic expression p 

b. Temporal and aspectual modifiers of p 
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c. Nominal arguments of p (subjects, objects, clitics) 

In García Fernández & Krivochen (2017) we referred to each structural unit containing (a, b, c) as the 

extended projection of p (in the sense of Grimshaw, 2000; Abney, 1987: 57). This idea is essentially 

weakly equivalent to the so-called Condition on Elementary Tree Minimality in Lexicalized Tree 

Adjoining Grammars (LTAG): 

Each elementary tree consists of the extended projection of a single lexical head (Frank, 1992: 

53) 

In (24), we have two cycles: Cycle 1 [a man entered] contains an unaccusative predicate enter, with 

aspect and tense marked synthetically and its nominal argument a man; Cycle 2 contains a transitive 

predicate wear, with progressive aspect realized by means of the auxiliary be and –ing, and both its 

subject and object a man and a black suit respectively. We see that each individual sub-graph satisfies 

the definition of cycle that we introduced above, and is also compatible with the CETM. Frank (1992) 

correctly observes that the CETM restricts the size of a single elementary tree, because of the 

constraints on which ‘extended projections’ can be built: the scare quotes are required here because 

extended projections were originally defined in terms of X-bar theory (Grimshaw, 2000: 116, ff.), 

with endocentricity as a fundamental property. However, if endocentricity is understood as feature 

percolation (that is: the features of a head percolate upwards the projection path, such that XP is a 

projection of X by virtue of X’s features –categorial, say- being percolated to XP; as in Grimshaw, 

2000: def. (3)), this notion clearly does not apply to our graphs, seeing as (a) they are not labelled, and 

(b) there is really no notion of ‘projection’ in the present framework. We will thus not use the term 

‘projection’ to avoid misunderstandings, and interpret the CETM in a sui generis way,  We will return 

to TAGs below, since this formalism will allow us to test aspects of the strong generative capacity of 

our own proposal. But for the time being let us return to the issue of the identity of cycles: we can 

enrich the definition, such that a cycle is an irreducible single-rooted sub-graph containing a single 

predicative basic expression, temporal and aspectual modifiers of that predicative basic expression 

(which can be analytically or synthetically expressed) and nominal arguments of that same predicate. 

This is an improved definition, although we will see that there are further considerations to make, 

which can simplify the conceptual apparatus.  

Clearly, these structures which here we refer to as sub-graphs are not disconnected units: just 

like temporal dependencies must respect consecutio temporum (see, e.g., Comrie, 1986; Carrasco & 

García Fernández, 1994), there are restrictions over the occurrences of nominal arguments and the 

dependencies that can be established between occurrences of an object across sub-graphs. For 

instance, let p ∈ X, p’ ∈ Y, p” ∈ Z be predicative basic expressions in sub-graphs X, Y, Z. Furthermore, 

if α is a nominal dependant of p in X, α must be dominated by p in X: ρ(p, α) must hold in X. Now, if 

we have an argument β which may surface as a syntactic-semantic dependant of more than a single 

predicate p, p’, p”, then it must be possible for β to be dominated at X, Y, and Z by p, p’, and p” 

respectively. This is a condition that requires an explicit rejection of the SMC, for β has –in this 

example- three mothers: p, p’, and p”. Note that we do not multiply the entities (we have just one β) 

nor the relations (because under a theory that had as many instances of β as distinct subcategorizing 

predicates, there would still be three predicate-argument relations at least); the theoretical apparatus is 

however simplified by the elimination of an axiom (the SMC) which arose not out of empirical 

necessity, but out of intra-theoretical requirements.   

The previous paragraph made an essential point in terms of how cross-cycle dependencies are 

established; that is: how distinct cycles are related, thus yielding global compositional interpretation. 

These considerations must now be applied to the analysis of (23). In the structural description (24), 
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the relation <a man2, a man1> serves as the ‘pivot’ between both cycles [a man entered] and [a man 

was wearing a black suit], since [a man] actually stands for the translation of the NP into intensional 

logic (IL): λPP{^a man}, or a man’. In the terms we used in Krivochen (2015b), we are dealing with 

two tokens of the same type: [who] and [a man] both have the same IL translation.  

This last point requires further argument, and it is mostly beyond the focus of the present 

work. However, we do need to point out that the idea that proper and common NPs have the same 

kind of translation is not present in Montague (1973); rather, it is to be found in Schmerling (1988), 

who bases part of her argument in Sloat (1969), among others. Configurationally, the fact that a node 

(in this case, an NP) can be a term of more than a single grammatical relation is captured via 

multidominance: making the relevant node a daughter of as many mothers as predicates take it as an 

argument (see also Postal, 2010: 17 for some discussion). We will see below that dominance is not 

always to be interpreted in predicate-argument terms: that depends on properties of the relevant nodes 

connected by a directed edge. 

But, if this is the case, then we need to make some adjustments, because we are visiting the same 

node twice, once per cycle. This is a radical departure from a chain-based perspective built over 

rooted, labelled, oriented binary-branching trees in which paths, rather than trails, are relevant (cf. 

Kracht, 2001; Collins & Stabler, 2016): we have not ‘moved’ anything (remember, there are no 

derivations), nor do we require to link two occurrences of an object13. We would also want to 

eliminate the edge e <a man2, a man1>, because if we are dealing with the same node (each visit to 

which materializes as a token) we would be having ρ(x, x), which we banned above. It is a good 

opportunity to point out that the framework presented here differs from Metagraph grammar in an 

important sense: because nodes stand for the translation of basic expressions into IL, there is no need 

to resort to copy (pronominal) arcs (Postal, 2010: 40-41), because we do not have multiple terminals 

for ‘a man’ and ‘who’ in (23); in our scenario, there is no need to copy or indicate co-reference 

between nodes in any specific way, because there is only one node per entity (where ‘entity’ is to be 

read in model-theoretic terms, and assuming that entities are associated to a unique address in IL). 

Thus, we can do better than the preliminary analysis above.  

Distinct cycles are related by means of nodes which are the targets for embedding transformations 

(in the sense of Fillmore, 1963) or substitution/adjunction (in the sense of Joshi, 1985; Kroch & Joshi, 

1985), both essentially generalized transformations (adjunction, if interpreted as a general case for 

substitution). We can provide the following semi-formal definition: 

25) Linking (definition):  

If a sub-graph X contains v1 and a sub-graph Y contains v1 (that is, if ρ(vX, v1) & ρ(vY, v1)), X and Y 

are linked at v1 

Transitively, anything that v dominates will also be contained in all sub-graphs in which v has a 

mother. Note also that the relative clause is embedded in the NP, not directly depending from the root 

S. The revised set of relations would then be: 

24’) Cycle 1: [a man’ [Cycle 2] entered] 

Cycle 2: [a man’ was wearing a black suit] 

                                                      

13 In Krivochen (2015b) we have argued against equating ‘tokens’ and ‘occurrences’; the present proposal 

supersedes that one in not requiring structure mapping at all, and thus not needing to relate proof-theoretically 

related phrase markers –base and derived-. 
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ρ1 = {(entered, a man’)} 

ρ2 = {(wearing, a man’}; (wearing, a black suit); (was, wearing)} 

Both cycles are linked at the node a man’, which is visited twice: once in Cycle 1 and once in Cycle 2. 

Of course, it is possible to have both hypotactic and paratactic relations, depending on whether 

adjunction occurs at the root or not: if the linking node is immediately dominated by the root node in 

both sub-graphs, we are in the presence of a conjoining transformation. If linking targets an 

embedded vertex (and its ρ-domain), we have embedding, as in the RCE case above.   

More explicit examples follow. 

4. Comparing models 

It would make little sense to have yet another theory for ‘John loves Mary’ and compare the present 

approach with currently available models of syntax based on these kinds of structures. If there is any 

merit in this work, it must be tested at the limits of empirical analysis. We have seen that we can 

accommodate discontinuity, which is problematic for Item-and-Arrangement-type Immediate 

Constituent analyses (see Schmerling, 1983a; Wells, 1947 for discussion), particularly MGG-inspired 

theories, in which only a single kind of local structural template {X, YP} –where distinctness of X 

and Y is essential- is allowed (Chomsky, 2009, 2013: 43). Further comparison is due. To see how our 

model differs from the usual state of affairs in orthodox transformational generative grammar, 

consider the multiple-gap construction (26): 

26) A person who people that talk to usually end up fascinated with (from Kayne, 1983: 230) 

The GB-MP representation is (27): 

27)  

 

 

 

 

 

 

 

 

 

 

 

 

Where  
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the NP object of with is (e), so that there are two empty categories β1 and β2. The nodes that 

belong to Gβ1, and Gβ2 [the government-projections of β1 and β2] have been endowed with '1' 

and '2', respectively, for the purposes of exposition (Kayne, 1983: 230) 

This structure features multiple co-referent terminals: 

28) a. People = e 

b. who = β1 = β2 = a person 

However, despite sharing denotata (or, more specifically, despite having identical IL translations in 

the framework under discussion here), those are all different nodes in MGG (extra elements must be 

introduced in the representation to encode semantic-referential identity: indices). Note that the single 

mother condition is respected throughout, which forces this multiplication of terminals for what is 

ultimately the same entity. All differences pertain to its syntactic context (e.g., ‘be the sister of P’, 

‘bear Oblique case’, etc.), that is, to the local relations it establishes with other nodes.  

Moreover, cycles are stipulated in terms of ‘government projections’, and there is no natural way to 

capture predication domains in this approach (mainly, because the syntactic component is 

autonomous, and thus semantic relations cannot be defined over syntactic structure or vice-versa). The 

approach proposed here attempts to change both aspects of Kayne’s approach (widely shared in 

MGG). We will focus on the connectivity of the relevant nodes, but the reader should bear in mind 

that here we operate over semantic substance: a structural description for a string is the set of all 

possible relations between nodes, and these nodes are proxies for their translation into IL.  

In the approach presented here, we have the following preliminary sets of structural relations for a 

sentence like (26) above: 

29) Cycle 1: [A person #]  

Cycle 2: [who [Cycle 3] usually end up fascinated with [Cycle 1]]  

Cycle 3: [people that talk to [Cycle 1]] 

ρ1 = {(a, person)} 

ρ2 = {(end up, who); (fascinated, who); (fascinated, with); (with, who); (fascinated, who)} 

ρ3 = {(people, that); (people, talk); (talk, to); (to, #)} 

Where ‘#’ is a placeholder to which cycles can be adjoined (à la Chomsky, 1955); basically, it works 

as a Joker to be targeted by adjunction or substitution, as appropriate (Joshi, 1985). But, what are we 

really dealing with here? Let us use person’ to denote the translation of the NP [a person] into 

intensional logic, that is, λPP{^a person}. Similarly, we will use people’ as an abbreviation of 

λPP{^people}. We can thus get rid of some elements, because we have proceeded as if form was 

meaningful. [who] and [person] have the same translation into IL, thus, they are simply tokens of the 

same type (Krivochen, 2015b). There are not two distinct nodes, but a single node which can be 

visited as many times as necessary in a trail. Then, we can simplify (29) as (30): 

30) Cycle 1: [person’] 

Cycle 2: [people’ usually end up fascinated with person’]  

Cycle 3: [people’ that talk to person’] 

ρ1 = {Ø} 

ρ2 = {(end up, people’); (fascinated, people’); (fascinated, with); (with, person’); (fascinated, 

person’); (end up, fascinated)} 

ρ3 = {(people’, that); (talk, people’); (talk, to); (to, person’)} 

Different cycles (i.e., different subgraphs) intersect at all common nodes. Thus,  
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31) Cycle 1 ∩ Cycle 2 = {P’} 

Cycle 1 ∩ Cycle 3 = {P’} 

Cycle 2 ∩ Cycle 3 = {Q’, P’} 

But {P’} is all there is to Cycle 1; thus, the intersection between Cycle 1 and Cycle 2 is trivial: Cycle 

1 is embedded into Cycles 2 and 3, and acts as a ‘hedge’ (or ‘pivot’) between sub-graphs 2 and 3 (i.e., 

Cycles 2 and 3) that makes it possible to build a global compositional interpretation for (26). 

The framework we present here maintains some descriptive aspects captured by the notion of 

‘constituent’ from IC analyses, although with important changes: our blocks are sub-graphs, not 

labelled phrases. It may be observed that Categorial Grammars (which, as argued by Hockett, 1954 

and Schmerling, 1983a, belong to a different class of grammars than IA models –which include IC 

grammars-) can isolate portions of structure by without making reference to constituency at all; rather, 

what matters is the set of indexed basic expressions and the operations that yield derived expressions 

where indexing is interpreted as ‘assignment to a category’.  

It is important to stress now that, while the internal constitution of each sub-graph may resemble 

the structures one gets in a Dependency Grammar (Tesnière, 1959; Osborne et al., 2011; Kahane & 

Mazziotta, 2015, among many others) in rejecting binarity as a fundamental structure building 

principle (Krivochen, 2015a; 2017a) and giving importance to connections defined in terms of 

dominance (Osborne’s catenae and our local trails); there are several crucial differences, both in 

strong and weak generative power. We will now go into some of those differences, without being 

exhaustive. 

A basic principle of DG is that ‘dependents should be grouped together with their head’ (Osborne 

& Niu, 2017). This is the principle that guarantees that a structural description for 

32) Walk really fast 

Looks like (33 a) and not like (33 b): 

33) a. [walk [really fast]] 

b. [walk really [fast]]  

Headedness is essential in a DG, even more so than in a PSG (which, as Hockett, 1958 and Lyons, 

1968 argue, can –and should- incorporate exocentric structures). But it is not headedness we want to 

question now (despite the fact that there is no real sense in which sub-graphs are ‘headed’); rather, we 

question the segmentation that arises in a DG for a case like (32). We want to capture the fact that 

there is a connection between walk and fast, the presence of really notwithstanding. There is no need 

to invoke heads if all we are interested in is mapping the relations between nodes at a given point in 

time. We have, then, that: 

34) ρ = {(fast, walk); (really, fast)}  

Distributionally, paradigmatic choices affect either individual nodes or entire sub-graphs; in general 

we do not have any unit in between. It is still to be seen if the unit catena (a word or combination of 

words which is continuous with respect to dominance) as defined in Osborne et al. (2011) and 

Osborne & Niu (2017) serves any purpose in the present framework (if it does at all, we need to 

replace ‘word’ by ‘basic expression’, in any case; we will get to this shortly); it is certainly not a 

primitive in the present theory.  

There are two further aspects with respect to which our theory differs from DG (and most forms 

of PSGs): first, as in certain forms of CG (e.g., Schmerling, 1983b), nodes need not correspond to 
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words. In CG terms, basic expressions need not be identified with lexical items (see also Jespersen, 

1985 [1937]: 6 for a notational system that similarly assigns atomic symbols to multi-word 

expressions). Strictly speaking, in PSGs the correspondence is a consequence of conflating terminals 

with lexical items, and not a property of the formalism. An example of the kind of things we have in 

mind is the behaviour of would rather in the following examples: 

35) a. *John wouldn’t rather walk 

b. John would rather not walk 

c. There’s no one here who wouldn’t rather walk 

Schmerling (1983b: 14) proposes that would rather is ‘a two-word modal’, assigned to the category 

(FC//IV)/(FC/IV), that is, a modified FC/IV which combines with an FC/IV to form an expression of 

category FC (i.e., Finite Clause). Note that negation cannot interrupt the unit unless under the scope of 

negation itself (as in (35 c), noted by Baker, 1970). A similar paradigm emerges with would just as 

soon, which Schmerling argues (p.c.) is also a multi-word basic expression. Jespersen (1985 [1937]) 

talks of ‘composite verbal expressions’ for things like wait on in She waits on us and assigns wait on a 

single primitive symbol W; similarly, he recognizes ‘composite prepositions’ like on account of, and 

similarly assigns them a single primitive symbol pp. We have discussed the problems that things like 

would rather pose for monotonic PSGs (including GB/MP grammars) in Krivochen (2016), here we 

just want to stress that the theory explored here does not observe either of the following requirements 

(from Osborne, 2005: 253): 

I. a. One wordform per node, and 

b. One node per wordform. 

II. One head per node  

Requirements (I.a.) and (I.b.) are violated in the case of multi-word basic expressions: if there is a 

single node for would rather or would just as soon (that is, if nodes correspond to basic expressions 

rather than to words), there is no bijective relation between words and nodes. Requirement (II) is 

trivially violated if there is no meaningful notion of ‘head’.    

There is a third requirement formulated by Osborne, which is a more general constraint on (rooted) 

tree construction (see, e.g., van Steen, 2010: 109):  

III. One root node per structure 

The framework exposed here violates (III) because our grammar can describe multi-rooted structures, 

which is inadmissible in DGs and PSGs. In PSGs, this is given by definition: the base component of a 

transformational grammar, as well as the level of c-structure in a Lexical Functional Grammar, is a 

Context Free Grammar. A CFG is a set G = (VN, VT, P, S), where VN is a set of nonterminal symbols, 

VT is a set of terminal symbols, P is a production rule (also called ‘transition rule’) of the form Σ → F 

(where Σ is a possibly unary string in V+ and F is a possibly unary string in V*14), and S is a starting 

symbol (also called ‘axiom’), such that S ∈ VN. The existence of a starting symbol is a necessity since 

otherwise derivations would not start (see Binder, 2008 for some discussion about this scenario in 

                                                      

14 Hopcroft and Ullman (1969: 1) define that: 

If V is an alphabet, then V* denotes the set of all sentences composed of symbols of V, including the 

empty sentence [notated ε]. We use V+ to denote the set V* - {ε}. Thus, if V = {0, 1}, then V* = {ε, 0, 1, 

00, 01, 10, 11,000,...} and V+ = {0, 1, 00,...}. 
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terms of a computational frustration): the starting symbol is a designated nonterminal which 

dominates but is not dominated; in other words, it is the only nonterminal that can only appear at the 

left-hand side of production rules. Both DG and our graph theory have the relation dominate, but it 

must be noted that if the root of a graph is defined only as a node that is not dominated by any other 

node in a sub-graph, then it is perfectly possible to have multi-rooted structures, the only requirement 

for vx to be a root being that there is no node within the cycle which dominates vx. As we integrate 

cycles with roots vx and vy, connections between sub-graphs can be established at nodes that vx and vy 

dominate, but keeping vx and vy undominated. Summarizing, there are local compatibilities between 

our graphs and Dependency graphs, and between our graphs and PSGs, but the systems are far from 

equivalent. 

Outrageous though a locally multi-rooted representation might seem to some readers, it is not unheard 

of. Consider, for instance, the intermediate representation proposed in Citko (2005: 480) for ATB: 

36) I wonder what Hansel read and Gretel recommended 

 

 

 

 

 

 

 

 

Tmax can be safely characterized as a root in each sub-tree corresponding to the structural descriptions 

of Hansel read what and Gretel recommended what. Minus non-audible structure (T, v), our local 

description is not too far from that:  

37) Cycle 1: [I wonder [Cycle 4]] 

Cycle 2: [Hansel read what] 

Cycle 3: [Gretel recommended what] 

Cycle 4: [[Cycle 2] and [Cycle 3]] 

ρ1 = {(wonder, I); (wonder, what); (wonder, and)} 

ρ2 = {(read, Hansel); (read, what)} 

ρ3 = {(recommend, Gretel); (recommend, what)} 

A fundamental difference between our representation and Citko’s is that in our representation the 

coordination in (36) is symmetric –i.e., paratactic- rather than asymmetric –i.e., hypotactic- (unless 

Gretel recommended something after, or because Hansel read it; in which case the asymmetry in 

semantics would betray an asymmetric phrase marker; see Schmerling, 1975; Krivochen & 

Schmerling, 2016 for detailed discussion). In any case, a declarative RNR sentence, like Hansel read 

and Gretel recommended that book that’s so popular now would be indeed a multi-rooted structure, 

linked by the NP that book that’s so popular now which is a common vertex between the two sub-

graphs (as can be seen in (36) above). That node is obviously not a root because it is dominated by the 

relevant verbs in each conjunct. Note that in a RNR structure, single-rootedness can only be achieved 
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by including a designated axiom in the phrase structure rules in a top-down model: a recursive rule 

like (38 a) or an endocentric coordination phrase as in (38 b) (see, e.g., Progovac, 1998): 

38) a. S* → S and S (and S) 

b. &P → S &’ 

&’ → and S 

Which generate the following structural descriptions respectively: 

38’)  

 

 

 

In bottom-up models (mainstream MP), the TPs corresponding to each clause are dominated by a 

Complementizer layer CP, and thus extra structure in the form of silent heads must be introduced to 

comply with a priori formal requirements (projection/endocentric labelling, the SMC, binarity…). 

Our proposal is very different from these. By ‘flattening’ the structures keeping only what is overtly 

present in the string, intermediate nodes (in the sense of Greibach, 1965) are eliminated: this can be 

seen as a radicalization of a rather basic desideratum of economy of expression (Bresnan, 2001: 90, 

ff.; see fn. 12 above), in that all ‘pre-terminal’ nodes are eliminated (recall also that there is no one-to-

one correspondence between nodes and lexical items, such that a node can correspond to a multi-word 

basic expression). The same requirement (in a slightly stronger form) is expressed by Postal (1974: 

xiv):  

one should assume the existence of no elements of structure, no levels of structure, and no kinds 

of representations whose existence is not absolutely necessary […] I reject all so-called 

syntactic features, doom markers, other abstract syntactic markers, coding devices, “empty 

nodes”, “doubly filled nodes,” and, in short, the entire a priori unlimited set of symbolic 

elements available in an unconstrained system 

We wholeheartedly agree with Postal’s meta-constraints on the theory of grammar, and will 

continue to assume that a descriptively adequate theory must meet this stronger version of FLG’s 

Economy of Expression (or any such constraint). 

It seems clear that we can generate (recursively enumerate) graphs for all CF languages (as can 

the base component of a transformational grammar, the c-structure component of LFG, and GPSG). 

But, what is the true generative power of our theory? What kinds of structural descriptions for natural 

language strings can we give and what kinds are not allowed? To approximate an answer to this 

question, we will use Joshi’s (1985) discussion of the generative power of TAGs with links as a 

reference, and compare our system to his. Because the strong generative power of TAGs has been 

carefully studied, and because Joshi himself compares it with that of alternative frameworks, we 

consider that it is an appropriate measure.  

TAGs with links can generate limited crossing dependencies, by virtue of having elementary trees 

annotated with links which are preserved under adjunction. A TAG can generate the CS language L = 

{an, bn, e, cn, dn | n ≥ 0} iff a’s and b’s are nested, c’s and d’s are nested, and a’s and c’s and b’s and 

d’s are cross-serially related (or vice versa). That is (from Joshi, 1985: 223): 

S 

& 

&’ 

S 

&P (b) 

S S 

S* 

and 

(a) 
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39)  

 

 

 

 

 

However, there are CS languages which cannot be generated by a TAG with links. These include 

languages in which only cross-serial dependencies are established, like L = {an, bn, cn, e, dn, fn | n ≥ 0}, 

and double-copy languages, e.g., L = {w e w e w | w ∈ {a, b}*}.  

Now, because our nodes do not correspond to words or phrases or denotative expressions, but to the 

translation of those expressions into IL, the applicability of ‘links’ needs to be looked at very 

carefully. Essentially, there are two main situations in which a TAG needs links: 

I. To indicate filler-gap dependencies (in the sense of Postal, 1997; Sag, 2010) 

II. To indicate dependencies between overt elements (agreement, correference) 

Because there are no gaps in the present model, there will be no need to resort to links for (I). How 

about (II)? It seems to us that a further distinction needs to be made: 

II. a. N-V links 

b. N-N links 

Links of the kind (II. b.) –the kind that is relevant for Pronominalization in a Ross-Langacker view, 

for instance- do not arise in our theory because those relations are formulated in terms of trails that 

visit a single node more than once, not as a relation between two distinct nodes. But (II. a.) is worth 

looking at. This is the kind of dependencies that arise in the now famous Dutch examples considered 

by Joshi: 

40) Jan Piet Marie zag helpen zwemmen 

Jan Piet Marie saw help swim 

‘Jan saw Piet help Mary swim’ 

The dependencies in (40) are as in (41): 

41) Jan Piet Marie zag helpen zwemmen 

 

The abstract form of (40) is a1a2a3b1b2b3, which displays crossing dependencies (indicated with 

superscript integers). The structure is more complex than it would seem: 
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42)  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The structure proposed in Joshi (1985) is partly based on the discussion of cross-serial dependencies 

in Dutch in Bresnan et al. (1982). The latter propose the following structure (Bresnan et al., 1982: 

619): 

41’)  

 

 

 

 

 

 

 

 

Despite some differences, both works conclude that there is no need to push the grammar to strong 

context sensitivity (i.e., to make the grammar powerful enough that it can generate all context-
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sensitive languages); weak context-sensitivity, a.k.a. mild context-sensitivity15, seems to do the trick. 

Joshi’s structural description is based on the linear position of elements, as well as their referential 

dependencies. Let’s see if we can assign an adequate structural description to (40). To begin with, let 

us consider an incorrect, but intuitive, approach. If we grouped in a single cycle everything that a 

TAG joins by links (doing away with empty terminals, marked e in Joshi’s diagram), we would get: 

43) Cycle 1: [Jan sag [Cycle 2]] 

Cycle 2: [Piet helpen [Cycle 3]] 

Cycle 3: [Marie zwemmen] 

But things are more complex (the inadequacy of (43) is prefigured by Joshi). As it is, (43) describes 

the string Jan sag Piet helpen Marie zwemmen, which is certainly not what we have in (40). Equally, 

a reduced phrase marker-like approach based on strict center-embedding (Lasnik & Kuppin, 1977) is 

also inadequate (Bresnan et al., 1982: 616 argue that such structural descriptions generate a proper 

subset of the relevant structural descriptions –despite the fact that, in terms of weak generative 

capacity, that proper subset is ‘infinite’ [sic]-): 

43’)  

 

 

 

 

 

 

Both verbs sag and helpen take events (predicate-argument relations; ‘satisfied functions’) as 

complements; their internal argument is a complete event with external and internal argument, both of 

which are dominated by the relevant verb: this will become obvious in our dominance relations. Thus, 

we should have something more along the lines of (44), with the full set of dominance relations made 

explicit: 

44) ρ = {(sag, Jan’); (sag, Piet’); (sag, helpen); (helpen, Piet’); (helpen, Marie’); (helpen, 

zwemmen); (zwemmen, Marie’)} 

Note that we have made no use of empty nodes, intermediate nonterminals (i.e., ‘bar levels’), or 

headedness. If there is something like ‘heads’, they arise from the consideration of dominance 

                                                      

15 Bresnan et al. (1982) do not define weak context sensitivity formally. In Joshi’s work, ‘mild context 

sensitivity’ includes the following properties (as summarized in Krivochen, 2017: 65; from Joshi, 1985: 221, 

ff.): 

a. Polynomial parsing complexity (for TAGs, it amounts to O(n6) in the worst case). 

b. Constant growth (for any string w, |w| grows by a constant factor, which is a linear combination of the 

length of the terminal string of some initial tree and the lengths of the terminal strings of the auxiliary 

trees) 

c. Limited crossing dependencies (by virtue of a limited active search space) 

Jan sag 

S 

Piet helpen 

S 

Marie zwemmen 

S 

Cycle 1: [Jan [Cycle 2] sag] 

Cycle 2: [Piet [Cycle 3] helpen] 

Cycle 3: [Marie zwemmen] 
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relations, but they are not primitives of the theory. A question that arises at this point is: if there is an 

edge from –say- sag to both Jan and Piet, how do we know which one is the subject and which the 

object? If verb-subject agreement is encoded in an edge e <Subj, V>, there is no problem: there would 

be a cycle between every verb and its subject, but not between every verb and its object in (40). That 

is: there is a trail Subj-V-Subj but not Obj-V-Obj. This revised picture would yield the relations in 

(44’): 

44’) ρ = {(sag, Jan’); (Jan’, sag); (sag, Piet’); (sag, helpen); (helpen, Piet’); (Piet’, helpen); 

(helpen, Marie’); (helpen, zwemmen); (zwemmen, Marie’); (Marie’, zwemmen)} 

We will come back to the S-V-O relations shortly, because things are not always so clear when we 

have participial constructions with object agreement. Coming back to our original problem, however, 

what if agreement is not part of the picture? Are there other possibilities? Yes, there are. Even without 

adding an a-structure for roles of participants or f-structure level for grammatical functions (as in 

LFG; Bresnan, 2001: 19, ff.; Dalrymple, 2001: 8, ff.) or appealing to intermediate nodes to create 

specific configurations with respect to which functions are defined (Chomsky, 1965: 71), grammatical 

functions can be encoded in graphs by adding annotations. RG, APG, and Metagraph grammar 

(Perlmutter & Postal, 1983a, b; Johnson & Postal, 1980; Postal 2010 respectively) prefer to annotate 

edges rather than nodes, a perfectly viable strategy as well. For instance, a basic (and admittedly 

incomplete, although in ways that are at present irrelevant) general format for L-graphs could be (45): 

45)  

 

 

 

Where (45) is to be read as ‘the linguistic element b bears the grammatical relation GR with the 

linguistic element a’, making no reference to linguistic levels (which would only come to play with 

‘transformations’). Equivalent proposals (in the mathematical sense of ‘equivalent’) for the definition 

of arcs (the local vertex-edge relations in L-graphs) are made in Johnson & Postal (1980: 10, 37) and 

Postal (2010: 25-26). Also, Mel’čuk (2003), within a multi-layered model of Dependency Grammar, 

annotates arcs with integers, such that ‘The arc between the predicate and its argument carries the 

number of the argument’ (2003: 11).   

Along these lines, we could add a specification to each edge, such that the grammatical function is 

encoded in an index (say, s for Subject, o for Object; we could also have used 1 and 2, in consonance 

with Relational Grammar practice) and obtain the following representation: 

44”) es<sag, Jan>, eo<sag, Piet>, eo<sag, helpen>… 

However, (44”) is not quite it either. We find this notation cumbersome, and not really useful: adding 

diacritics is only justified if there is no other way to encode grammatical distinctions. If said 

distinctions have any real descriptive value, however, there should be a way to encode them in the 

grammar qua system, rather than as elements of the alphabet that the rules of the grammar 

manipulate.   

Above, in Definition 4, we defined the ρ-set of a graph G as the full set of dominance relations 

between vertices in that graph. Then, we remained purposefully agnostic with respect to whether a ρ-

set was an ordered or an unordered set: now, we will make use of that initial ambiguity to model 

grammatical relations in terms of our graph-theoretic approach. We can capture the relevant 

a 

b 

GR 

Perlmutter & Postal (1983b: 83) 



36 

 

functional asymmetries (Subject vs. Objects, and Direct Object vs. Indirect Object) by introducing an 

order into the set of dominance relations following an independently motivated functional hierarchy 

(see Dalrymple, 2001: 9 for a summary of different approaches to grammatical function hierarchies). 

Recall that a vertex v1 dominates v2 if and only if there is an edge e <v1, v2> in a directed graph. Then, 

we can make the inherent asymmetry of a directed graph an asset: make that asymmetry correspond to 

an external hierarchy that can help us in the description of relations without the need to appeal to 

annotations (to either edges or vertices). We will take Relational Grammar’s (RG) hierarchy of 

grammatical functions (e.g., Perlmutter & Postal, 1983b: 86 in terms of ‘nuclear’ and ‘object’ set-

defining features; Bell, 1983: 148) as a reference. The motivation for this choice is that in RG 

grammatical functions are primitives (as opposed to the Aspects model, in which they are read off 

configurations, with labels for non-terminals and relations like sisterhood or motherhood being 

primitives instead (see e.g. Chomsky, 1965: 71). RG’s definition of clause makes this clear: 

A clause consists of a network of grammatical relations (Perlmutter & Postal, 1983a: 9) 

In this context, grammatical functions configure a structured system: they are organized in a hierarchy 

The RG hierarchy, as presented in Bell (1983: 148) is as follows: 

46) 1 (Subject) >> 2 (Direct Object) >> 3 (Indirect Object) 

Where terms outrank non-terms, and where nuclear functions outrank object functions: 1 is a nuclear, 

non-object function; 2 is a nuclear, object function, and 3 is a non-nuclear, object function (see also 

Johnson & Postal, 1980: 250 for an APG translation of the RG hierarchy). Now, how can we capture 

that hierarchy in the ρ-set of a graph? Suppose that we make the ρ-set of a sub-graph an ordered set, 

thus getting the following inequality to hold (square brackets are used to disambiguate the formula, 

and bear no particular theoretical significance): 

47) [ρ = {(a, b), (a, c)}] ≠ [ρ = {(a, c), (a, b)}] 

We can notate the ordered ρ-set of a graph using angular brackets, such that the ordered set of 

dominance relations between vertices a, b, c is as in (48): 

48) ρ = 〈(a, b), (a, c)〉  

This means that the relation (a, b) is ordered before the relation (a, c). What have we gained? If the 

order between dominance relations is made to correspond with the order between grammatical 

relations, we have the following relations, more or less formally16: 

                                                      

16 The picture of clause structure that emerges from (49) is necessarily oversimplified. It is not fatally so, 

though. A notion of strict order can, in principle, accommodate the richer array of Object relations recognized 

and extensively argued for in Postal (2010). A revised hierarchy, including the richer landscape of Object 

relations, could initially go along the following lines: 

i) 2 (Direct Object) >> 3 (Indirect Object) >> 4 (Subobject) >> 5 (Semiobject) 

However, things are rather complicated. The interpretative rule in (49) assumes that there is no Indirect Object 

unless there is a Direct Object, in line with traditional accounts; that assumption links the hierarchy of 

grammatical functions with the Case hierarchy, in which ACC >> DAT. Moreover, it is also not clear whether 

the relations 4 and 5 are 'as primitive' as the others, or depend on more fine-graded aspects of lexical semantics. 

For example, consider the following examples that Postal (2010: 73) uses to illustrate the relation 4 (Subobject), 

with the relevant NP(4) italicized: 
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49) ρ = 〈(a, b), (a, c), (a, d)〉 

Let a = V, A, and b, c, d = N (and b ≠ c ≠ d), then b is the Subject of a, c is the Direct Object 

of a, and d is the Indirect Object of a.  

That is: the order of dominance relations corresponds to the order of grammatical relations, such that 

if a relation (x, y) is ordered before a relation (x, z) in terms of dominance, the grammatical relation (x, 

y) is also ordered before (x, z) in the hierarchy of grammatical functions (the two orders are 

isomorphic, which means that there is a function f with an inverse that relates both sets of orders). If 

there is a single NP in a structure, the hierarchy determines that it will be interpreted as the highest 

possible grammatical relation licensed by V, modulo lexical semantics. Note that b, c, and d are sister 

nodes by virtue of sharing a mother a; the diagram of this graph depicts a ‘flat’ structure that is 

common in frameworks that aim at eliminating empty nodes, silent structure, and bar-levels (e.g., 

Culicover & Jackendoff, 2005: Chapter 4).  

In this light, let us revise the set of dominance relations in (44), as (50): 

50) ρ = 〈(sag, Jan’); (sag, Piet’); (sag, helpen); (helpen, Piet’); (helpen, Marie’); (helpen, 

zwemmen); (zwemmen, Marie’)〉 

The structure of (50) has Jan as the subject of sag, and Piet as its object. The relation sag-helpen is 

not contemplated in the functional hierarchy in (49) because we are not dealing with a V-N relation: 

the functional hierarchy in (46) and the interpretation of (46) from ordered relations in (49) pertain to 

functions that NPs or constructions with their functional potential (say, S’) play in the A-structure of 

Vs. We can use a DG notion to make this somewhat clearer: valency (or valence). Tesnière (1959: 

Chapter 97, §3) presents the notion with a chemistry analogy (already used by Jespersen, 1937) as 

follows: 

The verb may therefore be compared to a sort of atom, susceptible to attracting a greater or 

lesser number of actants, according to the number of bonds the verb has available to keep them 

as dependents. The number of bonds a verb has constitutes what we call the verb's valency 

Vs do not count for satisfying the valence of a V, NPs do: this is easily illustrated in a contrast like 

*John saw runV, but John saw PeterNP. In ECM alternations of monotransitive Vs, it is the whole 

event (say, John saw [Peter run]) that satisfies the valence of the V: we have indicated that by 

establishing a dominance relation between the matrix V and the embedded V (e.g., the edge e<sag, 

helpen>). But it is important to note that helpen does not receive a grammatical function in the 

minimal sub-graph that contains sag. We will come back to these issues in the next section, which 

will deal with the grammar of complement constructions.  

                                                      

ii)   Herb neared the vampire / Herb wanted pizza 

Even if the italicized NPs could be otherwise grouped, it seems strange to us that the same relation can be 

established with two verbs as different as near and want. As an example, near does not require an agentive 

subject, which suggests that it is not a transitive V at all (but rather, an unaccusative V): 

iii) The train neared the station / *The train wanted pizza 

Considerations of this kind fuel our skepticism about the putative advantages of including Postal’s extended 

typology of objects in (49) as is.  
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In any case, and coming back to the problem of strong generative capacity, the fact that we can 

provide a structural description for cross-serial dependencies pushes our system to mild context-

sensitivity. Does it go all the way up to context-sensitivity? If our system did indeed go up to CS, it 

would mean that we could provide structural descriptions for strings that have been generated by 

CSGs. But our system is not unrestricted in the kinds of crossing dependencies it allows: in particular, 

as we will see in the next section, there are constraints with respect to when cross-cycle dependencies 

can be established. These constraints over the dependencies that can hold between elements in 

different cycles after substitution/adjunction make our system weakly equivalent to a TAG with links, 

in generative power, with the only difference that under specific conditions we do allow for new links 

to be created, joining nodes that belong to different cycles (roughly, different elementary trees using 

TAG terms). Sections 5 and 6 will come back to this constraint and the kind of structures it allows for.  

5. On English Complement Constructions 

In this section we will deal with the structural descriptions that our graph-theoretical approach assigns 

to different kinds of transitive constructions in English. In this section we are concerned with those 

cases in which a verb takes a non-finite complement: strings of the type Vfin+NP+Vinf. The 

classification of so-called ‘predicate complement constructions’ has been a concern since the early 

days of Generative Grammar: Rosenbaum (1965) distinguishes two kinds of such constructions, 

classified essentially in terms of VPs taking either NPs dominating Ss or VPs as complements; and 

Perlmutter (1968) and Postal (1974) expand and modify the proposal. These foundational works 

differentiate between the following kinds of non-finite complements: 

51) a. Subject-to-Subject raising 

b. Subject-to-Object raising (a.k.a. Exceptional Case Marking ECM) 

c. Subject-controlled Equi 

d. Object-controlled Equi 

These terms are used descriptively, without presupposing any theoretical analysis (despite the fact that 

the nomenclatures that we have used include the names of two transformations, raising and Equi NP 

deletion). In any case, what we require of a grammatical theory is that it adequately distinguishes 

between these structures and assign distinct structural descriptions where applicable. We will proceed 

in the order indicated in (51), starting from Subject-to-Subject raising.  

Consider the following example: 

52) John seems to have read the book 

One of the first questions we can ask ourselves is ‘how many cycles are we dealing with here?’ The 

traditional view in transformational generative grammar is that in (52) the NP John receives thematic 

role from read and then moves (raises) to the matrix clause to receive Case from seem. The analysis 

of these structures is essentially biclausal: each verbal predicate seem and read is contained in 

separate clauses (dominated by distinct S nodes); the NP John originates as the subject of the 

embedded one, and moves to the position of subject of the matrix one. But transformational analyses 

for Raising to Subject have not been uncontested, and the same is the case with bi-clausal analyses. 

Jacobson (1992) and Bresnan (2001) present non-transformational bi-clausal analyses; Torrego (2002) 

and Krivochen (2013) present a transformational, monoclausal analysis. Here, we try to advance a 

non-transformational, monoclausal analysis (see also Gazdar, 1982: 152-155; Pollard & Sag, 1984: 

133, ff. APG does not have ‘transformations’ as such, with raising constructions involving immigrant 

arcs which presupposes more than one predicate –but not more than one ‘clause’ in any meaningful 
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sense, see Johnson & Postal, 1980: 134). The reasons for assuming a monoclausal analysis (which 

translate here into having a single sub-graph, thus a single cycle) are essentially semantic: raising 

verbs are taken here to be assimilable to the class of auxiliary verbs, specifically, modals (see 

Wurmbrand, 1999 for the exact opposite conclusion). The map of connectivity relations in (51) is as 

follows: 

53) Cycle 1: [John seems to have read the book] 

ρ = 〈(seems, John’); (to have, read); (read, John’); (read, book’)〉 

The relations between read, John’, and book’ illustrate the interpretation rule in (48). John is the 

subject of seem and of read, but, crucially, there is no relation between John and the perfective 

auxiliary have: this is consistent with the analysis of the perfective perfect auxiliary as a functional 

auxiliary in Bravo et al. (2015) and subsequent work (see also Section 6 below). Have to does not 

take John as an argument, nor does it impact on its semantic interpretation or assign it Case. It just 

makes sense not to establish a relation between the auxiliary and the NP. We can capture the fact that 

there is a relation between seem and John as well as read and John (the former, via agreement and 

Case, the latter, via theta-marking, however these are conceived of in the reader’s framework of 

choice –but favouring lexical specification theories like LFG-) in a monoclausal structure (having a 

single sub-graph as the structural description of the whole sentence), and without multiplying the 

nodes (thus, no copies or traces). 

Given this analysis, and anticipating part of the discussion in Section 7 the reader may wonder 

what happens if there is a lexical auxiliary in the chain. That is, would we have an edge between, say, 

the modal need and John in John seems to need to work extra time to pay the bills, given that modal 

and phasal (e.g., start, continue, finish) auxiliaries are identified as lexical auxiliaries in Bravo et al. 

(2015)? Things are not clear. In principle, if lexical auxiliaries define local domains as claimed in 

Krivochen & García Fernández (2017) we would be dealing with three cycles: one for seem, one for 

need, and one for work. But we have been careful in the past when extending our analysis of the 

Spanish auxiliary system to English: the English auxiliary system does not work like the Spanish one 

(a point that is anticipated in the categorial system, in its Montagovian version as well as the 

Schmerlingian reworking). It is essential to note that Spanish auxiliaries can appear in different orders 

(given some constraints based on the type of auxiliary and the information it conveys), yielding 

different meanings, whereas the ordering of English auxiliaries is rigid. The internal segmentation of 

auxiliary chains is thus different in English and Spanish, as well as the relations that auxiliaries 

establish with other elements in the sentence, like the subject and the lexical verb. This is one of the 

factors that yield inter-linguistic variation, and it can be readily captured in a Montague-Schmerling 

approach. While there are arguments to have modals and aspectual auxiliaries form a constituent with 

nominative subjects in Finite Clauses FC and Inverted Finite Clauses IFC in English (Schmerling, 

1983a), those do not apply to Spanish:  

 Spanish auxiliaries inflect like finite verbs for TAM and agreement (whereas only two inflect 

for TAM in English: ‘have-has-had’ and ‘be-is-was’). For example, we see in (53) below that 

the modal poder has an infinitive form and an imperfective past form, just like the lexical 

verb trabajar 

54) a. Juan trabajabaIMPF/PAST los fines de semana 

J. workedImpfPast the weekends 

b. Juan podíaIMPF/PAST trabajarINF los fines de semana 

J. was ableImpfPast to work the weekends 
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c. Juan teníaIMPF/PAST que poderINF trabajarINF los fines de semana 

J. had toImpfPast be able toInf workInf the weekends 

 Spanish lexical verbs do invert in interrogative contexts, as well as auxiliary chains (including 

the lexical verb); this contrasts with English having a single ‘operator’ (the auxiliary that 

inverts with the subject) per clause (Quirk et al., 1985: 121)17 

55) a. Juan dijo que…  ¿Qué dijo Juan? 

J. said that…               What said J.? 

b. Juan había tenido que decir que…  ¿Qué había tenido que decir Juan? 

J. had had to say that…                            What had had to say J.? 

 Spanish auxiliaries are not restricted to specific clause types (i.e., they have full paradigms) 

 Spanish does not have English-like VP ellipsis in its treatment of auxiliaries, including 

stripping (Schmerling, 1983a; 2016: Appendix B. We will come back to this property below) 

56) a. -Who wants to come along? 

-I do [want to come along]! (Culicover & Jackendoff, 2005: 233) 

b. Robin ate a bagel for breakfast, and Leslie will [eat a bagel] too (adapted from C&J, 2005: 

283) 

c. *Juan comió un bagel de desayuno, y María también va a [comer un bagel] 

A different categorial segmentation for the Spanish auxiliary system with respect to the English one 

seems to be thus not without strong empirical motivation. In this scenario, a deeper analysis of the 

English auxiliary system is required before jumping to conclusions. We will come back to aspects of 

the Spanish auxiliary system in Section 7. 

We have seen some basic aspects of Raising-to-Subject constructions. Next up in (51) are 

Raising-to-Object structures, which we have briefly dealt with in the previous section. Let us briefly 

recapitulate with an example and its full set of dominance relations (its ρ-set): 

57) Mary saw John run 

ρ = 〈(see, Mary’); (see, John’); (see, run); (run, John’)〉 

This is a much simpler example than the crossing dependencies we saw in (40) (the famous Jan Marie 

Piet sag helpen zwemmen) and the discussion that follows. What we need to note here is that the 

matrix V see dominates both its nominal Object John (which we can identify as such by the hierarchy 

in (48)) and the embedded V run. As we said above, run does not satisfy the valency of see, rather, 

John does (in terms of getting a well-formed structure), however, because John is the subject of run, 

and it is this event (John run) that is the complement of see, we have an edge from the matrix V to the 

embedded V. We may note here that the formal properties of structural descriptions for ECM 

                                                      

17 Moreover, it is possible for the subject to surface in positions internal to the chain (see García Fernández & 

Krivochen, 2017); however, the only possible positions are those depending from lexical auxiliaries (see also 

Torrego, 1984): 

(i) ¿Qué había tenido Juan que decir? 

What had had J. to say? 

‘What had John had to say? 
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structures are very similar to those of structural descriptions assigned to some small clause 

complements, as in the examples in (58): 

58) a. They consider John an idiot 

b. John wants Bill dead 

c. I like my tea strong 

The ρ-sets for the sentences in (58) are given in (58’): 

58’) a. ρ = 〈(consider, they); (consider, John’); (consider, idiot); (idiot, John’)〉 

b. ρ = 〈(want, John’); (want, Bill’); (want, dead); (dead, Bill’)〉 

c. ρ = 〈(like, I); (like, tea’); (like, strong); (strong, tea’)〉 

We follow Rosenbaum (1965) and particularly Postal (1974) in considering the accusative NP in 

ECM and small clause (secondary predication) structures to be an argument of the embedded 

predicate, which gets raised to an object position in the matrix clause. Our model for Raising-to-

Object, then, maintains the relation between the embedded predicate (V, A, P…) and its NP subject, 

adding an edge between the matrix predicate and that NP; the Rosenbaum approach, through Ross’ 

(1969b) rules of tree pruning, adequately yields a structure in which there is no bounding node 

between the main predicate and the embedded predicate. 

In this sense, -and jumping to the kind of last structure of the list in (51)- structural descriptions 

assigned to ECM structures are different from those assigned to Object-controlled Equi: the ρ-set for 

an Object-controlled Equi sentence like (59) is given below: 

59) Mary ordered John to shut up 

Cycle 1: [Mary ordered John [Cycle 2]] 

Cycle 2: [John shut up] 

ρ1 = 〈(ordered, Mary’); (ordered, John’)〉 

ρ2 = 〈(shut up, John’)〉 

Note that the matrix V order only dominates John’, not the embedded predicate shut up. The 

structural description for an Object controlled Equi sentence also features multiple cycles, as opposed 

to the single cycle in ECM: this correlates with well-known asymmetries between these constructions, 

like the following: 

60) a. John wanted the guests to leave → 
𝑊ℎ𝑎𝑡 𝑑𝑖𝑑 𝐽𝑜ℎ𝑛 𝑤𝑎𝑛𝑡?

∗ 𝑊ℎ𝑜 𝑑𝑖𝑑 𝐽𝑜ℎ𝑛 𝑤𝑎𝑛𝑡 𝑡𝑜 𝑙𝑒𝑎𝑣𝑒?
 

b. John ordered the guests to leave → 
? ? 𝑊ℎ𝑎𝑡 𝑑𝑖𝑑 𝐽𝑜ℎ𝑛 𝑜𝑟𝑑𝑒𝑟?

𝑊ℎ𝑜 𝑑𝑖𝑑 𝐽𝑜ℎ𝑛 𝑜𝑟𝑑𝑒𝑟 𝑡𝑜 𝑙𝑒𝑎𝑣𝑒?
 

c. John saw Mary cross the street → 
𝑊ℎ𝑎𝑡 𝑑𝑖𝑑 𝐽𝑜ℎ𝑛 𝑠𝑒𝑒?

𝑊ℎ𝑜 𝑑𝑖𝑑 𝐽𝑜ℎ𝑛 𝑠𝑒𝑒 𝑐𝑟𝑜𝑠𝑠 𝑡ℎ𝑒 𝑠𝑡𝑟𝑒𝑒𝑡?
 

d. John told Mary to finish the report → 
∗ 𝑊ℎ𝑎𝑡 𝑑𝑖𝑑 𝐽𝑜ℎ𝑛 𝑡𝑒𝑙𝑙?

𝑊ℎ𝑜 𝑑𝑖𝑑 𝐽𝑜ℎ𝑛 𝑡𝑒𝑙𝑙 𝑡𝑜 𝑓𝑖𝑛𝑖𝑠ℎ 𝑡ℎ𝑒 𝑟𝑒𝑝𝑜𝑟𝑡?
 

ECM constructions allow for the whole clausal complement of V to be made into Wh- and 

questioned, but not for the extraction of the subject of the embedded infinitive. In traditional IC terms, 

we capture the intuition that the accusative NP is a constituent of the same clause as the embedded 

infinitive, and that whole clause is what can be questioned. Object-controlled Equi, on the other hand, 
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features an accusative NP which is part of the embedded clause containing the infinitive, but also of 

the matrix VP. The latter structure, in GB/MP, requires the introduction of a null category PRO as the 

subject of the infinitive, which is controlled by the object of the matrix clause. The relevant IC 

segmentations are as follows, for a string Vfin+NPAcc+Vinf (see Rosenbaum, 1965 for a classic 

argument in terms of distinct Deep Structures for ECM and Object-controlled Equi; McCawley, 1998: 

133, ff. for descriptive discussion and examples galore): 

61) a. [… Vfin [NPAcc Vinf]] (ECM) 

b. [… Vfin NPAcc [PRO Vinf]] (Object-controlled Equi) 

By allowing trails to visit a node more than once, we do not require the addition of a new terminal in 

the form of an empty category PRO (which, in turn, requires the introduction of a whole set of 

conditions ruling its distribution: Control Theory, including the rather controversial PRO theorem; see 

Bouchard, 1982: Chapter 5 for useful early-GB discussion). 

In sum, ECM and Object-controlled Equi receive a different treatment in our theory, as desired (and 

this desire, it is worth pointing out, arises from the consideration of empirical facts). 

We have deliberately left Subject-controlled Equi (a.k.a. just ‘Control’) for last, because of its 

problematic nature. During the Standard Theory and GB days, Raising vs. Control was considered to 

be an essential distinction which made use of two different mechanisms: movement vs. deletion in 

Equi-based theories; movement vs. lexical insertion of a null pronoun in GB and lexicalist theories 

(see Davies and Dubinsky, 2004: Chapter 1 for an empirical overview; Rosenbaum, 1965 and Postal, 

1974 are classical references). But more recently, the distinction in the mechanisms involved in 

Raising and Control has been blurred. Hornstein (1999) and much subsequent work has argued that 

there is a single underlying mechanism, which is Movement, unifying Raising and Control. The 

differences between these structures would reside only in the fact that NPs acquire further theta-roles 

in the course of the derivation in Control, but not in Raising structures (because Raising verbs are not 

theta-assigners); this proposal entails the elimination of PRO and the proliferation of copies/traces. On 

the other hand, non-transformational frameworks reject a movement analysis (naturally): in LFG, 

Raising Vs take XCOMP (‘open’) complements: the SUBJ of XCOMP is also an argument of the matrix 

verb, and this is specified in the matrix verb’s f-structure (Bresnan, 2001; Dalrymple, 2001), and the 

relevant relation in Raising is actually functional control: the subjects of the matrix and embedded Vs 

need to have the same f-structure in Subject-to-Subject raising and the object of the matrix V and the 

subject of the embedded V need to have the same f-structure in Subject-to-Object raising (Dalrymple, 

2001: Chapter 12). In the case of Equi Vs (a.k.a. Control Vs in more recent times), the complement is 

not open: we don’t have XCOMP, but COMP, with a PRO in the subject position of the embedded 

predicate and a relation of anaphoric control between the subject or object of the matrix V and PRO 

(in Subject- and Object-controlled Equi respectively), see Bresnan (2001: 297, ff.) and Dalrymple 

(2001: 325, ff.) for an accessible introduction to anaphoric vs. functional control.  

The reason we have spent some time with LFG’s analysis is that in the framework sketched 

here there seems to be no reason to have different structural descriptions for Subject-controlled Equi 

and Raising if the difference can be codified in lexical specifications (at least in English): these 

specifications pertain to the interpretation of nodes, but not to the connections they establish with 

other nodes in a structural description. What these lexical specifications look like depends on the kind 

of lexicon that we want to have. This idea is compatible with so-called Lexical entailment equi 

theories (e.g., Dowty, 1978, 1985) and its development in Jacobson (1990): there is no movement 

involved in Raising or in Equi, but their differences arise as a matter of lexical semantics. Dowty’s 

take on lexically governed rules is particularly germane to the proposal advanced here, since  
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The key to this method [formulate transformations as lexical rules rather than as syntactic rules] 

is to treat Dative Shift, Passive, the Raising rules, and other rules that "change grammatical 

relations" as rules operating on individual verbs rather than on the full sentence phrase 

markers in which these verbs occur (Dowty, 1978: 393) 

We disagree with Dowty in grouping Dative Shift and Raising with Passive, because it seems to us 

that only Passive is a true RCT, whereas Dative Shift and Raising do not change grammatical 

relations, they merely add a new relation without modifying existing connections (contra Dowty, 

1978: 400). However, the analysis of (some) lexically governed transformations (e.g., Raising) in 

terms of lexical specifications is precisely the kind of framework that complements the one sketched 

here perfectly. The conception of the lexicon in Categorial Grammar (particularly in the versions of 

Dowty, 1978, 1979) seems to us to be a very good candidate for a theory of nodes, which –recall- 

correspond not to lexical items, but to basic expressions in the algebra of a language L (in our case, 

English). 

Coming back to the comparison of Equi and Raising structures, for (62) and (63) we have the ρ-sets in 

(62’) and (63’) respectively: 

62) Mary tried to finish the paper (Subject-controlled Equi) 

63) Mary was likely to finish the paper (Subject-to-Subject raising) 

62’) ρ = 〈(try, Mary’); (finish, Mary’); (finish, paper’)〉 

63’) ρ = 〈(be likely, Mary’); (finish, Mary’); (finish, paper’)〉 

Note that the Raising predicate be likely is a multi-word basic expression, such that it is one node, not 

two. There is, in this theory, no structural difference between Raising and Subject-Equi sentences: the 

differences arise when we consider the properties of the lexical items that govern the structures. This 

view is clearly incompatible with endoskeletal models (primarily, GB), in which syntactic structure 

projects from lexical requirements (this is crucially different from having a-structure, f-structure, and 

c-structure as parallel levels, as in LFG) via Satisfy, the Projection Principle, or some such operation 

(see, e.g., Chomsky, 1995: 187). There are differences in lexical specification, but not in syntactic 

configuration: in this way, we simply avoid the movement vs. construal debate surrounding Equi (see 

the papers in Davies & Dubinsky, 2007 for a good overview of that debate) because, essentially, the 

grammar in this theory is not generative; there is a single format for both Equi and Raising, but it is 

not a structural template nor a projection of lexical properties.  

Raising structures present an interesting interaction with the licensing of polarity items, which 

we will only comment on here, much research pending. Negative Polarity Items (NPIs) like ‘any’ or 

‘ever’ need to be licensed by a negative expression, be it an adverb like ‘no’, ‘never’, ‘seldom’, a 

quantifier like ‘none’, or an operator like interrogation, where –in the simple cases- licensing requires 

c-command such that an NPI must be within the c-command domain of (the minimal XP containing) a 

licenser (Horn, 1989, 1997; Ladusaw, 1980). Ladusaw (1980: 112) formulates the so-called Polarity 

Hypothesis as follows: 

A NPI must appear in the scope of a trigger (a downward entailing element). If the trigger 

appears in the same clause as the NPI, the trigger must precede the NPI 

There are two conditions in Ladusaw’s hypothesis, one pertaining to structural order and another to 

linear order. Here, we are only interested in the former. In the context of this work, we will express 

the structural order condition as follows: 

64) A node a appears in the scope of a node b iff: 
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i. There is a trail t such that b dominates a in t (as per Definition 3), and 

ii. There is no c, such that c is the root of a sub-graph including a but excluding b, and 

iii. Both a and b belong to the same graph at the point of determining scope 

May the following contrast suffice as an illustration (with licenser and licensee in bold):  

65) a. *A man in love was ever happy (no trigger; thus, NPI is not licensed) 

b. No man in love was ever happy (No as a local, accessible trigger; the NPI is thus licensed) 

c. Which man COMP[+Int] in love was ever happy? (the interrogative operator COMP[+Int] as a 

local, accessible trigger; the NPI is thus licensed) 

We will now analyze some situations in which we get unexpected licensing under standard 

assumptions about phrase structure. These assumptions, in what pertains to the present point, are the 

following: 

I. Non-complements are internally opaque (Chomsky, 1977; Huang, 1982; Uriagereka, 

2002) 

II. A negative polarity expression within an adjunct cannot legitimate an NPI in object 

position (as a consequence of (I) plus the additional assumption that material in an 

adjunct to XP never c-commands material in object position in XP) 

Assumption II is related to the fact that polarity scope relations are restricted to clausal domains, 

meaning, rooted sub-graphs (see Sternefeld, 1998a, b; more on this below). Non-monotonically 

assembled nonterminals, including all non-objects, need to be Chomsky-adjoined (Chomsky, 1955), 

thus, when we consider a kernel sequence18, they are still not there (see also the relative timing 

between constituent structure rules and conjoining and embedding generalized transformations in 

Fillmore’s 1963 cycle). 

It is thus crucial to determine what is an adjunct and what is not (which in turn implies a certain 

phrase structural configuration). In general, the distinction can be captured in IA as well as IP 

frameworks; Dowty (2003) formulates the essential features that distinguish complements from 

adjuncts in an admittedly simplistic fashion (but which captures the core aspects of the syntax and 

semantics of both grammatical functions): 

A constituent Y in a phrase [X Y] (or in [Y X]) is an ADJUNCT if and only if (i) phrase X by 

itself (without Y) is also a well-formed constituent, and (ii) X (without Y) is of the SAME 

syntactic category as phrase [X Y]. (X is in this case the HEAD of the phrase [X Y].) 

Then, a constituent Y in [X Y] is a COMPLEMENT if and only if (i) X by itself (without Y) is not 

well formed, or else (ii) if it is grammatical, then X standing alone not have the same category 

as in [X Y] (and does not have exactly the same meaning as it has in [X Y]) 

If Y is an adjunct, the meaning of [X Y] has the same kind of meaning (same logical type) as 

that of X, and Y merely restricts [X Y] to a proper subset of the meaning/denotation of X alone. 

Where Y is a complement in [X Y], (i) the meaning of X by itself, without Y, is incomplete or 

incoherent. Else, (ii) X must be understood elliptically […]  

                                                      

18 As a reminder, kernel sequences are strings of terminal nodes derived by means of phrase structure rules 

exclusively (Chomsky, 1955: 481). In contrast, kernel sentences are those which result from applying obligatory 

transformations to the terminal strings of the Σ, F grammar (Chomsky, 1957: 45).  
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Also, the same adjunct combined with different heads affects their meaning in the “same” way 

semantically (e.g. walk slowly vs. write slowly). But the same complement can have more 

radically different effects with different heads (e.g. manage to leave vs. refuse to leave). 

(Dowty, 2003: 2-3) 

Consider now the following examples, in which we will analyze the conditions for NPI licensing: 

66) a. No policeman seemed to all of the reporters to have any chance of solving the case 

      b. The police seemed to none of the reporters to have any chance of solving the case 

      c. *The police seemed to have any chance of solving the case to none of the reporters 

 d. *To none of the reporters, the police seemed to have any chance of solving the case19 

The traditional picture, complying with the condition that an NPI (here, any) needs to appear within 

the scope of its trigger (here, no/none), where scope is defined in terms of c-command, is satisfied in 

(66 a), at least if we assume that a quantified NP of the kind [QNEG + N] counts as a trigger as a whole 

despite the fact that, strictly speaking, QNEG does not c-command the NPI. The opposite scenario 

arises in (66 c), in which (depending on where we assume the to-phrase is adjoined, more on this in a 

moment) either the NPI c-commands the trigger or the NPI is directly free (i.e., unbound). But it is the 

grammaticality of (66 b) that results of particular interest: note that the trigger appears within a phrase 

that does not seem to c-command the NPI; however, the NPI appears to be somehow (non-

canonically) licensed. The status of the to-phrase in raising constructions is in general assumed to be 

that of an adjunct, in phrase structure grammars (and in the ‘mixed’ approach in Dowty, 2003): note 

that in general it can be omitted and when it is materialized its linear position is not as restricted as 

with complements. Let us illustrate the situation with a specific kind of copy-raising construction, 

Richard (Rogers, 1971): 

67) a. (to me) it looks (to me) like Richard is in trouble (to me) 

b. (to me) Richard looks (to me) like he’s in trouble (to me) 

The to-phrase in (66 a) above presents similar positional freedom: 

66’) a. (to all of the reporters) No policeman seemed (to all of the reporters) to have any chance 

of solving the case (to all of the reporters) 

This is to be expected, since the to-phrase does not intervene between the licensor no and the licensee 

any. However, when the polarity expression that licenses the NPI occurs within the to-phrase, things 

get more restrictive. Summarizing (66 b, c, d) in a single example, we get both peripheral positions 

yielding severely degraded or directly ungrammatical results:  

66”) (*to none of the reporters) The police seemed (to none of the reporters) to have any chance 

of solving the case (*to none of the reporters) 

                                                      

19 For ease of contrast, compare (66 d) with the ‘inversion-via-focus’ version, which sounds much better: 

i) To none of the reporters did the police seem to have any chance of solving the case 

We will come back to this contrast briefly. 
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In the terms we have been working with here, licensing is a condition requiring the existence of a trail 

between licensor and licensee where both are accessible. In short, we seem to have elements to 

formulate the following condition in (68): 

68) Licensing (first preliminary formulation) 

A node a may license a node b iff (a, b) ∈ ρ* 

Which entails that there must be a trail between a and b. While this condition seems to be sensible, it 

is not enough: a trail between the peripheral occurrences of none and the NPI any is certainly 

formulable, but would yield incorrect empirical predictions. What else is needed, then? It seems that 

here the property that graphs are rooted comes in handy: Definition 7 establishes that graphs contain 

at least one node which is not dominated by any other node within that subgraph; that is the root. This 

means that the traditional transformational distinction between root and non-root operations (e.g., 

Emonds, 1970) can be captured in the present framework. And how exactly does this help? To begin 

with, we propose that the relevant structure of (66”) is (69), using S to denote the root node for 

convenience: 

69) (*to none of the reporters)S-Adjunct The police seemed (to none of the reporters)VP-Adjunct to have 

any chance of solving the case (*to none of the reporters)S-Adjunct 

That is: both left and right peripheral adjuncts are assumed here to be adjoined to the root, whereas the 

intermediate adjunct is somewhere in the VP, in phrase structure terms. Here, what matters is simply 

the root vs. non-root distinction, because if the adjunct is a sub-graph, we want to know in which 

positions the nodes that the sub-graph contains are accessible for operations outside that sub-graph, 

including licensing. Thus, we seem to need to reformulate the condition on licensing above to 

incorporate the nuances we have briefly discussed in this paragraph. The result goes along the 

following lines (with condition (iii) to be reformulated below): 

70) Licensing (second preliminary formulation) 

a ∈ A may license b ∈ B iff  

i. (a, b) ∈ ρ*, and 

ii. B is not adjoined to the root of A, and 

iii. There is at least a node in A that is identical to a node in B 

Where A and B are sub-graphs and a and b are nodes 

Note that we have incorporated a few corrections: on the one hand, licensing is a node-to-node 

relation. Recall that nodes correspond to basic expressions, not lexical items: NPIs like lift a finger or 

give a damn are indeed multi-word basic expressions. Also, we added the condition that the licensee 

cannot be contained in a sub-graph that is adjoined to the root of the graph containing the licensor: left 

or right periphery is a matter of linear order, not of syntactic connections. It is essential to bear in 

mind that root node does not mean that we are dealing with a matrix clause, for there are embedded 

roots in the case of the application of generalized embedding transformations (in the sense of 

Fillmore, 1963; these could also be understood in terms of substitution in Joshi & Kroch, 1985); for 

instance: 
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71)  

 

 

 

 

S1 is still the root of the sub-graph α (whose internal structure does not concern us now), which is 

what matters (see Joshi, 1985 for a detailed account of adjunction in phrase structural terms). Strictly 

speaking, (71) illustrates the substitution of x by S1 under identity, should the TAG definition of 

adjunction be used.  

Now, let us consider a contrast that we mentioned in passing above: that between (66 d), repeated 

here for convenience as (72 a), and the new example (72 b) 

72) a. *To none of the reporters the police seemed to have any chance of solving the case 

b. To none of the reporters did the police seem to have any chance of solving the case 

We will refer to the process that gives us the frontalization without inversion in (72 a) as 

topicalization, and frontalization with inversion as focalization. This choice of terminology is not 

innocent: the kind of argument we put forth here contrasts with Rizzi’s (1997: 295-296) pertaining the 

mechanisms of topic and focus. In the light of the conditions (70 i-iii) above for licensing, we can 

interpret the contrast in (72), in which an NPI is licensed under frontalization + inversion (focus) but 

not under mere frontalization (topic).  

Rizzi (1997: 295) observes that there may be more than a single topic per clause, but only one 

focus. He initially considers (but promptly proceeds to reject) the idea that the derivation of these 

structures differ in that only topic involves adjunction, but focus does not. There are, however, reasons 

to think that initial view may be correct for these instances. If topic involves adjunction, that means 

that we are dealing with (at least) two distinct sub-trees which are related by the creation of an edge 

between nodes in the adjoined object and the target of adjunction. Furthermore, the target of 

adjunction in topic structures seems to be the root, at least in the cases we have observed here. If this 

is so, then conditions (70 i-iii) are sufficient to filter out NPI licensing from a topic. But then what 

happens with (72 b)? Two options are logically possible at this point: 

I. Focus is adjunction, like topic, but to a non-root 

II. Focus is not adjunction at all 

In a non-transformational framework, in which things do not move around literally leaving copies and 

traces, the relevant difference between adjunction to the non-root and no adjunction is that between 

non-monotonic structure and monotonic structure respectively: are we in the presence of more than a 

single derivational space, and thus, more than a single sub-graph? Here, we will argue that we are not. 

Much research pending, the polarity expression in the focalized constituent generates an intrusion 

effect with focus, but not with topic, such that something that should not be able to license an NPI, de 

facto does. We attribute this intrusion to the possibility that focus only involves a single sub-graph to 

begin with, which would be equivalent to proposing that the specific kind of foci that we see in (72 b) 

are base-generated (but this does not extend to other kinds of foci, see Jiménez Fernández, 2015 for a 

classification of foci, and Krivochen & García Fernández, 2018 for arguments in favour of a 

Adjunction of α to 

β at x iff x = S1 

S2 

S1 

S1 α = S2 

x 

β = 
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multidominance analysis for verum focus in Spanish that is compatible with the monotonic view of 

focus proposed here, although under slightly different assumptions).20 

In this section we have presented a sketch for a treatment of English clausal complement 

constructions which seems to us to adequately capture relevant empirical generalizations while at the 

same time simplifying the theoretical apparatus. We have also taken advantage of the analysis of 

raising constructions and looked at aspects of NPI licensing under specific structural conditions. The 

next section will be devoted to the dynamics of VPs as well, but considering the interaction between 

auxiliary verbs and lexical verbs in Spanish. We will also take a look at the way in which 

dependencies with clitics work across sub-graphs, focusing on the ‘transparency’ or ‘opacity’ of 

parenthetical clauses, which by definition are not monotonically derived. We will argue that a strictly 

configurational theory of (non-)monotonicity in the grammar is too restrictive when it comes to 

predicting possible dependencies across sub-graphs.  

6. Some considerations about Clitic Climbing and Spanish auxiliary chains 

By and large, the model presented here has been devised as a descriptive tool in order to have 

fully explicit maps of node connectivity in English sentences. We have indeed warned the reader that 

extensions and applications to other languages are not automatic, because the focus of this model is 

not universality, but rather description of specific features of particular natural languages. In the 

present section we will, however, show that in principle there are problematic aspects of dependencies 

in Spanish sentences that can be captured using a natural extension of the model that we have 

sketched so far, an extension that we will then proceed to apply to further English data. 

The graph-theoretic approach pursued here is strongly cyclic, and at the same time can 

straightforwardly describe trans-cyclic relations. We can take a sub-graph and embed it in another 

graph, provided that there is a node in the target graph that either dominates or is identical to a node in 

the embedded sub-graph. This much is not very different from substitution / adjunction in a Tree 

Adjoining Grammar (Joshi, 1985; Kroch & Joshi, 1985), but because there is no restriction that the 

target for embedding is the root of a sub-graph, we can speak of generalized adjunction, which also 

sounds rather cool. Recall now that we started with a distinction between relation changing 

transformations (RCT) and relation preserving transformations (RPT). Assume now that we have a 

string abcd that displays the following dominance relations: 

73) ρ = {(a, b); (a, c); (a, d); (c, d)} 

And there is an embedding transformation inserts the substring efg at c via adjunction, yielding 

ab[efg]d (‘pushing’ d downwards; Joshi, 1985: 209). A question arises: is efg opaque for purposes of 

operations at (i.e., triggered by an element in) abd? That is, can we create an edge from any individual 

element in the original string to some individual element in the adjoined string? If so, under which 

conditions? 

                                                      

20 As we have emphasized above, the present framework does not directly pertain to or relate with morpho-

phonology. However, a tangential piece of evidence could be called upon to strengthen the idea that only topics, 

but not foci, involve more than one sub-graph: in the contrast between (72 a) and (72 b), only in the former do 

we have a separate tonal unit for the frontalized phrase. This follows directly if we have root-adjunction under a 

principle like Emonds’ (1970: 9): ‘a root S immediately dominated by another S is set off by commas’.  
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We would like to propose, initially, that the insertion of an element that only disrupts linear order 

without changing constituency does not count as defining a cycle. Thus, we suggest the following 

preliminary constraints (from Krivochen et al., in preparation): 

74) [X… […α…]…Y] yielding R(X, Y) is a legitimate configuration iff  

i. […α…] has been introduced non-monotonically, and 

ii. The rule introducing […α…] is an order-changing rule (in the sense of McCawley, 

1982: 94) [a relation-preserving transformation in the terms we use here]; that is, 

there is no element in α that either dominates or is dominated by a non-root node in 

the target of embedding 

We will proceed to exemplify now. Let X be an argument clitic and let Y be its governing V; thus, we 

have the following relation: R(X, Y) = R(Clitic, V). What exactly is R? Here we argue that a clitic-

governing V structure is modelled in terms of dominance, thus, something like hacerlo (doINF itCL) 

displays the dominance relation ρ(hacer, lo). In Relational Grammar terms, we would have the 

following preliminary representation: 

75)  

 

 

 

Or, using our ordered notation: 

75’) ρ = 〈(hacer, PRO); (hacer, lo)〉 

These considerations hold at a very local level, and for a-structure. More globally, we need to 

consider V-clitic relations in a wider syntactic context, and constrain the possible dependencies that 

clitics can establish with otherwise in abstracto potential hosts. To this end, we need to make some 

assumptions explicit. To begin with, we will assume that a clitic is ordered (via direct dominance or 

transitive dominance) with respect to all other nodes within its derivational current (understanding 

this term as in Uriagereka, 2002; a local monotonically assembled domain / a minimal sub-graph 

containing the clitic and a suitable host, in this particular case), as per the definition of order above 

(Definition 11), to be substantially expanded on below (in Section 7). We assume that it is the 

ordering imposed over nodes in a tree that allows for a componential interpretation to be assigned to 

those nodes. If a clitic is not ordered with respect to a given node v, that node v (which may be the 

root node of an auxiliary tree) does not disrupt any relation within the minimal sub-graph containing 

the clitic and its closest host (where the length of a trail is measured as the number of edges in that 

trail21). This means, as a provisional observation, that parentheticals (if derived along the lines of 

Emonds, 1979; McCawley, 1982, via adjunction) should not count as intervening nodes for clitic 

climbing. This is indeed verified empirically: 

                                                      

21 The space in which our graphs exist is a(n Euclidean) metric space, thus, the familiar definitions hold (for d a 

metric over a set of points and x, y points): 

i. d(x, y) ≥ 0 and d(x, y) = 0 iff x = y (separation axiom) 

ii. d(x, y) = d(y, x) (symmetry axiom) 

iii. d(x, z) ≤ d(x, y) + d(y, z) (metric inequality) 

hacer 

lo 

2 
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76) a. */?? Los hermanos se la dejan a Ana preparar e algunas veces (example from Emonds, 

2007: 200) 

The brothers CLDAT CLACC let Prt Ana to-prepare some times 

b. Los hermanos se la dejan, a Ana, preparar e algunas veces 

(76) can only be acceptable if a Ana is derived in parallel, not monotonically. If this is the case, the 

clitic is ordered with respect to [dejar] and preparar, but not with respect to a Ana at the point of 

mapping dependencies, which is in fact predicted by our framework.  

However, this is not (it cannot be) the full story: what counts as a ‘parenthetical’ (in the sense of 

‘adjoined opaque domain’, whose opacity is, in traditional IC-PSG terms, given by the fact that they 

are not subcategorized for nor monotonically assembled) is not always clear. Initially, we would 

expect that (77 b) below would not work, but surprisingly, it does: 

77) a. Juan puede, en realidad tiene que, hacerlo 

J. may, in reality has to, do-CLACC 

b. Juan puede, en realidad lo tiene que, hacer 

c. *Juan lo puede, en realidad tiene que, hacer 

The reason why we would expect (77 b) to be ungrammatical under a general view of what a 

‘parenthetical’ is is that, if en realidad tiene que is derived in parallel and inserted by an order-

changing rule (a la McCawley, 1982), then it should not be a suitable host for the clitic: either the 

clitic cannot move into the domain derived in parallel (because it is opaque, following Chomsky, 1977 

in a Subjacency-inspired view, or Uriagereka, 2002 for a different perspective), or, if the clitic is base-

generated, it cannot be thematically interpreted as an argument of the lexical verb (because opacity is 

a double edged sword: nothing comes in, nothing goes out). Further refinement is thus required. 

In this context, speaking of ‘order-changing rules’ seems to be a more felicitous term than 

‘parentheticals’, in the light of the following contrasts pertaining to the positional freedom of the 

relevant adjoined sub-graphs: 

78) a. Los hermanos sei laj dejan, a Anai, preparar ej algunas veces 

b. Los hermanos sei laj dejan preparar ej algunas veces, a Anai 

c. A Anai, los hermanos sei laj dejan preparar ej algunas veces 

d. Los hermanos, a Anai, sei laj dejan preparar ej algunas veces 

79) a. Juan puede, en realidad lo tiene que, hacer 

b. *Juan puede hacerlo, en realidad tiene que 

c. *Juan lo puede hacer, en realidad tiene que 

d. *Juan puede hacer, en realidad lo tiene que 

In contrast with the positional freedom that we see in (78) with respect to the possible sites where the 

parenthetical a Ana can appear in the string, it seems to be the case that the rule that adjoins en 

realidad (lo) tiene que in (79) is more than simply an order-changing rule: the possible adjunction 

sites are very much restricted, depending on the semantic relation between the auxiliary in the 

adjoined phrase and the matrix clause. In this case, the lexical auxiliary in the adjoined clause is 

related to that in the matrix clause on a scale, such that ‘tener que’ means obligation, whereas ‘poder’ 

only means possibility. In this sense, linear order is relevant: it represents the scale along which the 

meanings of the modals are ordered, from ‘weak’ to ‘strong’. Note that when there is no scalar 

relation between the auxiliaries involved (because, say, we have a modal auxiliary poder and a phasal 

aspectual auxiliary empezar a), the construction ceases to be acceptable: 
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80) ??Juan puede, en realidad lo empieza a, hacer 

J. may, in reality CLACC starts to, do 

But even this slightly more nuanced account cannot be the whole story, even though it does give a 

partial account of the kinds of auxiliaries that can be adjoined in this manner. We still have 

unanswered questions, even in the descriptive front. Structurally, why is the parenthetical a Ana in 

(78) not an intervening object between the ‘gap’ and the coindexed clitic, but the adjoined auxiliary in 

(79) is? The possibility we will explore here is that if the adjoined object is a ‘self-contained’ unit, it 

does not count as intervening for operations at the target of adjunction. In other words, and appealing 

to TAG terminology: if an Auxiliary Tree is a self-contained unit, it does not intervene for purposes of 

operations at the Initial Tree to which the AT is adjoined. Of course, making what ‘self-contained’ 

means explicit is paramount. We define the notion as follows: 

81) Self-containment (definition) 

A graph G is a self-contained syntactic object iff ∄(x), x ∈ G such that  

i. ρ*(y, x) holds for y ∈ G’ and G’ ≠ G, and 

ii. x is an argument in G 

That is: a graph is self-contained if it does not contain any node corresponding to an argument (i.e., a 

node that establishes with a predicate in G one of the relations in (49)) that is dominated by a node 

outside that graph (i.e., an argument of a predicate in G’, where G’ ≠ G). Note that self-containment is 

the notion that we appealed to informally in condition (70 iii) for licensing above, which we repeat 

here: 

There is at least a node in A that is identical to a node in B 

In this context, then, the final version of licensing conditions is as follows, including condition (70 iii) 

formulated in terms of self-containment (which we need anyway): 

82) Licensing (final formulation) 

a ∈ A may license b ∈ B iff  

i. (a, b) ∈ ρ*, and [alternatively, there is a trail T that contains a and b] 

ii. B is not adjoined to the root of A, and 

iii. Neither A nor B are self-contained 

Where A and B are sub-graphs and a and b are nodes 

If there is no domination relation, then the nodes in the ‘self-contained’ sub-graph are not strictly 

ordered with respect to the nodes at the target of adjunction, because there is no trail communicating 

those. In (79), the adjoined ‘parenthetical’ contains a node such that ρ(tener que, Cl) holds, as well as 

ρ(hacer, Cl). We can give the relevant set of local dominance relations for (79 a) as follows: 

83) Cycle 1: ρ = 〈(poder, Juan’); (poder, lo); (poder, hacer); (hacer, Juan’); (hacer, lo)〉 

Cycle 2: ρ = 〈(tener que, Juan’); (tener que, lo); (tener que, hacer); (hacer, Juan’); (hacer, lo)〉 

The adjoined object, which corresponds to Cycle 2 in (79), is not ‘self-contained’ in the sense that it 

dominates a node that is also dominated by an element in another domain, in this case, the clitic lo is 

dominated by poder in Cycle 1, as well as hacer, which belongs to both cycles; as per the 
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McCawley/Levine approach to RNR. This last claim requires some unpacking: were we working 

within a transformational framework, the D-Structure of (79 a) would need to look like (79 a’) in 

order to get a proper semantic interpretation: 

79 a’) Juan puede hacerlo, en realidad tiene que hacerlo (D-Structure) 

In this case, we are interested in the fact that the clitic is a node which belongs to two subgraphs 

playing an argumental role in both of them (it is the direct object of the lexical verb hacer), but the 

clitic is part of a bigger sub-graph, which is not self-contained: the arc (hacer, lo). That is not the case 

with [a Ana], which is the multidominated node itself: it is thus free to ‘move around’, changing just 

the linear order between nodes (but not, we stress again, grammatical relations).  

A crucial point (which takes us to the second part of this section’s title) is that so-called ‘clitic 

climbing’ occurs across sequences of verbal predicates under specific conditions (for a Relational 

Grammar treatment, which is now classical, see Aissen & Perlmutter, 1983); in the case that interests 

us now, chains of auxiliaries (in the sense of Bravo et al., 2015). Here we use the expression clitic 

climbing in a purely descriptive manner, to denote strings in which a clitic’s host is not the lexical 

item that takes it as an argument (without implying that the clitic has moved from one position to the 

other; see Ordóñez, 2012 for a general perspective). In previous works we defined an ‘auxiliary chain’ 

as follows: 

84) An auxiliary chain CHAUX is a string {{x⏜y⏜z…n}⏜VP} where 

i) {x, y, z…n} ∈ Auxiliary Verb 

ii) n > 2 

  (Bravo et al., 2015: 75) 

In Bravo et al. (2015); García Fernández et al. (2017) and Krivochen & García Fernández (2017) we 

argued that there are empirical reasons to claim that auxiliary chains are not uniform in terms of their 

cyclic properties: some auxiliaries block the transmission of temporal and aspectual information, 

whereas others let that information go through. In Bravo et al. (2015) we referred to the former as 

‘Lexical auxiliaries’, and to the latter as ‘Functional auxiliaries’. More generally, lexical auxiliaries 

can modify lexical verbs and be modified themselves by functional auxiliaries (the latter of which 

carry temporal/aspectual information), whereas functional auxiliaries can only modify lexical heads 

(be these auxiliaries or verbs), but not be modified themselves. The following table summarizes the 

proposal: 

Not affected (by virtue of 

being temporal information 

themselves) 

Transparent / functional Opaque / Lexical 

Ir a (Eng. be going to), 

acabar de (in its ‘recent past’ 

reading, Eng. have just -ed) 

Progressive estar ‘to be’, 

passive ser ‘to be’, perfective 

haber, Eng. have -ed. 

Phasals (empezar a; terminar 

de…), second-position 

modals, first-position 

auxiliaries (soler, haber de 

‘have to’), tardar en ‘take a 

long time’ . 

 

The distinction is empirically motivated, but it has far-reaching consequences for the format of phrase 

markers, which we have analysed in previous work, from both Immediate Constituent and Categorial 
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Grammars. We provided arguments that prove that a monotonic approach to sequences of auxiliary 

verbs (as in Cinque, 1999 within MGG and Bach, 1983 within CG) run into empirical problems when 

it comes to appropriately delimiting the domains across which modification takes place. As an 

alternative to the monotonic view of structure building we proposed that the syntax of chains of 

auxiliary verbs require us to move up and down the hierarchy of formal languages if we are to provide 

strongly adequate structural descriptions to strings featuring such chains. Here we simply want to 

stress that the empirical coverage achieved by the dynamical approach to chains of auxiliaries can be 

straightforwardly captured in the graph framework. Consider the following examples: 

85) Juan tiene que empezar a trabajar 

J. has to start working 

86) Juan va a haber sido regañado 

J. will have been nagged 

(85) features a sequence of lexical auxiliaries: the modal tener que and the phasal aspectual auxiliary 

empezar, followed by the main lexical verb trabajar. (86), contrastingly, features a sequence of 

functional auxiliaries: ir a (which is a temporal mark), the perfective aspectual haber, diathesis ser, 

and finally the main lexical verb regañado. The phrase markers that a monotonic theory (which need 

not be IC; see Bach, 1983: 111 for a monotonic CG approach to auxiliary chains in English) assigns 

(85) and (86) is presented, just for the sake of comparison, in (87 a) and (87 b) (and whose empirical 

inadequacy has been discussed in detail in Bravo et al., 2015 and Krivochen & García Fernández, 

2017). The full set of dominance relations for (85) and (86) is presented in (85’) and (86’) 

respectively: 

87)  

 

 

 

 

 

 

 

 

 

 

85’) ρ = {(Juan, tener que); (tener que, empezar); (empezar, trabajar); (Juan, trabajar)} 

86’) ρ = {(Juan, va a); (va a, regañado); (haber, regañado); (sido, regañado); (regañado, Juan)} 

The first thing to note is that the dominance relations vary between (81) and (82), which –were we 

committed to a monotonic view of phrase structure- would be unexpected: this means that auxiliary 

chains manifest more than a single kind of computational dependency. The dependencies in (82’) do 

not follow the kind of dominance relations that we would expect in a stepwise IA PSG. Rather, as 

pointed out in Bravo et al. (2015: 78), the dependencies resemble the situation in unification 

Juan 

empezar a 

Juan 

tiene que 

trabajar 

(a) 

sido 

haber 

Juan 

va a 

regañado Juan 

(b) 
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grammars (Shieber, 1986), of ample use in non-transformational models (see also Jackendoff, 2011). 

The modification relations in (86), in predicate(argument) notation, are:  

86”) va a(regañado); haber(regañado); sido(regañado) 

Unify: (Aux 1(VP)) ⋃ (Aux 2(VP)) ⋃ (Aux 3, (VP)) 

Output: (Aux 1, Aux 2, Aux 3(VP)) 

Where the unification of two feature structures D’ and D” as the most general feature structure D, 

such that D’ ⊆ D and D” ⊆ D. We notate this D = D’ ∪ D” (Shieber, 1986: 14). Because the 

minimalist stepwise binary generative operation Merge (Chomsky, 1995 and much subsequent work) 

does not involve the identification of common feature structures, if we applied Merge to the 

modification sub-structures (‘treelets’) in (85”), we would expect to have three VPs in the output, 

contrary to fact (see Jackendoff, 2011: 276 for some discussion). Naturally, the identification of 

common components in treelets which are input to Unification is equivalent to visiting the same node 

more than once in a trail, as seen in (86’). This feature, together with the strong cyclicity entailed by 

manipulating minimal rooted sub-graphs, makes our graph proposal appropriate to generate structural 

descriptions for the output of Unification grammars, but it is also flexible enough to accommodate 

monotonic PSG-like structures should that be needed to account for semantic reasons. An example of 

such monotonic dependencies is (85’) –a sequence of lexical auxiliaries-, in which the PSG tree does 

adequately represent modification relations: tener que modifies empezar, and empezar modifies 

trabajar. The phrase marker does grow monotonically, and the corresponding semantic representation 

is monotonic as well: we are dealing with a single rooted graph, rather than with the result of Unifying 

or adjoining more than one local structural domain. 

Descriptively, then, our graph model can adequately represent the difference between the 

structural patterns yielded in auxiliary chains by lexical and functional auxiliaries; that is, we can 

provide descriptions which capture the heterogeneity of the class of auxiliary verbs that was 

empirically identified and theoretically accounted for in previous works (and, importantly, from 

different kinds of grammatical frameworks: IA and IP). In doing so, we formulated a further condition 

over cross-cycle relations (the notion of a self-contained sub-graph), which we will make use of in the 

analyses that follow. 

7. On unexpected binding effects: a connectivity approach to Binding Theory 

The point of the previous section was that a one-size-fits-all, purely configurational theory of 

parentheticals cannot derive adequate structural descriptions for all the empirical cases. There are 

instances in which an adjoined clause does intervene in the dynamics of the matrix clause, and there 

are also instances in which adjoined parentheticals are ‘invisible’ for operations at the target of 

adjunction; we proposed that the crucial factor to take into consideration was whether the adjoined 

domain is a self-contained unit or not in the sense of (81) above. Here we will present further 

evidence in favour of this ‘mixed’ approach to parentheticals (and other adjoined sub-graphs), which 

follows directly if the framework sketched here is adopted.  

Consider the following example (taken from Bresnan, 2001: 81), with indexes and gaps added for 

expository purposes: 

88) The onej hei should be spoken to ei by ej, for God’s sake, is hisi motherj 

Here we have an interesting mix between a multiple gap construction like (25) above (Kayne’s 

example A person who people that talk to usually end up fascinated with), and the syntax of 
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parentheticals. In Bresnan’s example, [for God’s sake] is a self-contained unit, and thus has its own 

syntactic and semantic independence. We can modify the example to show not only that 

parentheticals can be accessible from the matrix clause they adjoin to if they are not self-contained 

(i.e., if they contain a node that dominates a node also dominated by a node in the matrix clause or if 

they contain a node immediately dominated by a node in the matrix clause), but that there are 

restrictions over the materialization of nodes (i.e., their morpho-phonological exponent) which would 

unexpected under an ‘adjoined sub-graphs are always opaque’ theory (cf. Uriagereka, 2002, in the 

most radical interpretation). Let us take a look at the following paradigm: 

89) a. The one hei should be spoken to by, for hisi sake, is hisi mother  

b. *The one hei should be spoken to by, for John’si sake, is hisi mother 

c. *The one hei should be spoken to by, for hisi sake, is John’si mother 

d. The one Johni should be spoken to by, for John’si sake, is hisi mother 

The cases we are interested in are (89 b) and (89 c). The traditional literature on Binding Theory 

would talk of a Principle C violation, in which the R-expression [John] is bound within its governing 

category. That proposal would indeed work for (89 c), in which the pronoun [he] and the R-

expression [John] co-exist in the same derivational space. (89 b), on the other hand, poses the 

following problem: in order to blame its ungrammaticality on a Principle C violation, we need to be 

able to claim that the R-expression is bound, but how can it be? The R-expression is contained within 

a parenthetical, which cannot be monotonically derived. Two possible ‘solutions’ appear: 

I. The parenthetical is visible for purposes of dependencies between elements in the matrix 

clause by the principles of Binding Theory because these apply late in the syntactic 

computation, after adjunction (possibly, at LF; see Lebeaux, 2009)  

II. The parenthetical is visible because it is not a self-contained unit 

Note that only I. requires a multiplication of levels of representation (to at least two: a syntactic level 

and LF, or, more generally, one where adjunction takes place and one where indexing takes place). 

But even if indexing and the computation of reference does indeed take place at a very late stage of 

the syntactic derivation, it is not clear how to appropriately filter out the cases in which parentheticals 

are completely opaque, for instance (90): 

90) *Whati did John, who asked for ei, get a book for his birthday? 

In this case, the non-restrictive relative clause is opaque for purposes of extraction, and the 

ungrammaticality of (90) could be blamed on a violation of the Complex NP Constraint (Ross, 1967: 

127); however, the CNPC in and of itself does not explain why S complements to NPs are opaque 

(and why in this case it is impossible to repair the island violation). In the derivational proposal 

advanced in Krivochen (under review), the opacity of an adjoined domain is a consequence of the 

combination of two factors: (a) derivational timing (relative to the ordering of embedding and 

singulary transformations in a Fillmorean architecture) and (b) whether the adjoined sub-graph is a 

self-contained unit. In that work, which advanced an expansion of the syntactic-semantic machinery 

assumed in Generative Semantics, we proposed the following constraint on trans-derivational 

dependencies: 
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Let γ and β be two sub-trees such that γ contains a node X that corresponds to the root of β. A 

singulary transformation TS triggered from γ can affect β iff TS is intrinsically ordered22 after 

an embedding transformation that adjoins β to γ at X. 

What singulary transformations (e.g., Wh-movement) cannot have access to, we argued, is elements 

embedded within β; only β as a whole can be affected by a singulary transformation at γ ordered after 

adjunction of β to γ. We committed ourselves to a model of syntax with multiple cycles (building on 

Fillmore), which crucially does not entail any commitment to a multi-layered model with several 

levels of representation and corresponding rules of interpretation. 

Here we go farther in that line: we propose that a graph can be assigned a model-theoretic 

semantic interpretation if and only if it is self-contained; it should be evident that graphs 

corresponding to independent simple sentences are indeed self-contained (we will come back to this 

below, when raising questions about the place of deletion in this model). Note that we said ‘graphs’, 

not ‘sub-graphs’: the reason is that getting a graph G none of whose nodes is dominated by a node 

outside G may require the composition of more than a single sub-graph. If an interpretation for a 

graph implies (at least) walking a trail in that graph, we need all relevant nodes to be ordered with 

respect to one another. Informally, we say that if a node or a set of nodes is not ordered with respect to 

the graph G that we are walking at some point, then it is not possible to interpret that node or set 

thereof compositionally with respect to G (or any node or set thereof in G). We can formulate a 

general condition to this effect (much research pending): 

91) Full Order Condition  

A node v is ordered with respect to all and every other nodes in its ρ-domain within a cycle 

(i.e., within its minimal single-rooted sub-tree) 

Ojeda (1987) formulates a ‘Full Leaf Order’ condition which can be thought of as the ‘linear 

precedence’ counterpart of our order condition, as follows: 

Full Leaf Order: For all leaves u, v, u < v or v < u. [where ‘<’ is a binary relation ‘precedes’] 

(Ojeda, 1987: 258) 

The importance of an order imposed over a set of nodes in a graph being strict and total is also 

emphasized in Sternefeld’s connectivity-based approach to Binding Theory, which we will deal with 

below. Crucially, a binary relation R(x, y) defines a strict order over a set or class D(x) if and only if: 

for all a, b, c, 

R(a, b) → D(a) ∧ D(b); [irreflexivity]  

                                                      

22 A weak version of this prediction would refer to extrinsic ordering (a proposal along these lines is in effect 

suggested in Lakoff & Ross, 1967 [1976]; McCawley, 1968 opposes it). Ringen (1972: 267) presents the 

distinction between intrinsic and extrinsic ordering very clearly: 

If in a grammar, G, rule X is ordered before rule Y, then X and Y would be extrinsically ordered if G 

restricts how these rules can apply; that is, if these same rules could apply in the order Y before X in 

some derivations if not restricted by G. X and Y would be intrinsically ordered if there is only one order 

in which these rules could ever apply in any derivation; that is, if it would be impossible for these rules 

to apply in the order Y before X. 

For purposes of this work we will maintain the strong hypothesis (intrinsic ordering), but it is crucial to bear in 

mind that the problem requires very careful comparative and typological empirical analysis.  
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¬(R(a, b) ∧ R(b, a)); [antisymmetry] 

R(a, b) ∧ R(b, c) → R(a, c). [transitivity] 

R(a, b) may again be written a < b (mod. R). (Krivine, 1971: 7) 

The condition in (91) should be completed with the additional requirement that the ordering of a 

graph be total and strict (which in turn implies that for any nodes a, b or any sub-graphs G, G’, the 

order is irreflexive, antisymmetric, and transitive). The idea we put forth here is that when nodes are 

disconnected from a sub-graph (and are thus not ordered with respect to any other node in the relevant 

sub-graph) they cannot be assigned a compositional interpretation. In Ojeda’s view, which is possibly 

the other side of the coin, a node that is not ordered with respect to any other node does not precede or 

follow any other node, thus it cannot be ‘located’ in a string. We are concerned with trails rather than 

strings, but it is rather clear how these conditions are at least compatible.   

The conundrum we are facing with the paradigm in (89) seems to resist traditional accounts. In 

sum, the problem is that delaying the application of Binding Theory derivationally (say, to LF, after 

the ‘overt’ syntactic computation and covert operations) does not solve the essential, underlying 

problem: how come sometimes parentheticals are visible, and sometimes they aren’t? However, if we 

combine the observations made within the context of BT with the non-monotonic perspectives on 

computation advanced here and in past works, we can enhance the descriptive and explanatory power 

of the grammar. In (89 b), the parenthetical [for John’s sake] can form a chain with the other two 

occurrences of the same type (namely, [he] and [his]) because it contains a multidominated node, such 

that the following relations hold (we use {} and not 〈〉 for this ρ-set because it is not an ordered set): 

92) ρ = {(to, John’), (John’, should), (for, John’), (John’, mother)}  

Because it is not a self-contained unit, the sub-graph corresponding to the structural description of for 

John’s sake is visible for binding purposes (independently of when, in derivational time, BT 

principles are supposed to apply), and thus the materialization of the occurrence of John’ in the 

parenthetical as [John] does trigger a Principle C violation. Equally, we can see parentheticals (more 

specifically, non-restrictive relative clauses) triggering crossover effects23: 

93) a. Now that President Trumpi has been offered Mexico’s help in the wake of Hurricane 

Harvey, hei may be accepting assistance from a country full of ‘bad hombres’.  

b. *Whoi, now that President Trumpi has been offered Mexico’s help in the wake of 

Hurricane Harvey, ti may be accepting help from a country full ‘bad hombres’? 

The ungrammaticality of (93 b) is unexpected (and remains unaccounted for) if non-restrictive relative 

clauses (a.k.a ‘apositive relatives’) are assumed to be opaque, and this holds regardless of the 

derivational timing of adjunction to the root (the ‘Main Clause Hypothesis’ of Emonds, 1979) or the 

establishment of a discontinuous dependency (McCawley, 1982, based loosely on Wells, 1947). Here, 

we combine considerations about derivational timing (essentially following Fillmore, 1963) with the 

relativization of the notion of representational opacity: a sub-graph is opaque if and only if it is a self-

contained unit. We follow Postal (2004: 206) in rejecting any explanatory value in Principle C: the 

Principle does not explain why crossover effects appear, and it only weakly captures the facts 

descriptively. In an exhaustive account of these effects, not only issues of node connectivity can be 

                                                      

23 We are indebted to Susan Schmerling for her help in constructing these examples.  
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considered: conditions like Wasow’s (1972) Novelty Condition24, which incorporate an element of 

linear order in the determination of the modes of presentation of denotata (what we could refer to the 

nodes’ Sinn, utilizing Fregean terminology). If the theory exposed here is read with Harrisian glasses 

(or in the context of Lees and Klima, 1964), then it should be possible to formulate a rule of 

pronominalization which makes reference to the ordered occurrences of a particular node when 

walking a graph25. Because edges are directed, we can indeed capture both forward and backward 

pronominalization (Ross, 1969a), both of which are formulated by Ross as cyclic rules (that is, they 

apply within sub-graphs). It must be explicitly said, however, that such an extension of the graph 

approach (that is, including aspects of the morpho-phonological exponents assigned to nodes in the 

graphs) requires the addition of a memory stack that can keep track of which nodes are visited when, 

and whether, at any given node, we have visited that node already. As of now, the consequences of 

adopting this view are still unknown. Constraints on forward and backwards pronominalization, 

which seem to interact with cyclic conditions (see, e.g., Ross, 1969a: 192), would have to be 

explicitly formulated, etc.26 Personally, I would prefer to stick to the vanilla version of the theory, in 

which linearity in phono-morphology (i.e., the ‘strings’ generated by the grammar) does not really 

matter because what we are doing is formalizing connectivity in syntactic dependencies (creating a 

snapshot of a dynamical system, more specifically), but it is good practice, I think, to point towards 

alternatives when they could exist.  

At this point, the reader can ask: is it possible to formulate a theory of Binding in graph 

theoretic terms? It is, and, at least partially, it has been done before (under different assumptions, we 

will come back to this momentarily). Consider, for instance, the definition of Binding Tree in 

Sternefeld (1998a: 158): 

Given a tree Σ and a node α ∈ Σ, the Binding Tree for α is the smallest subtree T ⊆ Σ that 

satisfies the following conditions: 

a. α ∈ T 

b. The root of T is the root of Σ 

c. If β ∈ T and γ is the local trace of β, then γ ∈ T unless 

                                                      

24 Formulated as follows: ‘An anaphorically dependent element cannot have more determinate reference than its 

antecedent’. 

25 For instance, 

An NP1 may pronominalize an identical NP2 if NP1 is to the left of NP2 under any conditions, or if NP1 is 

to the right of NP2 and NP2 does not command NP1  

(Bach, 1970: 121) 

Where ‘to the left of’ simply means ‘visited before’. Command, in the context of Bach’s discussion, is 

Langacker’s (1969) notion, which is based on the asymmetry of ρ: the ρ-domain of a vertex is an ordered set. 

26 There is also the obvious fact that pronouns can occur in contexts which do not satisfy the structural 

description for any pronominalization-like rule. Compare: 

i. Johni thinks that hei is smart 

ii. He is smart 

There is no reason to believe that ‘He’ in (ii) has been derived transformationally (or by visiting a node for an 

nth time, say). This point, as far as I know, was first made by Postal (1969: 202).  
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(i) α is an R-expression 

(ii) β reflexively dominates an adjunct that dominates α, and 

(iii) γ is not a reconstruction site  

(Highlight in the original) 

Sternefeld’s definition in turn owes much to Barss (1986) and Lebeaux (1994), and is formulated in a 

late-GB kind of framework. We thus see a prominent role for the notion of reconstruction, which 

plays no role in the theory sketched here: on the one hand, we have trails, not paths (this means that 

we constrain the number of times we walk through each edge, not through each node). On the other, 

reconstruction is an essentially derivational operation, and there are no derivations in the framework 

explored here. Moreover, our nodes do not correspond to lexical items, as we have stressed before: 

rather, they are IL translations of basic expressions. This last consideration is related to Montague’s 

(1974: 194) approach to the interpretation of basic expressions: 

a model should assign to a basic expression not a denotation but a denotation function, that is, 

a function that maps each infinite sequence of individuals onto a possible denotation of the 

expression (Highlight in the original) 

In this context, to formulate principles of binding that make reference to the morpho-phonological 

form of a node makes little sense. It is well known, besides, that the distribution of referential 

expressions does not always coincide with what is expected from binding principles: a clear example 

is the non-anaphoric interpretation of himself in the sentences that follow: 

94) a. Maryi complained that [the teacher gave extra help to everyone but herselfi] (from Baker, 

1995: 64) 

b. Himself a man of science, John had to verify Bill’s results (from Krivochen, 2017b: 20) 

The point is, anaphors, pronouns, R-expressions are defined by and for binding theory in GB/MP, and 

it is not always clear (a) at which level each principle applies, and (b) whether binding primitives are 

morpho-phonological, semantic, or syntactic (i.e., if an anaphor is always a SELF object, or a 

semantically reflexive object, or an object that establishes a local syntactic relation with some other 

object). Here, things work slightly differently. Note that, of the three conditions defining a Binding 

Tree in Sternefeld (1998a), only conditions (c (i), (iii)) make explicit reference to non-configurational 

aspects: R-expressions in (c-i) and reconstruction (which in turn depends on movement) in (c-iii). 

Conditions (a) and (b) are locality conditions, which ensue that the Binding Tree for α is a minimal 

rooted tree, and condition (c-ii) can be thought of as a monotonicity condition: if β binds α in T if the 

trail between α and β does not visit a root R that includes α and excludes β; or, to use Sternefeld’s 

condition adapted to current notation, if (R, β) ∉ τ. If these considerations were to be incorporated, we 

can indeed formulate some interesting generalizations: 

95) Binding Graph (definition) 

Let the Binding Graph GB of α be the minimal graph G that contains α and a root R 

If α is bound within its Binding Graph, call α an ‘anaphor’ regardless of its morpho-

phonological form 

If α is bound outside its Binding Graph, call α a ‘pronoun’ regardless of its morpho-

phonological form 

Where 

β may bind α iff IL(β) = IL(α) and either 
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i. (α, β) ∈ ρ*, or 

ii. (β, α) ∈ ρ* 

We will see in Section 9 that there are properties of the nodes (rather than of the pure configuration) 

that need to be considered when analyzing scope opening and closing, which introduces a further 

level of granularity into something like Sternefeld’s (1998a: 151) Scope Condition, by acknowledging 

the need to distinguish between elements that can open scope and elements that can close it. These 

properties, however, do not configure an independent and separate system; rather, they need to 

interact with configurational constraints in order to be descriptively adequate and part of a consistent 

formal system. 

All in all, the take-home message of this section and the previous one is that adjoined clauses are 

not always as opaque as MGG would have us believe. A configurational approach combined with an 

appropriate definition of ‘opacity’, here given in (81) in terms of self-containment seems to be 

preferable to purely configurational approaches in which the opacity of certain labelled domains is 

defined a priori. In connection to these considerations, the following section with deal with aspects of 

complementation within the NP, more specifically, aspects of the syntax of non-restrictive (a.k.a. 

appositive) relative clauses and their similarities with what we have called parentheticals. 

8. Complementation within the NP: on appositive relatives 

In this section we will deal with some aspects of the syntax of appositive relative clauses. We will 

follow Emonds (1970, 1979) in considering appositive relatives to be ‘main clauses’ (i.e., initially 

independent sub-graphs, adjoined non-monotonically to the sub-graph that contains the antecedent of 

the relative), but unlike Emonds, we do not assume that the rule of Parenthetical Placement changes 

grammatical relations. We thus side with McCawley in that ‘parentheticals are placed by that 

changes word order without changing constituent structure’ (1982: 95); however, in the next section 

we will see that there are exceptions to his claim that ‘all grammatical phenomena to which the 

constituency of the [target of parenthetical placement] is relevant behave as if the parenthetical were 

not there’ (1982: 96), which reveal some interesting aspects of the conditions we can impose over 

relations among sub-graphs.  

This section begins with an uncontroversial observation, which is that appositive relative clauses are 

non-recursive. The point is illustrated by Emonds and McCawley with examples like (96 a), to be 

contrasted with (96 b): 

96) a. *John, who goes to MIT, who likes math, will get a job  

b. People who go to MIT who like math will get jobs (Emonds, 1979: 222) 

Note that it is possible to save (96 a) in a strictly paratactic reading, but in that case the structural 

description is different. In Emonds’ own terms,  

the string John, who goes to MIT is not a constituent coreferential with the pronoun following 

(that is, the string is not even a constituent) under the MCH [Main Clause Hypothesis] 

(Emonds, 1979: 222) 

This means that an appositive relative cannot take as an antecedent a structure of the kind [NP 

[Appositive]]. In a word, appositive relatives are non-recursive. An appositive, however, can take as 

an antecedent an NP modified by a restrictive relative clause (see (97 a), below).  
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Restrictive relative clauses (both Wh- relatives and that-relatives), on the other hand, are 

monotonically recursive, in the sense that they can take an [NP [Restrictive]] structure as their 

antecedent. (97) illustrates this fact, with all possible combinations of Wh- and COMP: 

97) a. [[Every psychologist [that Emily talked to]]i whoi insisted on helping] ended up making a 

disaster 

b. [[Every psychologisti [whoi Emily talked to]] that insisted on helping] ended up making a 

disaster 

c. [[Every psychologisti [whoi Emily talked to]]j whoj insisted on helping] ended up making a 

disaster 

d. [[Every psychologist [that Emily talked to]] that insisted on helping] ended up making a 

disaster 

McCawley (1998: 435) explicitly claims that because restrictive relative clauses (RRC) are sister-

adjoined to N’,  

The structure with the restrictive relative modifying an N’ yields the correct prediction that 

restrictive relative clauses cab ne stacked, since there is nothing to prevent the N’ of an [N’ N’ 

Comp’] [read: S’] from itself having the form N’ Comp’ 

Perhaps more important is the observation that [N’ Comp] behave, under certain tests, like 

constituents: transformations targeting N can (and in some cases must) equally target N Comp. 

Pronominalization is one such transformation: 

98) Tom has [[a violin]i which once belonged to Heifetz]j, and Jane has one?i/j too (example taken 

from McCawley, 1998: 445; indexes and judgments are ours) 

Stripping (a.k.a. VP ellipsis) is another one ((99 a) is taken from McCawley, 1982: 96; (99 b) is taken 

from McCawley, 1998: 450): 

99) a. John sold Mary, who had offered him $600 an ounce, a pound of gold, but Arthur refused 

to Ø. (Ø = refused to sell Mary a pound of gold; ≠ refused to sell Mary, who had offered him 

$600 an ounce, a pound of gold; ≠ refused to sell Mary) 

b. John sold Mary, who had offered him $600 an ounce, a pound of gold, and Arthur did Ø 

too (Ø = sold Mary a pound of gold; ≠ sold Mary, who had offered him $600 an ounce, a 

pound of gold; ≠ sold Mary) 

Also relevant for our purposes is the observation that an N’ plus a restrictive relative can be conjoined 

with another N’ plus restrictive relative (100 a); that is not possible with appositive relatives (100 b) 

(examples taken from McCawley, 1998: 446): 

100) a. [Some violins [RRC that have been owned by famous performers]] and [flutes [RRC that 

were played by Frederick the Great]] are going to be sold at auction.  

b. [*These violins, [Appos which were made by Cremonese masters]], and [pianos, [Appos 

which were made in nineteenth-century Paris]], are expected to fetch high prices. 

Appositive relative clauses can co-appear with restrictive relative clauses, albeit under specific 

conditions, for instance: 
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a restrictive can follow an appositive if it is the only constituent that follows (Emonds, 1979: 

222) 

Examples of this structure are presented in (101): 

101) a. We found that movie, which cost plenty, that you so highly recommended (Emonds’ ex. 

(22))27  

b. It was Fred, who you met at my party, that I was just talking to on the phone (McCawley, 

1998: 449, ex. (19 a)) 

We may add that given the adjacency condition imposed over Bare Relatives (a.k.a abridged relative 

clauses, or S’ subjected to Whiz-deletion) we will only deal with Wh-relatives and that-relatives in 

this section, because we are interested in the recursive properties and relative positioning of 

restrictives and appositives, and bare relatives are neither recursive nor can they be in any position 

that is not strictly adnominal (although, as usual, they are attested; see e.g., McCawley, 1998: 433, ex. 

(15 b)).  

An appositive can follow a restrictive relative clause even if it is not the final constituent: 

102) a. The children that you brought, who were charming, got sick later (adapted from Emonds, 

1979: 222) 

b. *The children, who were charming, that you brought got sick later (Emonds’ ex. (21)) 

Is there any way in which the syntactic approach advanced here can shed light on the distribution and 

properties of restrictive versus appositive relatives? We believe there is, and that the differences in 

distribution as formulated by Emonds (and also illustrated by McCawley) can be indeed accounted for 

if we assume that (a) structural descriptions for English strings can take the form of maximally 

connected graphs, and (b) the relevant conditions over graph well-formedness from syntactic and 

semantic points of view are expressed in terms of possible and impossible connectivity patterns 

between nodes and between sub-graphs. In this sense, recall that above we introduced the notion of 

graphs being ordered, and the condition that order be strict and total (see (91) and the discussion that 

follows); these conditions apply to nodes as well as sub-graphs. This means that, given a string 

featuring a number of relative clauses (note that we have not qualified ‘relative clauses’; in principle 

they could be either restrictive or appositive), the graph G corresponding to the structural description 

of that string will be well-formed if and only if there is an unambiguous (i.e., unique) strict ordering 

O(G). 

A notion of ordering is inherent to McCawley’s observation that a restrictive relative clause can take a 

structure [N’ COMP] as an antecedent (however the reader chooses to represent those nodes, we will 

just use the term CNP henceforth). Let us consider (97 c) again, repeated here as (103): 

103) Every psychologist who1 Emily talked to who2 insisted on helping ended up making a 

disaster 

                                                      

27 Not all our informants were happy with this sentence, but we are keeping Emonds’ own judgment 

nonetheless. If the antecedent NP appears in subject position, the acceptability of the sentence decreases to the 

point of being ungrammatical, as noted by Emonds: 

i) ??/*That movie, which cost plenty, that you so highly recommended ended up being a 

disappointment 
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The antecedent of who1 is the NP Every psychologist; the antecedent of who2 is the CNP Every 

psychologist who Emily talked to. The ‘size’ of the antecedent grows monotonically with the 

introduction of new RRC, and the ordering between these is unambiguous. Let the interpretation of a 

definite description proceed in a Russellian fashion, such that Every psychologist is a function f(x); 

then, the interpretation of who1 must also be f(x), because every psychologist and who are the same 

node visited twice in a trail. Then, we have who2, which is a second order function insofar as its 

interpretation is a function over f(x), call it g(y) where y = f(x). The point here is that the size of the 

antecedent grows linearly, and so does the function corresponding to the interpretation of antecedents. 

Graphically, 

104) [[Every psychologist] who1 Emily talked to] who2 insisted on helping 

 

 

 

 

The monotonic growth in the structure gives us precisely the kind of strict ordering that we require as 

a well-formedness condition on graphs. In this case, the order depends on n-order functions 

corresponding to the interpretation of the relative operators. 

The question now is, what happens in the case of appositives? The argument we put forth here is that 

appositive relatives are not monotonically recursive because there cannot be a strict ordering for a set 

of recursive appositive relatives. Note that the diagram that we used for (103), with its monotonically 

growing antecedent size does not correspond to the interpretation of (96 a), repeated here: 

105) *John, who1 goes to MIT, who2 likes math, will get a job 

  

 

 

 

It is obvious that the antecedent of who2 is not John, who goes to MIT, but just John. But that is the 

same antecedent as who1: whatever relation exists between John and who1 also exists between John 

and who2, and neither of these takes the other as an argument; there are no first- and second-order 

functions in the correct representation for (104), as opposed to the situation in (105). This means that 

there cannot be a strict ordering (total, antisymmetric, irreflexive, intransitive) between these two 

nodes who1 and who2 in the appositive case; in turn, this means that there is no strict ordering between 

the sub-graphs which contain these nodes, because if there was, then the nodes would be transitively 

ordered (recall that transitivity is a condition for strict ordering). That is: if G ∋ who1 was ordered 

with respect to G’ ∋ who2, then who1 would be ordered with respect to who2, contrary to fact.  

We said that there cannot be a strict ordering over a set of appositives such that we get a 

monotonically recursive interpretation (following Emonds and McCawley); it must be noted that the 

reading in which multiple appositives following an antecedent NP are strictly paratactic receives a 

different structural description. In computational terms, recursive restrictive relative clauses can (and 

in fact must) take as antecedents ever-growing structures [N’ COMP]: it is not possible to have a 

Antecedent of 

Antecedent of 

Antecedent of 

NOT antecedent of 
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sequence of restrictive relatives in which all take the same N terminal as their antecedent, ignoring 

other relatives. To give a concrete example, the segmentation and indexing in (106) is impossible to 

obtain: 

106) [[Every psychologist]i [whoi Emily talked to] [whoi insisted on helping]] ended up making a 

disaster 

But that is precisely the kind of structural description that we have in the case of several stacked 

appositives, as in (107): 

107) Donald Trump is a man who will spare no effort to get different parts of the country to hate 

and fear each other, who will do everything he can to damage the U.S. position in the world, 

who will set things up so his family members benefit financially from his presidency, ...  

The only possible structural description is one in which dependencies are strictly paratactic; 

computationally, a finite-state sequence: 

107’) Donald Trump is [a man]i [whoi will spare no effort to get different parts of the country to 

hate and fear each other], [whoi will do everything he can to damage the U.S. position in the 

world], [whoi will set things up so his family members benefit financially from his 

presidency], ...  

What we have here is simple head-tail recursion (Uriagereka, 2008: 228; see also his finite-state 

treatment of iterated small clauses in 204, ff.). In the terms of Krivochen & Schmerling (2016), the 

appositive relatives in (107) and examples of the sort are que-coordinated, each a state in a Markov 

chain. The order among the appositives in cases like (107) is strictly linear, with parataxis being the 

only structural option to save the representation. 

Let us now turn to ‘mixed’ cases, in which we have an appositive and a RRC to be ordered. 

Relevant examples are like (101 a) and (102 a), repeated here as (108 a) and (108 b) respectively 

(with minor annotations added): 

108) a. We found that moviei, whichi cost plenty, that you so highly recommended ei 

b. The childreni that you brought ei, whoj were charming, got sick later 

As noted in fn. 24, (108 a) elicited mixed responses from our informants. Emonds’ condition for a 

restrictive to follow an appositive was that the restrictive clause was string-final (i.e., if there is no 

other constituent after that). The reason why (108 a) is not fully acceptable may have to do with the 

fact that there is no growth in the size of the antecedent for the restrictive relative: both the appositive 

and the restrictive relative have exactly the same antecedent that movie. However, there are semantic 

differences between the two clauses which allow for an ordering (but not a strict ordering) to be 

imposed in interpretation. To the extent that (108 a) is grammatical and acceptable, that acceptability 

is accounted for outside of the grammar as it is conceived of here; at least if the grammar includes a 

condition on strict node ordering.  

The example (108 b), however, receives a simpler analysis, due to the fact that there is indeed a 

possible strict ordering between the restrictive and the appositive clauses. In this case, the antecedent 

of the restrictive clause is the NP the children, whereas the antecedent of the appositive clause is the 

complex [NP S’] (note: not [N’ COMP], as in McCawley’s quotation above). The condition imposed 

by Emonds seems to be relevant for these cases as well, for we cannot have (109 b) as an extraposed 

version of (108 a) –which does not mean at all that (109 b) is ungrammatical-: 

109) a. The children that you brought which your sister loved, who were charming, got sick later 
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b. The children that you brought, who were charming, which your sister loved, got sick later 

The relevant interpretation for (109 a) is that there is a set of children, a subset of which were brought, 

and a subset of this subset were also loved by someone’s sister: we have a monotonically recursive 

restriction over the extension of the set of children. Call the set resultant from this double restriction s. 

Then, a property is assigned to the members of s, namely, that of being charming. Syntactically, the 

antecedent of the first restrictive relative clause, that you brought is simply the NP the children; the 

antecedent of the second restrictive relative is (as we would expect), the CNP the children that you 

brought. So far so monotonic. The antecedent of the appositive clause is the whole CNP the children 

that you brought which your sister loved; there is a straightforward ordering to be imposed among the 

sub-graphs (and transitively, all the nodes in each of these sub-graphs) in (109 a). But the same 

interpretation procedure is not available for (109 b): the relative clause which your sister loved does 

not receive a restrictive interpretation; rather, it is interpreted as another appositive: the set of children 

who were charming and the set of children that someone’s sister loved are strictly co-extensive. In this 

case, the finite-state syntax for stacked (head-tail recursive, not truly recursive) appositives that we 

proposed above is called upon again.  

In this section we have analysed aspects of complementation within the NP: we have derived 

empirical restrictions on the distribution and combinatorial properties of restrictive and appositive 

relative clauses (originally noted by Emonds, 1979 and McCawley, 1983, among others) from 

independently motivated requirements of strict ordering to be imposed over a graph in order to assign 

a compositional interpretation to that graph. Monotonic growth (the case of truly recursive restrictive 

relative clauses) yields a straightforward order by having relative operators be functions of nth order in 

Context-Free (or higher) semantic representations. Contrastingly, appositive clauses can only be 

stacked in finite-state sequences, displaying strictly paratactic dependencies. 

9. Islands and lexical restriction: opening and closing scope28 

We briefly dealt with Wh-interrogatives above, but in those accounts we treated Wh-phrases as an 

internally unanalysable whole. Thus, Wh-phrases like what and which of the books would have 

received the same treatment in the initial presentation of Wh-dependencies. While that uniformity 

assumption (‘all Wh- are created equal’) helped us simplify the exposition, there are interesting data 

whose analysis requires further refinement. The graph-theoretic proposal advanced in this work 

interacts in interesting ways with paradigms concerning Wh-movement, islandhood, and lexical 

restriction. We speak of lexical restriction in Wh-phrases, when we have structures of the type [Wh- 

NP], in which the Wh-word quantifies over an overt NP. Following usual practice, we will refer to the 

NP as the ‘lexical restrictor’29.  

Consider now (110) and (111): 

110) What did who prefer? 

111) Which class did which student prefer? 

                                                      

28 This section owes much to Julie Franck, Whit Tabor, and Sandra Villata. Mistakes and misinterpretations are 

mine alone, though.  

29 In some varieties of LFG, like the one exposed in Bresnan et al. (2016), structures like [Which class] are 

referred to as ‘operator complexes’. The Wh-element is the operator, and the whole [Wh- NP] structure 

containing the operator is the operator complex.   
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In this paradigm, (110) is usually considered degraded with respect to (111) (see Villata et al., 2016 

for a psycholinguistic perspective). Rizzi (1990) –and much subsequent work- analyzes Wh-islands 

like (110) as violations of Relativized Minimality30, but accounting for the contrast between (110) and 

(111) requires the introduction of further complications in the theory, particularly pertaining to the 

internal composition of Wh-phrases and the level of granularity at which RM applies (and raising the 

question of what the syntactic computation has access to); furthermore, ‘displacement-as-movement’ 

and appeal to the Copy Theory of movement are unavoidable in the MGG view (including Rizzi’s; 

see for instance the analysis of the paradigms that Villata et al. worked with in Rizzi, 2017). We 

would want to avoid those complications while remaining faithful to our goal to construct an explicit 

(but not necessarily psychologically real31) model of the grammar of English (and fragments of 

Spanish). Can we say something about this contrast? 

First, let us make explicit the domination and connectivity relations in the graphs corresponding to 

the structural description of each sentence (as a reminder, we use 〈〉 for ordered ρ-sets and {} for 

unordered ρ-sets): 

110’) ρ = 〈(prefer, who); (prefer, what); (did, prefer)〉 

Note that: (what, what) ∉ ρ 

111’) Cycle 1: [Which class] → class’ (i.e., λPP{^class}) 

Cycle 2: [which student] → student’ (i.e., λPP{^student}) 

Cycle 3: [student’ prefer class’] 

ρ1 = {(which1, class’); (class’, which1)} 

ρ2 = {(which2, student’); (student’, which2)}  

ρ3 = 〈(prefer, student’); (prefer, class’)〉 

Note that: (which, student’) ∈ ρ; (student’, which) ∈ ρ 

Why do we want there to be an edge from the Wh- to the NP restrictor and another from the restrictor 

to the Wh- element? Essentially, to capture the two relations that arise here: the Wh-element 

quantifies the NP, whereas the NP semantically restricts the Wh-element32.  

Now, let us further assume that Wh-elements open scope, and that said scope needs to be closed, 

an assumption that is not alien to computer languages (so, for instance, [ needs to be closed by ] to 

have a well-formed code in languages like C and Java; also if-then-else-end sequences in 

pseudocode). Initially, this is not very different from Koopman & Sportiche’s (2000) Bijection 

Principle. The gist is that open scope counts as vacuous quantification, and as such needs to be 

                                                      

30 We can formulate the principle as follows: in a configuration like (i), a local structural relation cannot hold 

between X and Y if Z is a potential bearer of the relevant relation and Z intervenes structurally between X and Y 

(X c-commands Z, Z c-commands Y, and X c-commands Y transitively): 

i) X…Z…Y… 

31 This statement may sound contentious to some, but it is actually a very common assumption in theories of 

language that do not identify themselves with the goals of the so-called ‘biolinguistic’ enterprise, for instance, 

Ajdukiewicz- and Montague-style Categorial Grammar (see Dowty, 1978: fns. 2 and 3).  

32 In LFG, an operator can inherit the syntactic rank of its operator complex (Bresnan et al., 2016: 225). For that 

inheritance to take place, we can hypothesize, the operator and its complex must be connected at c-structure. 
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lexically bound. The conditions for closing scope in linguistic structures, in this preliminary version, 

are the following: 

112) i. For some v’ to close the scope opened by v, then (v’, v) ∈ ρ*, must hold 

ii. For some v’ to close the scope opened by v, it must be the case that v ≠ v’ 

All in all, the two conditions in (112) can be understood in relation to what Sternefeld (1998a: 151) 

refers to the Scope Condition (based on much previous work, see Ladusaw, 1980; Barss, 1986; 

Lebeaux, 1994, among many others), which he formulates as follows: 

NPIs as well as bound variables must be [in] the scope of (i.e., c-commanded by) the operators 

they depend on 

There are, however, two crucial differences between Sternefeld’s condition (which we take to be 

representative of a whole tradition, the GB-MP approach, also shared by non-transformational 

frameworks like LFG; see Darlymple, 2001: Chapter 11 §2; Bresnan, 2001: 212, ff.). One is that 

dominance in our framework is not defined in terms of c-command in L-trees, but rather in terms of 

the existence of a directed edge (or a set thereof, configuring a trail) between the relevant nodes. The 

other is that we establish a further condition on what kind of element can close scope. This condition 

is based on a classical distinction between two classes of grammatical objects: categorematic and 

syncategorematic. 

The closing element cannot be a Wh- element or a relational element (by the condition noted in 

(110’) and by (112 ii), which amount to saying that an operator cannot bind itself), so we do have 

certain restrictions over the nature of v’. At this point, we need to introduce a very useful distinction 

which has a long history: 

…partes igitur orationis sunt secundum dialecticos duae, nomen et uerbum, quia hae solae 

etiam per se coniunctae plenam faciunt orationem, alias autem partes συγκατηγορήματα, hoc 

est consignificantia, appellabant (Priscian, De Partibus §54.5) 

Quite more recently, Schmerling (2016) very clearly summarizes the notion of syncategoremata as 

follows: 

The designation syncategorematic pertains to material that has no meaning on its own and 

does not itself belong to any syntactic category but gets its meaning from the words in its 

context 

Wh-elements do not have a meaning of their own, yet every expression in which they occur does have 

a meaning. They are thus syncategorematic in the Priscian tradition. Lexical NPs, on the other hand, 

are categorematic, by virtue of having a descriptive meaning of their own; and so are Vs and 

(possibly) lexical auxiliaries (but not functional auxiliaries). A syncategorematic element cannot 

close scope, but a categorematic element can, by virtue of its lexical content. Thus, NPs can close 

scope, but so can VPs, or, rather, argumental positions licensed by Vs (because these correspond to 

categorematic elements) within VPs. Lexical predicates select for categorial and semantic 

information, thus establishing contextual restrictions with respect to their co-occurring elements. In a 

theory that encodes displacement as constituent movement, these restrictions also pertain to the gaps 

left behind after movement. Let us now see how this machinery can assist us in the analysis of the 

contrast in (110)-(111). 

In (110) (What did who like?), what open scope, and so does who. The ‘gap’ licensed by the 

verb like (that is, a position required to satisfy the predicate’s valence) can close only one of those. 
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Thus, by the time we finish walking the trails, there is an unsolved open scope, which degrades the 

sentence. 

But that is not the case if there is a lexical restriction, because the categorematic element can close the 

scope opened by the Wh-element in situ: within the minimal sub-graph in which both elements 

appear, students can close the scope of which2, and class can close the scope of which1. This means 

that the structural conditions required for semantic interpretation are divorced from scope, such that 

there are no ‘filler-gap’ dependencies: there are only vertices which we can visit twice or more for 

different purposes. In the case of (111), we go from prefer to class’ for thematic reasons (and, 

possibly, Case).  

The position licensed by the V, should there be one, is required for thematic interpretation but not for 

syntactic reconstruction (i.e., filler-gap dependencies understood transformationally). In this state of 

affairs, we can ask about a sentence like (113): 

113) *Which building do you wonder which engineer slept? 

Sleep, as an unergative V, does not give us an appropriate theta-/a-structure that ensures that (113) 

can be mapped onto any ‘conceivable’ state of affairs. It also doesn’t license a position for [which 

building], which in the terms we have introduced here means that there is no edge from slept to which 

building. Scope is closed locally within the treelet which building, but that treelet can receive no 

semantic interpretation. The problem is thus one of semantic selection, not of hard ungrammaticality.  

In sum, requirements of scope are divorced from thematic/a-structural requirements. Scope can 

be satisfied locally in Wh-phrases with lexical restriction (in LFG terms, the scope of an operator can 

be satisfied within that operator’s complex; see Bresnan, et al., 2016). If we go back to Ladusaw’s 

(1980) Polarity Hypothesis, paraphrasing and adapting to the present context, we have the following: 

114) Wh-hypothesis 

A variable must appear in the scope of a trigger, where: 

i. There is a trail T including both the variable and the trigger, and 

ii.   The variable is ordered with respect to the trigger in T such that (trigger, variable) ∈ 

ρ* 

iii.   The position associated with the variable is assigned an independent meaning by 

semantic interpretation rules 

Consider again example (111), which class did which student prefer? In order to have a well-formed 

graph, first we need to ensure that there is a way to get to the variable from the trigger, then, that the 

trigger dominates the variable. Both these conditions are satisfied in the operator complex (or ‘trigger 

complex’, adapting LFG terminology to the one used here); since we have ρ(which, student’) and 

ρ(student’, which); same with which class. Now, by ‘independent meaning’ in condition (114 iii) we 

mean nothing else than the requirement that the variable be categorematic. In this case, the semantic 

interpretation rule to be invoked is (49): that requires us to have access to the strictly ordered set of 

dominance relations corresponding to the graph and establish, based on the position of the relevant 

NP in that set, what its grammatical function is. Given class’ and student’ as shorthands for the 

translations of which class and which student respectively, we have: 

115) ρ = 〈(prefer, student’); (prefer, class’)〉 
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Now, it is clear that because we are drawing a map, there are inherent limitations to this proposal. For 

instance, the experimental preferences in Wh-island extraction found by Villata et al. (2016) fall 

outside the scope of this theory: our graphs and trails are not designed to encode gradience or, as a 

matter of fact, any aspect of performance. The focus here is to try and characterize possible 

dependencies, and separate them from impossible dependencies. The ‘grammar’, here, is not the 

‘parser’: the ‘grammar’, in the limited scope of this theory, is a map of connections. This interacts 

with previous work of ours in the distinction between two different kinds of locality conditions: 

A. Islands that emerge from aspects of the computation: these, in turn, fall into two categories  

I. The local ‘oscillation’ between levels in the Chomsky Hierarchy that we have described in 

Krivochen (2015a, 2016, 2017a); Krivochen & Schmerling (2016); Saddy (2017); Bravo et al. 

(2015), among other works: if the computational system can shift between levels locally, the 

change in computational dependencies defines opaque domains (see also the Multiple Spell-Out 

model of Uriagereka, 2002) 

II. Lexically-induced islands (e.g., factive islands, ‘inner islands’, among others; see Ross, 

1984, Rooryck, 1992) 

B. Islands that emerge from aspects of the embodiment of the computation (attention, memory, 

garden paths...) 

The proposal presented here, as it simply makes all relations between nodes in a representation 

explicit, does not really account for locality effects, but it seems to me to do good job at 

characterizing them and the conditions under which cycles of the type A(I) arise (for instance, via 

adjunction/substitution of a sub-graph, as above). Needless to say, an account of A(II), and B. (which 

we have grossly oversimplified) is necessary for a psychologically plausible theory of grammar.  

10. On MIGs and prizes (and embedding, and complements) 

A theory that maximizes connectivity and allows for transitive loops can provide new insights in the 

analysis of MIG-sentences (a.k.a Bach-Peters paradoxes; see Bach, 1970; Karttunen, 1971; 

McCawley, 1967): 

116) The mani who shows hei deserves itj will get the prizej hei desires 

117) Every piloti who shot at itj hit the MIGj that chased himi 

There are some interesting properties that we want to call the reader’s attention to. First and 

foremost, we need to note that an adequate structural description for Bach-Peters paradoxes should 

capture the fact that there are dependencies of varying computational complexity (in terms of the 

Chomsky Hierarchy of formal grammars and languages). Specifically, we proposed in past works 

(Krivochen, 2016, 2017; Krivochen & Saddy, 2017) that there are several local structural layers here, 

each displaying varying levels of computational complexity within the Chomsky Hierarchy, and that 

the assignment of a strongly adequate structural description33 to these sentences requires the system 

                                                      

33 We understand this notion in the sense of Joshi (1985: 208): 

A grammar G is weakly adequate for a string language L if L(G) = L. G is strongly adequate for L if 

L(G) = L and for each w [a string in L] in L, G assigns an ‘appropriate’ structural description to w 

(Joshi, 1985: 208) 

In this context, the question has been raised to us whether strong adequacy is equivalent to strong generative 

capacity (Chomsky, 1965: 60). The difference is crucial: the strong generative capacity of a grammar is the set 
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to be sensitive to local changes in computational complexity. Let us illustrate this point using (116) as 

our example: 

a) The – man; the – prize; he – deserves – it    

b) [The man S’ [will get [the prize S’]]]  

c) [the man [who shows [he deserves it]]] will get [the prize [he desires e]]  

 

Note that the computational differences arise within local derivational units and pertain to 

relations of co-reference within or across treelets. A strongly adequate grammar, needs to be flexible 

enough to accommodate for oscillatory dependencies in assigning structural descriptions to sentences, 

going up and down the Chomsky Hierarchy in local domains. In this perspective, we can define cycles 

as emergent properties from a computational system that does not commit to a ‘one-size-fits-all’ 

theory of phrase structure, but to one that models language as a non-linear, dynamical system (Saddy 

& Uriagereka, 2004; Saddy, 2017, and related work). In such a system, computational uniformity 

would in fact have to be stipulated. In (a) we have uniformly binary branching minimal treelets, 

following Greibach (1965: 44) and Uriagereka (2012: 53), a FS grammar can capture all relevant 

dependencies within these substrings. (b) features phrasal ‘constituents’ related within structures 

containing placeholders for root nodes; center embedding pushes us up to CFG. The appearance of 

crossing dependencies in (c) forces us up at least ‘half’ a level, to ‘mild’ CSG (Joshi, 1985 and much 

related work).  

One of the reasons why Bach-Peters paradoxes bear a particular syntactic and semantic 

interest is that, under a transformational view of how pronouns come to be in Surface Structure, they 

must be assigned Deep Structures of infinite complexity (Bach, 1970). While it is possible to save the 

transformation by restricting its applicability to specific contexts (e.g., pronouns in root clauses need 

not be transformationally derived, as argued by Lakoff and Postal, among others), that modification 

increases the computational power of the grammar, and creates a potential overgeneration problem. 

One of the advantages of the framework we have sketched here is that Pronominalization need not 

make reference to two nodes (as in the Lees-Klima version), but only one, which is visited (at least) 

twice. In the theory proposed here, the lexical items ‘the man’, ‘who’, and ‘he’ in (116) are the same 

node, because that node in the graph does not correspond to a constant in the language, not even to a 

variable in that language, but to a translation of the indexed basic expression in that node into 

intensional logic (in the sense of Montague, 1973; Partee, 1974). As mentioned above, while it is 

possible to recast the Pronoun Rule34 of Lees & Klima (1964: 23) in terms of trails, where a node x 

                                                      

of structural descriptions it generates; the definition given by Chomsky says nothing about that set being 

internally heterogeneous. The grammar that generates structural descriptions in Mainstream Generative 

Grammar is computationally uniform, and thus the set of structural descriptions is computationally uniform as 

well (falling within Type 1 languages). In contrast, Joshi’s requirement for strong adequacy for structural 

descriptions can incorporate aspects of mixed computation if the grammar is made sensitive to semantic 

dependencies between syntactic objects (which, in Chomsky’s architecture for a linguistic theory, cannot be 

formulated given the fact that the syntactic component is conceived of as an autonomous component). 

Chomsky’s strong generative capacity makes sure there is a set of structural descriptions, Joshi’s strong 

adequacy makes sure that set is (under present assumptions) minimally adequate (not assigning any more 

structure than strictly necessary), but not procrustean. See Krivochen (2015a; 2016); Krivochen & Saddy (2017) 

for discussion.  

34 Pronoun Rule: X-Nom-Y-Nom’-Z → X-Nom-Y-Nom’+Pron-Z where Nom = Nom’, and where Nom is in a 

matrix sentence while Nom’ is in a constituent sentence embedded within that matrix sentence (Lees & Klima, 

1964: 23).  

Context-Free 

(Mildly) 

Context-

Sensitive 

Finite-state 
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pronominalizes in context C if there is a trail t in which ρ*(x, x) holds –for example- we will not be 

concerned with the morpho-phonological exponents that the nodes in our graphs are assigned.  

Let us now give the cyclic analysis and ρ-set for (116): recall that each cycle contains a single 

categorematic / lexical predicate, plus its temporal / aspectual modifiers and nominal arguments: 

118) Cycle 1: [man’ [Cycle 2] will get prize’ [Cycle 3]] 

Cycle 2: [man’ show [Cycle 4]] 

Cycle 3: [man’ desires prize’] 

Cycle 4: [man’ deserves prize’] 

Putting it all together, then, we get: 

119) [man’ [man’ show [man’ deserves prize’]] will get prize’ [man’ desires prize’]] 

Unifying all cycles, and identifying common nodes, we get the following ρ-set 

120) ρ = 〈(show, man’); (show, deserve); (deserve, man’); (deserve, prize’); (get, man’); get, 

prize’); (get, desire); (desire, man’); (desire, prize’)〉 

Some clarifications are due. Perhaps the most important of them pertains to the fact that the object 

position (arc 2) of show is identified with the root of the graph corresponding to the subordinate 

clause he deserves it, which is deserve by virtue of not being dominated by any other node within that 

sub-graph. However, that is not the only possible analysis. Arguably (and this is completely 

orthogonal to the transformational/non-transformational debate), there is a COMP position in that 

clause, which we assumed in our discussion of relative clauses; if that is indeed the case, then COMP 

is the root. Thus, locally, instead of 

121) 〈(show, man’); (show, deserve)〉 

We should have (122): 

122) 〈(show, man’); (show, COMP)〉 

And the sub-graph for the subordinate clause would then be: 

123) 〈(COMP, deserve); (deserve, man’); (deserve, prize’)〉 

It is, however, not clear what the status of COMP is, apart from its descriptive and notational 

convenience. Note that in interrogatives we do not need to introduce a further ‘projection’ to host Wh-

phrases (see the discussion in Section 9); it is not required semantically or syntactically (where 

‘syntactically’ means ‘necessary for the well-formedness of the graph’). Also, when dealing with 

relative clauses we have only looked at Wh- and that relatives, not contact relatives or abridged 

relatives; and we have not analysed finite clausal complements at all.  

In this context, there are some things to bear in mind. First, it really should not matter whether we 

have a node morpho-phonologically realized or not, because we are only mapping syntactic 

connectivity (which is, in our view, semantic in nature; this view owes much to Generative 

Semantics). Second, observing that we do not need an extra nonterminal CP to deal with Wh-

movement (just like Dependency Grammar doesn’t; see e.g., Groβ & Osborne, 2009; Mel’čuk, 2003) 

does not mean that no clausal domain has a COMP position: a priori structural uniformity is a feature 

of Minimalism, not of the framework we sketch here. Thus, in order to claim that there is a node n in 

graph G, G being the structural description assigned by the grammar to a sentence S we need to have 

independent evidence for n in G which comes exclusively from S. Think of this as a radical version of 
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LFG’s Economy of Expression, as pointed out above. Having root phemonena does not equal having 

COMP positions, for roots are properties of graphs, and COMP is the identity of a specific node; the 

former pertains to the format of locally cyclic, directed, rooted graphs, whereas the latter is a 

substantive hypothesis pertaining to what a specific node is to be called. By definition, our graphs are 

indeed rooted, that is, they contain at least one node which is not dominated by any other node. But 

the inclusion of a COMP node in specific subordinate positions requires extra –empirical- 

justification. Just to be clear, the contexts we are considering now are: 

124) a. Contact and abridged relative clauses (CRC) 

b. Contact noun clauses (CNC) 

Both these constructions are present in (116), as indicated in the annotated (116’): 

116’) The man who shows [CNC he deserves it] will get the prize [CRC he desires] 

What we need to ask at this point, is whether the relevant construction requires any of its parts to be 

dominated by an element outside the sub-graph corresponding to said construction; as an example, do 

we want the structural description for shows he deserves it to have ρ(show, deserve), as in ECM 

structures (see the analysis of (57) above)? Not really: there is no dependency between show and he, 

whereas there is a dependency between an ECM verb and the subject of the subordinate clause (which 

is arguably manifested as Accusative case marking in the embedded subject). There seems to be a root 

for the sub-graph corresponding to the structural description of the CNC which is not the verb in that 

CNC; we will assume that there is indeed a COMP that which can be left unpronounced. Thus, (122) 

is the local dominance set that we will consider for the CNC in (116). 

At this point, we need to ask a further question: does the preceding argument mean that we need a 

covert COMP for CRC as well? Not really: the relative clause has an antecedent (the prize) and its 

subject he is obtained via Pronominalization; a single node is walked on more than once. In the case 

of the CRC there seems to be no need to resort to a distinct COMP position to serve as the root. 

Let us consider some aspects of licensing in Bach-Peters sentences more carefully. When we consider 

a modified version of (117), in (125) below, we may ask how it is possible to get all relevant 

connections to hold: 

125) [Every MIGi [that chased a pilotj [who shot (at) iti]]] was hit by himj 

Let us proceed carefully. First, note that the referent for him in (125) is in the object position within a 

restrictive relative clause: that chased a pilot who shot at it. The reading notated in (125) with indexes 

should not be under a Subjacency-inspired view of locality: to begin with, him appears within a by-

phrase adjunct; then, there are at least two bounding nodes on top of a pilot: S’ (that… ) and NP 

(Every MIG…). Moreover, all trails are crossing, there's literally no embedding dependency between 

indexes: that is, we do not have i…j…j…i, but rather i…j…i…j.  

Furthermore, a pilot must be accessible to him at the point of establishing a dependency, despite the 

presence of a potential governor it (corresponding to every MIG), in flagrant violation of Relativized 

Minimality (Rizzi, 1990). How can we derive the correct reading? To begin with, the fact that we do 

not require for each node to be visited only once allows for Every MIG and it on the one hand, and a 

pilot, who, and him on the other to be superficial morpho-phonological realizations of just two nodes: 

MIG’ and pilot’. But we still need to be able to create trails across sub-graphs, which then lead to the 

identification of common components. A crucial point here is that none of the sub-graphs in (116)-

(117) is self-contained, because all those contain nodes that are dominated directly by nodes in other 
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graphs as well. We repeat the cyclic structure of (116) as (126 a) and that of (117) is represented as 

(126 b): 

126) a. Cycle 1: [man’ [Cycle 2] will get prize’ [Cycle 3]] 

Cycle 2: [man’ show [Cycle 4]] 

Cycle 3: [man’ desires prize’] 

Cycle 4: [man’ deserves prize’] 

b. Cycle 1: [pilot’ [Cycle 2] hit MIG’ [Cycle 3]] 

Cycle 2: [pilot’ shot MIG’] 

Cycle 3: [MIG’ chased pilot’] 

Let us focus on (126 a) first. We see that man’ and prize’ appear in all four cycles, linking them. This 

means that none of them is self-contained in the technical sense, because some of its internal vertices 

are also dependents of other sub-graphs (i.e., are dominated by nodes in other sub-graphs), as can be 

seen in the ρ-set for (116) given in (120), above. The same happens in (126 b): pilot’ and MIG’ are 

dominated by nodes in all cycles (i.e., in all sub-graphs). The corresponding ρ-set for (117) is (127): 

127) ρ1 = 〈(hit, pilot’); (hit, MIG’)〉 

ρ2 = 〈(shot, pilot’); (shot, MIG’)〉 

ρ3 = 〈(chase, MIG’); (chase, pilot’)〉 

The combination of sub-graphs (or ‘cycles’) allows for all conditions required for licensing to hold, in 

both the structural descriptions of (116) and (117). We repeat the definition of licensing for 

convenience: 

128) Licensing (final formulation) 

a ∈ A may license b ∈ B iff  

i. (a, b) ∈ ρ*, and [alternatively, there is a trail T that contains a and b] 

ii. B is not adjoined to the root of A, and 

iii. Neither A nor B are self-contained 

Where A and B are sub-graphs and a and b are nodes 

And where self-containment is defined as follows (also repeated from above): 

A graph G is a self-contained syntactic object iff ∄(x), x ∈ G such that  

i. ρ*(y, x) holds for y ∈ G’ and G’ ≠ G, and 

ii. x is an argument in G 

Thus, whereas a purely configurational approach to cyclicity (e.g., Subjacency / Superiority-based 

approaches) may wrongly predict that the relevant referential dependencies are not possible; however, 

all trails are well-formed, and the graph-approach can provide us with an exhaustive description of 

relations between nodes.  

In connection to this last point, the description of conditions over possible dependencies between 

nodes within and across graphs, the following section will focus on some aspects of the structure of 

coordination, and the formulation of admissibility conditions for relations across conjuncts. We will 

argue that a single structural template for coordinated structures is descriptively inadequate, and 
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attempt to capture the advantages of a computationally mixed approach to coordination (particularly, 

the case made in Krivochen & Schmerling, 2016) in terms of possible relations between elements 

belonging to separate cycles. 

11. Two kinds of ‘and’ and the Coordinate Structure Constraint 

So far we have been analyzing either simple sentences or complex sentences displaying 

different kinds of embedding; we have not, however, dealt with conjoining yet. We will do that now. 

In Krivochen & Schmerling (2016a, b) and Krivochen (2015a, 2016c) we argued that, syntactically, 

true coordination35 is not a unified phenomenon. Rather, structural descriptions assigned to strings of 

the general form [X and Y] need to take into consideration both syntactic and semantic features, 

which cluster coordinate structures in two classes. We will refer to these classes as et-coordination vs. 

que-coordination (adopting Latin terms due to their descriptive resemblance, as we will see shortly). 

The empirical specifics of this distinction are currently under research (see Krivochen and 

Schmerling, 2016a for extensive discussion and examples), but we can summarize the main 

characteristics of each: 

Que-coordination: 

 Strictly paratactic dependencies between terms 

 The arguments are interpreted as a single entity (perfective); thus no probing into a conjunct is 

allowed 

 Triggers singular agreement when it is NPs being coordinated due to internal opacity 

Et-coordination: 

 Hypotactic dependencies between terms 

 Each argument is a separate entity (infective), allowing for inner probing into a conjunct 

 Triggers plural agreement when it is NPs being coordinated due to accessibility 

Let us give an example (the reader can find many more in Krivochen & Schmerling, 2016a) 

                                                      

35 ‘True’ coordination is to be distinguished from what Krivochen & Schmerling (2016b) call ‘mirage 

coordination’. These are sequences of the kind [V…and VP], involving finite Vs -most frequently two-, the last 

of which is a fully fledged VP. We argued that these structures  

appear to enter into verb coordinations—but we will argue that on close examination these can be seen 

to involve something other than coordination. The fact that the structures we will consider appear at first 

to be coordinations but in fact are not gives us our name for them: mirage coordinations (Krivochen & 

Schmerling, 2016b: 1) 

Mirage coordination examples are, by virtue of not being real coordinations, exempt from the usual constraints 

on coordinate structures, including the CSC, and display strong restrictions (e.g., only two Vs can appear in 

mirage coordination, as opposed to the initially unbounded nature of true coordination; moreover, only a very 

limited number of verbs can appear as the first ‘mirage conjunct’ in these structures). Examples of mirage 

coordination include the English go and, try and, up and, take and in examples like: 

i) She’s gone and ruined her dress now. (Ross’ 1967 (4.107a)) 

ii) She’s up(ped) and ruined her dress (note that there is no RNR interpretation available) 

iii) She took and replaced the hose (RNR interpretation irrelevant) 

Mirage coordination is not exclusive to English, of course. Spanish features a number of mirage coordinated 

constructions, including agarrar y, coger y, and ir y.  
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129) a. The sudden rise and (the) equally sudden fall of the stock market have economists 

worried. 

b. The sudden rise and (the) equally sudden fall of the stock market has economists worried. 

130) a. La abrupta subida y la igualmente abrupta bajada de la bolsa preocupan al Gobierno. 

the sudden rise and the equally sudden fall of the stock market worryPL the Government 

‘The sudden rise and the equally sudden fall of the stock market worry the Government.’ 

b. La abrupta subida e igualmente abrupta bajada de la bolsa preocupa al Gobierno. 

the sudden rise and equally sudden fall of the stock market worriesSG the Government 

‘The sudden rise and equally sudden fall of the stock market worries the Government.’ 

The English example (129 b) and the Spanish example (130 b) are both instances of que-coordination. 

In each of these examples the conjoined NP’s are understood as having a single referent, albeit a 

complex one: stock market fluctuation. Sentences (129 a) and (130 a), exhibiting et-coordination, are 

not semantically equivalent to their que-coordinated counterparts. Consider the et-coordinated 

example (129 a): this sentence could describe a situation where particular economists were worried 

about the sudden rise of the stock market but not about its sudden fall, whereas others were concerned 

about its fall and not its rise. This interpretation is not possible for the que-coordinated example (129 

b), where economists must be worried about the combination. 

In this context, we argued that the CSC, as formulated in Ross (1967: 428)… 

In a coordinate structure, no conjunct may be chopped, nor may any element contained in a 

conjunct be chopped out of that conjunct. 

…applies only to et-coordinated structures. Summarizing much discussion, the reason is relatively 

clear: the CSC is formulated as a condition over chopping transformational rules36, and these rules 

need to have access to whatever they reorder. If que-coordination yields an internally opaque unit, 

then no term of a que-coordination may be analyzed by a transformational rule. What follows, insofar 

as we will be concerned with the CSC, will refer exclusively to et-coordinated structures. 

As a principle quantifying over rules, Ross’ formulation of the CSC has no place in a model-theoretic 

framework. However, its importance cannot be underestimated: it is possibly the most problem-free 

principle ever formulated in generative grammar (Postal, 1997: 52), and its applicability goes well 

beyond English (and even beyond Indo-European languages; e.g., Georgopoulos, 1985: 87-88), which 

is an increasingly rare feature in MGG constraints and principles. 

We have two main challenges, then: first, to provide adequate structural descriptions for coordinate 

structures; and second, to capture the valid content of the CSC as a condition over admissible graphs.  

                                                      

36 Where ‘chopping’ is defined as follows: 

If the structural index of a transformation has n terms, al, a2, an, it is a reordering transformation if its 

structural change has any ai as its kth term, or if ai is adjoined to its kth term, where i ≠ k 

If a transformation reorders ai, and its structural change substitutes the identity element or some ak, i ≠ 

k, for the ith term of the structural index, the transformation is a chopping transformation. Other 

reordering transformations are called copying transformations. (Ross, 1967: 427. Emphasis ours) 
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As for the first challenge, it is useful to take a look at what other graph-theoretic frameworks have 

proposed. APG, for instance, recognizes a class of relational Arc dubbed Con, a Structural, Non-

nominal R-sign (Johnson & Postal, 1980: 198). Further conditions specify that the heads and tails of 

Con arcs must be labelled with the same major category and Con arc heads must bear the same 

category label (essentially, a condition on the identity of coordinantes). The relevant definitions, 

pertaining to heads and tails of Con arcs, are the following (Johnson & Postal, 1980: 209): 

131) a. Coordinate(a) ↔ (∃A) (Con arc(A) ∧ Tail (a, A)) 

b. Conjunctive(a) ↔ (∃A) (Con arc(A) ∧ Head (a, A)) 

For example, in The fiend shot and knifed its victim (example taken from Johnson & Postal, 1980: 

222), the coordinated Vs are the heads of Con arcs. In and of itself, we think, the APG treatment of 

coordination does not capture the difference between et- and que-coordination, which is empirically 

motivated at its very core. Let’s continue the survey. 

Treatments of coordination within Dependency grammar are not quite homogeneous: Mel’čuk (1988: 

26-28) argues that coordinated structures are headed (otherwise, there could be no dependency 

relation), based on the purported fact that ‘In the majority of cases there is no reversibility in 

coordinated structures’ (Mel’čuk, 1988: 26); in these asymmetric structures, the left conjunct is the 

head, with the right conjunct depending on it. We think that the reversibility argument is only 

(partially) valid for a specific kind of coordinate structures, specifically, et-coordinations; 

furthermore, the lack of reversibility need not imply headedness, it only requires hypotaxis. 

Syntactically, there is no argument or reason to make all strings containing and belong to the same 

class; semantically and pragmatically, the heterogeneity of coordination only becomes more evident. 

Consider the following example, which we used in Krivochen (2017) as part of an argument in favor 

of mixed computation (the idea that the grammar oscillates up and down the Chomsky Hierarchy 

when assigning structural descriptions to sub-strings): 

132) (talking about afternoon tea) John got the milk and Bill brought some cookies 

Note that (132’) is perfectly acceptable (since there is no particular order in which the purchase of 

milk and cookies should be presented; the events could very well take place simultaneously for all we 

care): 

132’) Bill got the cookies and John bought the milk 

The reversibility of conjuncts, we argued in Krivochen (2017), points towards a paratactic structural 

description (essentially, with both S terms being states in a Markov chain). But let’s go one step 

further, and consider (132) embedded in a bigger structure: 

133) Bill got the cookies and John bought the milk, and we all had a wonderful afternoon tea 

The terms of coordination are two once again, and the relation seems to be asymmetric: we had a 

wonderful afternoon tea after (and probably also because) John and Bill contributed with milk and 

cookies respectively. A successful syntactic treatment of coordination must be capable of capturing 

the distinction between what Schmerling (1975) refers to as symmetric and asymmetric conjunction.  

A different view from Mel’čuk, but within DG, is expressed by Tesnière (1959: 80, ff.). Tesnière 

assigns coordinating conjunctions to a category junctives, which are functional elements (or empty 

words, ‘mots vides’). Junctives are structurally between the terms they conjoin (called nuclei), but 
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remain outside these terms. In brief, coordinated structures are not only not headed structures, but 

they are not even dependency-based.  

We argue, against MGG, that coordination is never an endocentric structure, there is no ‘head’ in 

coordinated structures; thus, there cannot be a dependency in DG terms, even though there is 

dominance. We are interested in capturing the contrast between et- and que-coordination in a way that 

maintains the core aspect of the analysis: both paratactic and hypotactic dependencies can be 

established in coordination. That is: to a string X and Y, where X and Y are variables over strings, 

there can correspond two structural descriptions, roughly along the lines of (134): 

134) a. X → (and, Y) 

b. and → (X, Y) 

(134 a) corresponds to the et-coordinated case, in which the root of the sub-graph X dominates the 

root of the sub-graph Y. There lies the essence of hypotaxis in the present view. (134 b) corresponds 

to que-coordination, in which case the roots of the conjuncts are both dominated by and, which is thus 

the root of the whole graph. In this latter case, both conjuncts’ roots are sisters, in the former case, the 

second conjunct’s root is within the ρ-domain of the first conjunct’s root.  

Let us consider the ρ-sets of the two conjuncts in (136), an instance of asymmetric et-coordination: 

135) John had a beer and fell asleep 

136) ρ1 = 〈(have, John’); (have, beer’); (have, and)〉 

ρ2 = 〈(and, fall); (fall, John’); (fall, asleep); (asleep, John’)〉 

The root of the first conjunct is the verb have, because there is no node that dominates it. In the 

asymmetric case, the first conjunct is strictly ordered with respect to the second such that the first 

conjunct always precedes the second conjunct. Moreover, the second conjunct is completely within 

the ρ-domain of the root of the first conjunct.  

The que-coordinated case is different, as we anticipated. Let us consider first the case in which we 

coordinate full clauses both (137 a) and (137 b) are well-formed: 

137) a. Bill got the cookies and John bought the milk 

b. John bought the milk and Bill got the cookies 

What we would like to propose with respect to que-coordination is that both conjuncts share the same 

root, which is the coordinating conjunction. It is crucial to note that this does not mean that ‘and’ is 

the label, or head, of the coordinated structure, because our structures are neither labelled nor 

endocentric. The same happens when we que-coordinate simple Ns, for instance: 

138) a. John had red beans and rice for dinner 

b. The rise and fall of the stock market has economists worried 

What we have in (137) and (138) is, we argue, something along the lines of (139 a) and (139 b), 

respectively: 

139) a. ρ = 〈(and, get); (and, buy); (get, Bill’); (get, cookies’); (buy, John’); (buy, milk’)〉 

b. ρ = 〈(have, John’); (have, and); (and, red beans’); (and, rice’)〉 

Note that que-coordination does not overlap with symmetric coordination: the following is an 

example of symmetric et-coordination: 
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140) John drinks beer and whisky 

In Krivochen & Schmerling (2016) we argued that the possibility of having structures of the kind both 

X and Y or either X or Y is a test for et-coordination, since both requires access to the terms of the 

coordination. If que-coordination yields internally opaque units, then it is impossible to access the 

terms separately. Note, then, that: 

141) a. ?John had both red beans and rice for dinner (? In the interpretation in which ‘red beans 

and rice’ is a single dish) 

b. ?John had either red beans or rice for dinner (same as above) 

c. John drinks both beer and whisky 

d. John drinks either beer or whisky 

Regarding the structural properties of que-coordination and its interaction with the CSC, Krivochen & 

Schmerling (2016); Krivochen (2018) defend the idea that the internal opacity of que-coordination 

makes it impossible for it to be targeted by extraction transformations. Moreover, if the terms are 

indeed interpreted as a single, internally unanalyzable unit, there is no rescuing the structure with 

ATB (which, again, would require access to the internal structure of each conjunct). As such, the CSC 

applies to et-coordinated structures, not que-coordinates ones. How can we formulate a relevant 

admissibility condition that captures the descriptive power of the CSC? The formulation in Krivochen 

(2017a) could prove useful in this respect: 

142) In an et-coordinated structure of the form [K...SOi [and [L...SOj]]], where  

 SO(i, j) are in parallel structures (where ‘parallelism’ is defined over semantic-syntactic 

construal, see McCawley, 1968 and much related work),  

 K and L are terms, and  

 L ⊂ K; 

a mapped phrase marker [SO(i/j)...[K...SOi [and [L...SOj]]]] is legitimate iff i = j 

This condition straightforwardly yields the well-formedness of ATB constructions (Williams, 1978), 

but it also predicts that canonical examples of the applicability of the CSC are indeed outside the 

phase space for a specific language. Note that this formulation makes no reference to situations of the 

following kind, 

143) [SOi...[K...SOi [and [L...]]]] 

in which the term [L...], of arbitrary complexity, is left untouched. Let us give an example of such a 

construction, taken from Goldsmith (1985) –traces and indexes added for expository purposes only- 

144) [[K [How many lakes]i can [K we destroy ti]] and [L not arouse public antipathy]]? 

It is crucial to point out that the nature of the term L is not relevant: Schmerling’s (1983: 17-18) 

argument that [and not] is actually a constituent (a terminal, in the terms we have been managing here, 

the composition of et-coordination + negation), and thus the possibility that [not arouse…] is not itself 

a constituent, makes no difference for the purposes of (194). The key factor here is that there is no 

variable (in the sense of Ross, 1967) within term L. Extraction only targets K, and the extended 

phrase marker after chopping is still K (calling it K’ would make no difference: the dependency is still 

established within a single cycle). 

Much research pending, we have tried to capture some of the aspects of et- and que-coordination with 

the tools available to us in the theory of syntax sketched in the present paper. Even if the specifics of 

the analysis turn out to be only partially on the right track, we think that there are aspects of the study 
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of coordinated structures on which a graph-theoretic approach can shed light, combining insights from 

PSGs and DGs with the model-theoretic machinery. 

12. A small collection of ‘transformations’ 

We will now attempt to classify some well-known transformations from the aetas aurea of generative 

grammar in terms of whether they change existing grammatical relations or they just create new 

relations on top of what was already there. The following examples must be understood as referring 

only to English, and encoding traditional insights on what reordering transformations do (qua 

descriptive devices). We are essentially assuming that, if we are providing a map of all the relations in 

a snapshot of a dynamical system, under a transformational approach what transformations do is make 

the system evolve and change, thus, we can have a pre- and post-transformational snapshots. There is 

no aspiration of aprioristic universality. All in all, what is important here is to see how many 

‘transformations’ actually change grammatical relations, which directly impacts on the descriptive 

adequacy of our theory. In this sense, Epstein et al. (1998: 3) say that 

From Syntactic Structures through the Extended Standard Theory framework, 

transformations were both language-specific and construction-specific: the linguistic 

expressions of a given language were construed as a set of structures generable by the phrase 

structure and transformational rules particular to that language. Transformational rules thus 

played a crucial role in the description of particular languages. 

They go on to make the contrast with P&P-based theories (GB/MP), which focus on universal 

restrictive principles. We think that the descriptive power of the REST, which was due to the close 

attention paid to constructions and the explicit formulation of specific transformational rules, is 

something to recover rather than to abandon in favour of putative ‘universal’ principles and rules 

(e.g., Affect-α) which greatly obscure grammatical description (and do not provide explanations in any 

meaningful sense; see Postal, 2004: §§ 9, 12, 13). What follows is a classification of well-known 

transformations in terms of whether the processes create new relations while maintaining existing 

relations or whether no new relations are created, only linear order; McCawley’s (1982) RCT vs. 

RPT. This classification –by no means exhaustive!-, which summarizes processes that we have 

referred to in previous sections, must be understood as referring only to English, and transformations 

–once again- are to be understood in this context as strictly descriptive proxies. 

I. Relation-preserving transformations: 

I.1 Create new relations (leaving old relations intact): 

a) Interrogative formation (Section 9) 

b) Raising-to-Subject (Section 5) 

c) Raising-to-Object (Section 5) 

d) Topicalization (Section 5) 

e) Focalization (Section 5) 

f) NPI fronting (Section 5) 

I.2 Maintain all existing relations only changing linear order: 

a) RNR (see McCawley, 1988; also (35) above) 
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b) Wrap (as in Bach, 1979; Section 3) 

c) Dative Shift (contra Dowty, 1979) 

d) Right dislocation, including Heavy NP Shift (but see below) 

e) Location fronting 

f) Though- / as- preposing (see Ross, 2012) 

g) Parenthetical insertion (see McCawley, 1982 and Sections 7 and 8) 

h) Clitic climbing (Section 6) 

i) Pseudocleft formation (as per Ross, 2011) 

II. Relation-changing transformations: 

a) Passive (see Williams, 1982 and Bresnan, 1983; Dowty, 1978; Postal, 1986 respectively for for-

and-against views on whether Passive is indeed a transformation. Müller, 2000 provides arguments 

against an Object-to-Subject raising analysis of the German passive, but it is not clear whether those 

arguments can be extrapolated directly to English) 

We have classified Passive as a relation-changing transformation (in the descriptive sense in which 

we have been thinking about transformations all throughout) because it requires not only the 

advancement of a 2 to 1 (1-advancement), but also that the relevant NP is not a 2 anymore. Note: this 

does not mean that the NP under consideration is no longer an argument of the V, just that its 

grammatical function changes: this is fully compatible with RG’s view that passivization (in English) 

is an entirely relational process (Postal, 1986). Again limiting our discussion to English, there cannot 

be an Accusative pronoun as the subject of a passive sentence: 

145) *Him was killed by Bill 

A Movement-based PSG (ST, GB, MP) derives a passive via movement, such that an NP is base-

generated in the object position (sister to V) at Deep Structure (or whatever level of representation or 

intermediate derivational step is there before Move-α) and then moved to Spec-Infl / Spec-T / Spec-

AgrS (depending on the framework of choice) leaving a trace or copy behind. We have briefly 

commented on some inadequacies of both approaches to displacement here and in past works, and it is 

also a thoroughly researched topic in non-transformational analysis. What we want to emphasize here 

is that the framework we have developed here applies straightforwardly to Passives, with no 

additional stipulations needed. Consider the following pair: 

146) a. Bill killed John 

b. John was killed 

The ρ-sets for (146 a) and (146 b) are given as (146 a’) and (146 b’) below: 

146’) a. ρ = ⟨(kill, Bill’); (kill, John’)⟩ 

b. ρ = ⟨(be, John’); (be, killed); (killed, John’)⟩ 

We assume two fundamental properties of passive be in English: (i) has no a-structure; and (ii) it 

forms a derived expression with the subject of the lexical verb (Schmerling, 1983b: 26-27). Only the 

first of these properties holds for Spanish ser (see also Bravo et al., 2015; García Fernández et al., 

2017 for discussion about the functional nature of Spanish passive ser), as pointed out above, Spanish 

does not have English-style VP ellipsis: 



81 

 

147) a. Mary wasn’t killed, John was VP 

b. *María no fue asesinada, Juan fue VP 

We propose that it is the existence of a relation (be, John’) licenses examples like (131 a), and 

presumably that relation does not hold in Spanish: ser is much more of an inflectional element than be 

in English, which would translate into the claim that passive ser actually configures a two-word basic 

expression with the participle: the ρ-set for something like María fue asesinada would be simply ρ = 

〈(ser asesinada, María’)〉, not ρ = 〈(ser, María’); (ser, asesinada); (asesinada, María’)〉. There is no 

relation between ser and María, which readily blocks the possibility of having a passive treelet María 

fue in VP ellipsis contexts (cf. (131 b)): passive ser is not a basic expression in Spanish.  

This proposal finds some additional support in the analysis of examples like the following: 

148) María no fue asesinada, pero Juan lo fue 

M. NEG was murdered, but J. CL was 

In (148), the pro-form lo stands for the VP asesinado, deleted under sloppy identity (because the 

agreement features in the participle must change, since María is a feminine N and Juan is a masculine 

N). It is also a phonological clitic, in the sense that it is not a well formed phonological word on its 

own. Now, assume that ser asesinado is not a two-word basic expression, but rather a derived 

expression: for instance, let ayudado be assigned to the category FC/NP (i.e., the category of 

expressions that must concatenate with an NP to form a finite clause). Then, passive ser (should it be 

a basic expression of its own), could be (FC/NP)/(FC/NP) (see Bach, 1983: 111 for such an analysis). 

But that would predict that a rule of functional application (or a ‘transformation’) can affect the 

participle (or the pro-form) independently, for instance, clitic climbing. A model of Spanish passives 

in which ser does not form a basic expression with the participle it selects could generate the 

ungrammatical (149): 

149) *María no fue asesinada, pero Juan lo tuvo que ser 

M. NEG was murdered, but J. CL had to be 

If, on the other hand, there is a basic expression (of category FC/NP, in our example, but not 

necessarily) ser asesinado, (149) is adequately filtered: the pro-form lo cannot be reordered on its 

own, and of course ser+lo cannot be targeted by clitic climbing.  

By adopting the CG distinction between basic and derived expressions, plus the Schmerlingian idea 

that basic expressions can me multi-word, and allowing nodes in our graphs to correspond to basic 

expressions rather than lexical items, we can capture an empirical difference which cannot be 

straightforwardly accounted for (or even described) in structurally uniform, a priori-based PSGs.  

The rather surprising (well, that depends on the reader) provisional conclusion that we tried to 

illustrate in this brief section is that most ‘transformations’ either create new relations while 

preserving existing ones or only change linear order, thus not impacting on node connectivity at all. 

We think that pursuing this path could lead to a radical simplification of the apparatus required in the 

study of the syntactic phenomena in natural languages, attending to their specific connectivity 

patterns.   

13. Some open problems and questions 

The graph-theoretic approach to grammatical description that we have presented in this work is still in 

its infancy. Thus, it is only to be expected that there are many problems and questions still to be 

addressed in order to make this theory a competitive one. In this section, we present some of those as 
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a roadmap for future research, together with some provisional answers and mostly speculative 

explorations. 

13.1 A brief note on Left and Right extractions 

Interrogative formation and right-dislocation are different kinds of ‘transformations’ in the 

framework presented in this paper: their structural descriptions are not isomorphic. That might shed 

some light on why leftwards movement is unbounded (creates new relations, cumulatively) whereas 

rightwards movement –extraposition, Heavy NP shift- is heavily constrained (only changing linear 

order, but not constituency). Now, what is not clear is how to encode the specific filters (e.g., Right 

Roof Constraint) as graph admissibility conditions. A possibility is that those are not constraints at all, 

if dependencies are cycle-bounded in self-contained objects and if cycles are single-rooted sub-trees. 

If right-raised elements sister-adjoin to the root, as opposed as dominating it, the distinction between 

unbounded left-raising (i.e., ‘successive cyclic movement’ in MGG, or percolation of SLASH features 

in HPSG) and clause-bound rightwards raising can be hypothesized to derive not necessarily from the 

node they establish a relation with (in both cases it can be the root), but the kind of relation that is 

established: ρ vs. τ.  

We will now illustrate some of these points. Consider now the distinction between et-

coordination and que-coordination which we introduced in Section 11 here, and in Krivochen (2015a, 

2016, 2017a) and Krivochen & Schmerling (2016), according to which coordinated structures can be 

hypotactic and phrase-structural (et-coordination) or paratactic and finite-state (que-coordination). 

RNR arises in et-coordinated structures (symmetric or asymmetric), which are linked by virtue of 

having (in the sense of ‘not self-contained’). Thus, we are dealing with the usual state of affairs 

(‘usual’ from p. 1 onwards): 

150) Bill bought, and John washed, those china dishes 

Cycle 1: [Bill bought dish’] 

Cycle 2: [John washed dish’] 

ρ = 〈(buy, Bill’), (buy, dish’), (wash, John’) (wash, dish’)〉 

In this sense, as long as we keep et-coordinating, we can RNraise without boundaries: et-coordination 

is indeed recursive and monotonically so. Thus, the availability of cyclic RNR is only to be expected. 

For example: 

150’) Bill bought, John washed, Mary dried, and Susy carefully put away, those china dishes 

In the specific case in which RNraised NPs are self-contained units, island effects are 

straightforwardly captured (examples from Postal, 1997: 102. Traces and indexing are his): 

151) a. Mary buys t1 and Bill knows a man who sells t1 [pictures of Elvis Presley]1. 

b.*Who1 does Mary buy t2 and Bill know a man who sells t2 [pictures of t1]2? 

An account of the islandhood effects in (151) which appeals to self-containment differs from 

constituency-based ones, like Wexler & Culicover’s (1980: 301) (also cited in Postal, 1997: 102) 

[A] raised node [by RNR] always behaves, vis-à-vis all constraints on analyzability, just as it 

would if it were in its original underlying position. Hence, whereas it is apparently possible to 

apply RNR to a constituent of a relative clause, if we then try to analyze this raised node, we 

find that it acts as though it were still within the relative clause 
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This generalization is indeed compatible with the McCawley/Levine view, in which RNR is only an 

order-changing rule: if the constituency structure is not modified throughout the derivation, (135) is 

indeed a violation of the Complex NP Constraint.  

But RC extraposition and Heavy NP shift do not work in the same way (examples from McCawley, 

1998: 529. Annotations are ours). 

152) a. That someone exists [who can beat you up to a pulp] is a foregone conclusion  

b. *That someone exists ti is a foregone conclusion [who can beat you up to a pulp]i (via 

Relative Clause Extraposition) 

153) a. That John sent to his mother [the money that you wanted him to give us] is 

understandable 

b. *That John sent to his mother ti is understandable [the money that you wanted him to give 

us]i (via Heavy NP Shift) 

What do the structural descriptions of these sentences look like, and how do they differ from RNR? 

Postal (1997: 97) assumes that RNR is basically ATB to the right. More specifically, he assumes, 

against McCawley, Ojeda, Levine, and others, that leftwards extractions (Wh-movement) and RNR 

are derived by the same means (which for him are ‘movement’ rules). We agree with Postal that L-

extractions and RNR are derived by the same means, but those means are multidominated nodes, not 

relation-changing movement (that is, we disagree with Postal as to what those means are). It is not 

clear whether Postal’s arguments indeed show that L-extractions and RNR change constituency, 

particularly considering that in APG there are no constituents as such. Johnson & Postal (1980: 618), 

for instance, make use of an R-disloc arc.  

In any case, what matters (descriptively) is that the unboundedness of RNR is captured by a strongly 

cyclic multidominance theory, as is the unboundedness of L-extractions. In contrast, we get heavily 

constrained displacement in extraposition and Heavy NP shift (HNPS), which are both cycle-bounded 

operations. RNR preserves local relations across cycles (each conjunct is a cycle by virtue of being a 

single-rooted sub-graph), whereas RCE and HNPS change order within a single cycle (and this is the 

core observation behind the Right Roof Constraint). In proof-theoretic terms, the problem seems to be 

one of derivational timing (pre- vs. post-cyclic rules), and it is not clear how to formulate those under 

the present assumptions: because there are no derivations in model-theoretic syntax, there is no 

‘timing’ or ordering. A different approach must be pursued, which reformulates the relevant 

conditions in terms of admissibility. There is one possibility: because we have kept root nodes (as 

nodes that are not part of the ρ-domain of any other node; there being no reason to ban these to begin 

with), it is possible to specify that certain ‘transformations’ apply within the ρ-domain of a root. In 

other words, certain admissibility conditions make reference to a designated node and possible 

relations that can be established with said node in graphs that belong to the grammar. It is a good 

opportunity to re-evaluate Emonds’ (1970) typology of transformations, given the importance of root 

phenomena. In this sense, we could informally propose the following descriptive classification: 

154) a. Processes targeting the closest root 

b. Processes targeting the matrix root 

c. Structure-preserving processes 

Bear with me on this one. Recall that, in a proof-theoretic, transformation-enriched framework, 

A phrase node X in a tree T can be moved, copied, or inserted into a new position in T, 

according to the structural change of a transformation whose structural description T satisfies, 

only if at least one of two conditions is satisfied: (i) In its new position in T, X is immediately 
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dominated by the highest S or by any S in turn immediately dominated by the highest S. (A 

transformation having such an effect is a root transformation.) (ii) The new position of X is a 

position in which a phrase structure rule, motivated independently of the transformation in 

question, can generate the category X. (A transformation having such an effect is a structure-

preserving transformation) (Emonds, 1970: ii. Highlighted in the original) 

Of course there is no movement, copy, or insertion, but a translation of Emonds’ insights into the 

present framework seems possible. Let us take a first, informal stab at it: 

A process P [read: a construction] may link a non-root node N in a single-rooted graph G to a node 

N’ in a single-rooted graph G’ in either of the following ways: 

I. P creates an edge between N and N’ where  

a. N ≠ N’ and N’ is the root of G’, and 

b. G’ is the smallest cycle that properly contains G 

II. P creates an edge between N and N’ where 

a.  N ≠ N’ and N’ is the root of G’, and 

b. There is at least one single rooted graph G” such that G ⊊ G” ⊊ G’ 

III. P creates an edge between N and N’ where 

a. N = N’ 

Above, ‘equal to’ means ‘have the same IL translation as’. It is easy to see that condition I refers to 

processes of the kind (154 a), in which strong cyclicity comes into play (each cycle counts); condition 

II refers to processes of the kind (154 b), in which only the last cycle is relevant; and condition III 

refers to processes of the kind (154 c), in which graphs are connected by means of identifying 

common components. Here, we are interested in I and II. Of these, only I instantiates the classic cyclic 

principle in its strongest version: a root phenomenon cannot ‘jump’ across a root. II, in contrast, 

pertains to a different class of transformations, last-cyclic or higher-trigger cyclic (Postal, 1972: 212). 

To say that Relative Clause Extraposition and Heavy NP Shift are transformations of the kind (154 a) 

amounts to establishing I as an admissibility condition over graphs corresponding to the structural 

descriptions of sentences displaying RCE and HNPS. On the other hand, we have Wh-movement and 

RNR as examples of constructions whose relevant admissibility condition is II; that gives them their 

unbounded character (without requiring successive cyclicity as an additional assumption). In a sense, 

I-III refine Emonds’ original distinction, because it seems to be significant whether a process can only 

target the immediate root or whether it can link a node with a remote root.  

It is an ad hoc stipulation that captures the behaviour of some English rightwards extractions, but 

what it follows from, if anything, is still unknown. 

13.2 On deletion 

Bach (1964: 70) lists the possible things that PSGs and transformations can do, in a very general 

(variable-free) format: 

155) a. Delete: a + b → b (or a → ε) 

b. Replace: a → b 

c. Expand: a → b + c  

d. Reduce: a + b → c  

e. Add: a → a + b 

f. Permute: a + b → b + a 
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So far, we have dealt with additions, permutations, replacements, reductions, and expansions (in one 

way or another, sometimes denying these things exist at all). But we have said nothing about deletion. 

So, the question is: what do we do with deletion operations? First of all, let us give the reader an idea 

of the kinds of transformations we have in mind: 

156) a. Gapping  

b. Equi NP deletion 

c. Ellipsis 

d. Sluicing  

e. Stripping  

f. Bare Argument Ellipsis 

… 

Here we need to distinguish two big kinds of deletion transformations:  

a) Deletion under (strict/sloppy) identity 

b) Deletion without identity 

Only the former establishes relations between sub-graphs: Equi can be simply expressed as visiting an 

NP node twice (see Section 5) and Gapping, as visiting the same V node twice, etc. But deletion 

without identity seems to be a whole different matter. Consider, for instance, the cases in which there 

is no accessible syntactic antecedent as in BAE or instances of deletion without reconstruction: e.g., 

island repair via sluicing. In the latter case, specifically, if we do reconstruct we get an illicit structural 

description, as can be seen in (157 a), or cases in which the remnant of sluicing does not correspond to 

any plausible reconstructible syntactic object, as in (157 b-d; taken from Culicover & Jackendoff, 

2005: 268): 

157) a. They want to hire someone who speaks a Balkan language, but I don’t know 

{
𝑤ℎ𝑖𝑐ℎ

∗ 𝑤ℎ𝑖𝑐ℎ 𝑡ℎ𝑒𝑦 𝑑𝑜
∗ 𝑤ℎ𝑖𝑐ℎ 𝐵𝑎𝑙𝑘𝑎𝑛 𝑙𝑎𝑛𝑔𝑢𝑎𝑔𝑒 𝑡ℎ𝑒𝑦 𝑤𝑎𝑛𝑡 𝑡𝑜 ℎ𝑖𝑟𝑒 𝑠𝑜𝑚𝑒𝑜𝑛𝑒 𝑤ℎ𝑜 𝑠𝑝𝑒𝑎𝑘𝑠 𝑡

} (Wh-Island 

repair under sluicing; taken from Merchant, 2008: 138) 

b. Harriet is drinking scotch again, but I don’t know what kind Harriet is drinking [t scotch] 

again. (ungrammatical if reconstruction takes place; violation of the Left Branch Condition) 

c. Harriet drinks scotch that comes from a very special part of Scotland, but I don’t know 

where Harriet drinks scotch [that comes from t]. (ungrammatical if reconstruction takes 

place; Complex NP Constraint violation) 

d. Harriet either drinks scotch or smokes cigars, but I can’t remember which of drinks scotch 

or smokes cigars Harriet does. (ungrammatical if reconstruction takes place; word salad) 

In (157 b) it seems that we need ρ(what kind, scotch) to hold, such that scotch can be the lexical 

restrictor for what kind, following the proposal sketched in Section 7, above. However, the same trick 

does not straightforwardly work in (157 c) unless the restrictor for where is a very special part of 

Scotland. There are some clues that this might not be completely wrong: note that the sluiced clause 

asks roughly whereabouts in Scotland does the scotch that Harriet drinks come from?; it is not an 

open locative variable that can be bound by, say, Argentina. But not all cases can be fixed in this 

manner, as the following examples illustrate: 
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158) a. *John bought an expensive car, and you won’t imagine how expensive Mary did buy a 

car! 

b. *Abby did say that a biography of Harpo is going to be published this year –guess which 

Marx brother she didn’t say that a biography of t is going to be published this year (from 

Merchant, 2008: 143) 

c. *?John had three beers and two bottles of wine at the party, but I’m not sure how many 

[beers? Bottles of wine?]i Mary did have ti at the party 

It seems that we need a different account for these cases, which do not involve trails. A possibility as 

far as this kind of deletions is concerned is that we can simply disconnect the ‘deleted’ treelet from 

every other node of the graph. That is: we need not erase or eliminate the relevant object itself (a 

vertex or set thereof), but erase the edges connecting the relevant object with the rest of the graph, 

thus creating an isolated vertex or sub-graph. In that case, a node would not be ordered with respect to 

any of the other nodes, and by virtue of violating the condition on strict ordering for well-formed 

graphs, the resulting sentence is ungrammatical if the disconnected graph is somehow forced into the 

representation (as in the sub-strings marked with strikethrough in (158)).  

Incidentally, the elimination of deletion operations constrains the strong generative capacity of the 

theory, such that we are safe from Peters and Ritchie’s (1973) warning that a grammar with certain 

deletion rules could generate any recursively enumerable set (unlike some versions of Minimalism, in 

particular those that assign arbitrary features to heads which trigger deletion at PF, see Merchant, 

2008: 133, ff. for such a view; also Berwick, 1984 for some discussion). 

Conceptually, there is some appeal to this view. But, how can we implement ‘deletion-as-

disconnection’? We will briefly sketch a way, much research pending. Consider Tabor’s (2015: 3) 

definition: 

Labx(0) is said to process a symbol j at a point x iff j ∈ Labx(0)(x) and the system moves from x to 

fj(x). 

Where  

The labeling, Labx(0), of [an Iterated Function System] IFS driven by [a one-sided infinite string 

language] L is a function from points in X to the power set of Σ, such that j ∈ Labx(0)(x) iff there 

is a finite initial substring, S, of some string in L such that IFSS(x(0)) = x and the string formed 

by adding j to the end of S is also an initial substring of some string in L. (Op. Cit.) 

It might be possible to say that deletion of nodes in a phrase marker, in the sense that we suggested 

above, amounts to Labx(0) not being able to walk through some vertex or set thereof (the sub-graph that 

has been ‘disconnected’), because the system (in this case, we can imagine a routine like ‘walk trail’) 

cannot transition there.  

But this proposal is not free from problems. For this approach to work, we need to assume that phrase 

structure graphs are in some sense generated by IFSs, that is, by a finite set of functions that map a 

complete metric space to itself. And this is not contemplated in the vanilla version of the model, 

because what we generate are diagrams of structural descriptions. Strings have a peripheral role, 

emerging as a kind of 1-dimensional ‘track’ of how a graph has been walked (and in such a view 

Ojeda’s FLO would play a significant role). It may be possible to simply encode linear order in terms 

of linear precedence statements, the full set of which constitute the range of π (its domain being in 

turn a function of edges × vertices). Linearization would thus be a second-order function. This view is 
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more committed to processing than the model we have presented here (see also Kahane & Lareau, 

2016), and for the time being we have nothing cogent to add about this. 

14. (Some) conclusions 

We began this exploration by asking a simple question: what if the grammar attempted to minimize 

the number of nodes and maximize connectivity between those nodes, instead of maximizing the 

number of nodes and establishing ‘unambiguous’ paths between them? One possible answer to that 

question was sketched here. There are many others: we could have assumed that the grammar needs to 

be the parser (as in Medeiros, forthcoming), or that the operation that we have half-jokingly called 

‘Form Graph’ is a stepwise algorithm like its serious and literal counterpart Merge, and explore 

aspects of cognition and processing. But we have settled for grammatical description: the model 

presented here aims at describing the full set of relations between nodes (which correspond to the 

translation of basic expressions into IL) at a derivational point that the reader could identify –should 

he wanted- with REST’s Surface Structure (which was more of a derivational point than a level of 

representation), or MP’s Spell-Out (pre-Uriagereka, 2002). The nature of the dynamical process that 

we are taking a snapshot of is certainly a controversial matter: while we assume something like 

Krivochen (2016, 2017), Saddy’s (2017), and Saddy & Krivochen’s (2017) oscillatory dynamical 

computational system, that is just one of several internally consistent options (for instance, Gradient 

Symbolic Computation being an interesting, and potentially compatible, alternative). But the choices 

we have made in this paper –with which the reader might disagree to different extents- should not 

obscure the importance of asking the initial question and giving explicit answers.  
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Appendix A: On some inadequacies of trees to represent Merge 

A most surprising decision of MGG is to use trees to represent bottom-up derivations built via Merge. 

The reason why that is surprising is that in the tree corresponding to the result of 

159) Merge(X, Y) 

Which is 

159’)  

 

 

There is no direct connection between X and Y: the only path from X to Y is the one that goes 

through Z. This is, we think, a consequence of history rather than theory: for PSR, the format in 

(159’) is indeed suitable. Thus,  

159”)  Z → X, Y 

Is strongly equivalent to (159’): the PSR goes from higher nodes to lower nodes, and no direct 

connection between X and Y is ever suggested. But Merge is different: derivations are built from the 

bottom upwards, and the rule only makes direct reference to X and Y (Chomsky, 2015; Collins, 

2017). Thus, we should have (160): 

160)   

 

The structure generated by Merge is then labelled (either by ‘Minimal Search’, whatever that is, or via 

more classical procedures), with the label being either X or Y (Chomsky, 1994): Merge can only 

generate endocentric binary branching structures (Kayne, 1994 and much subsequent work). Take 

(160) as the input for a further application of Merge: how does the system proceed? If (160) needs to 

be labelled before entering further syntactic relations, the intermediate step between ‘first-Merge’ and 

‘second-Merge’ (see, e.g., Zwarts, 2009) is (160’): 

160’)  

 

 

Concretely, assume that X = V and Y = NP (given that Merge of {H, XP} is ‘virtually everything’37, 

according to Chomsky, 2009). Then, 

                                                      

37 As Postal (2004: 323) correctly observes,  

given the meaning of virtually […], a claim that P is ‘virtually conceptually necessary’ admits that it is 

not conceptually necessary. 

The same holds for ‘virtually everything’. In my opinion (and that of Postal, Behme, and others), these 

rhetorical resources are a way of refusing to acknowledge alternatives and respond to critics, because, what kind 

of person argues against something that is ‘necessary’ or ‘everything’ (regardless of the ‘virtual’ character of 

that necessity)?  

X Y 

Z 

X Y 

X Y 

X 
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161)  

 

 

Intuitively, this makes sense: the NP is selected by the verb, not by the verb phrase. And it is the V-

NP complex that determines the Aktionsart of VP. There is nothing in the definition of Merge (at least 

in those that are explicit enough to be evaluated) that yields constituency, the ‘is a’ relation (which 

was a given in PSR) is not part of Merge, but of Label. And if a label is nothing but a syntactic 

diacritic (because it’s the projection of the features of a head, basically identical to that head but with 

the added information ‘I’m phrasal’), there is no constituency there either. Crucially, there are recent 

proposals to eliminate labels altogether (Collins, 2017; Epstein et al., 2012, 2015, among others; see 

Stroik & Putnam, 2015 for a critical view): this pushes Minimalism away from Phrase Structure 

Grammars and, as Osborne et al. (2011) correctly point out, moves it towards Dependency Grammars. 

As a consequence, any reference to ‘constituency’ and most references to labelling (particularly, finite 

VP/vPs) becomes void, because Dependency Grammars have no notion of ‘constituency’ (in the strict 

sense in which this is understood in IA theories structures around PSRs). The point that Osborne et al. 

(2011) make can be summarized in the following equivalence in both strong and weak generative 

capacity: 

162)  

 

 

 

In what follows, we will discuss a version of Minimalism which assumes some form of constituency 

and labels, the proposals in the previous paragraph notwithstanding. We will do that because, in 

practice, most Minimalists still make use of formalisms that resemble more or less ‘traditional’ IA 

phrase structure grammars. 

In (161) we assembled a verb phrase, containing a V and its object following the idea in 

Chomsky (1995: 246) that Merge is asymmetrical (see also Epstein, et al.’s 1998 Introduction; also 

Collins & Stabler, 2016). Now, we introduce the subject, which Merges to the VP in the initial version 

of the theory (and with VP in the ‘unordered set’, more recent version). The problem is that sentences 

are not endocentric (what it means for a sentence to be a ‘TP/IP’ or a ‘CP’ is not clear and where 

exactly it matters in the architecture of the grammar, and it doesn’t seem to translate into any non-IA 

grammar), which was indeed acknowledged in pre-1986 MGG, not to mention (European and 

American) structuralism and IP grammars, with no loss of empirical coverage: 

163)  

 

 

 

 

V NP 

VP 

V NP2 

VP NP1 

S 

write papers 

write 

Bare Phrase Structure 

papers 

write 

Dependency tree 
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Note that walking the path from NP2 to S gives us all the Merge relations: horizontal lines translate as 

‘merges to’, whereas diagonal lines translate into ‘projects as’. Regardless of how we diagram it, be it 

horizontal and diagonal lines, or solid and dotted lines, or whatever else, there is a fundamental 

difference between ‘merges with’ and ‘projects as’. Thus, (163) reads as: 

163’) V merges to NP2 and they project a VP. NP1 merges to VP and they project an S.    

But the graphs in (143 - 147) are not particularly good at representing the asymmetry of Merge, which 

MGG has argued is an essential property of the operation, deriving crucial notions like c-command 

and labelling (see e.g., Epstein, 1999 and much subsequent work; also Collins & Stabler, 2016). We 

can do that with arrows: X → Y means ‘X merges to Y’, such that (163) becomes (164): 

164)  

 

 

 

 

Walking from S to NP2 follows a unique, unambiguous path in which the relevant relations are indeed 

preserved. In this context, some more graph theory is useful. A connected graph G is said to contain a 

Hamilton (or Hamiltonian) path if there is a path that visits every vertex of G exactly once (Van 

Steen, 2010: 92). In this sense, (164) is a Hamilton path, as opposed to regular PS trees, which only 

locally contain Hamilton paths. Note that a graph may contain a Hamilton path and not be 

Hamiltonian: for a graph G to be Hamiltonian it needs to be cyclic, and contain a cyclic path visiting 

every vertex of G exactly once.  

This last claim requires some unpacking.  

Tree building structure must always manipulate elements of the form {X, YP}, where X is a 

head and thus a terminal node (Chomsky, 2009; 2013); this is so both for the purposes of the Linear 

Correspondence Axiom (Kayne, 1994) as well as labelling: the LCA is a function from terminals to 

non-terminals, and the labelling algorithm proposed by Chomsky is sensitive to prominent features of 

X, which project a label in {X, YP} yielding {XP {X, YP}} or, equivalently in bare phrase structure, 

{X, {X, Y}} (in turn, by the pairing axiom in Zermelo/Fraenkel set theory, equivalent to <X, Y>; 

Krivine, 1971: 3).   

Consider now the abstract structure in (165): 

165)  

 

 

 

 

As it is, (165) contains two local Hamilton paths: 

166) i) X  XP  YP  Y 

ii) Y  YP  ZP  … 

V NP2 

VP NP1 

S 

X YP 

XP 

Y ZP 
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And that’s it. That means that there is no way to connect X and anything within ZP via a Hamilton 

path (because in order to do so we would need to skip Y, and that would leave a node ‘unwalked’). 

That yields a strong locality condition for operations triggered by X, which is precisely what strong 

phase-based theories claim (if phase heads follow a certain derivational rhythm Phase-Non phase-

Phase... see e.g., Chomsky, 2001; Richards, 2011). The cycle would be, from the bottom upwards, 

[YP [ZP]], with Z a phase head, and Y a non-phase head. In this state of affairs, X can affect Y and its 

‘edge’, but not its complement. A configuration like (166) arises, with irrelevant differences, in the C-

T-v skeleton assumed in MGG (but not in its label-less variants, we hasten to add): 

166’)  

 

 

 

 

 

 

 

 

 

Where C and v are phase heads, and T and V are not (Chomsky, 2001 and much subsequent work). C 

can probe into TP up to vP’s edge (e.g., to find a Wh-phrase) only if there is no Subj in Spec-T, for 

Minimality reasons. The way in which Chomsky deals with these issues is stipulative, defining 

‘equidistance’ in checking domains (Chomsky, 1995). Intuitively, we would like to say that if a head 

H looks for an NP –say-, it stops looking at the first NP it sees: this is walking a path. We are, though, 

forced to skip nodes in doing so if we try to keep things as short as possible. 

But taking trees too seriously generates some problems and inconsistencies within MGG. For starters, 

probing requires the computation to indeed go and visit the same node at least twice. Say C is looking 

for an NP with a Wh-feature to satisfy the Wh-criterion (Rizzi, 2004). It cannot know that Subj in 

Spec-TP will not have such a feature (unless we are shamelessly accepting stipulations): if probing is 

some kind of searching mechanism, it will follow the walk: 

167) C  CP  TP  Subj 

And find no Wh-feature there. Now, two things can happen: one, the system starts walking the path 

again, jumping over Subj 

167’) C  CP  TP  T’  T 

And find that there is no NP there…and so on. In this view, for each failed probing, there’s a new 

walk which needs to go back to the root C to start over (each of which is an Eulerian tour of the 

graph; Wilson, 1996: 4; Van Steen, 2010: 82-83), and which ‘jumps over’ the nodes that have failed 

to satisfy the requirements of the probe. This requires the system to have some memory (more than a 

last-in-first-out stack) as well as access to sub-lexical features. It will need to keep track of what it has 

already visited and what has failed to satisfy the requirements of the probing head. 

C TP 

CP 

Subj T’ 

T vP 

Subj v’ 

v VP 
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Or, as an alternative option, the system can go back a node, to the immediately dominating branching 

node, and keep looking: 

168) C  CP  TP  Subj[NO]  TP  T’  T[NO]  … 

We have indicated the nodes at which failed attempts are recognized as such with [NO]. In our view, 

both options are not only problematic, but also unjustifiedly so: these complications arise because the 

single mother condition and binary branching are taken to be hard constraints on phrase structure. Not 

to mention operations over features. Neither of these are required by the data, we argue. 

There are further problems. Take the translation from structural order to linear precedence for 

example: linearization must apply only to terminals, and it must not be sensitive to non-terminals 

(because only terminal nodes are targets for lexical insertion). The LCA is a total order from terminals 

to nonterminals (since in a structure of the kind {H, XP}, H asymmetrically c-commands the Spec- of 

XP, X, the head of XP, and of course the complement of X; thus, H precedes all elements of XP), but 

strings are concatenations of terminal nodes. Thus, what the grammar must generate in a 

Kaynean/Chomsky fashion is a representation in which 

169) X  Y  Z 

Holds, and not any other walk: linearization can proceed only if the sequence is unambiguous.  

Under a Kaynean/Chomskyan view of phrase structure, in a phrase marker like (149), ZP must be an 

empty category (i.e., a category with no phonological content) for linearization purposes: The Linear 

Correspondence Axiom maps asymmetric c-command into precedence. Wherever two nodes c-

command each other, that is called a symmetry point, and must be broken via movement of either (in 

principle; the rightmost in practice, as in Moro, 2000). Thus, at the relevant level of representation, ZP 

is not there to be 'walked on'. In Phase Theory, given a rhythm Phase-Non-Phase-Phase…, ZP is not 

accessible by operations at X, which -relevantly- we take to mean that there is no path communicating 

X and ZP. How exactly non-terminals are ‘ignored’ is a problem in and of itself (to which MGG does 

not offer explicit solutions), and it is not clear how that could be actually implemented (but see 

Osborne et al., 2011 for some clues). 
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Appendix B: What remains of the generative barrel 

Postal (2010: 1) identifies a set of concepts which constitute the received wisdom for anyone 

attempting to do NL syntax within a generative framework. He calls that set Barrel A. Here, we 

present an adapted, slightly annotated, and –sometimes- updated version of Barrel A, specifying 

which elements of Barrel A remain in our own barrel. This is important for various reasons: perhaps 

the most practical of them is that, since it does not make sense to refute a theory because it does not 

appeal to or is incompatible with some orthogonal theoretical principle, we do need to specify what it 

is that we don’t assume or what we explicitly reject. 

 

 

Note that we have no quarrel with either grammatical functions or Case; the only caveat is that 

grammatical functions are primitives in our proposal (as in RG) rather than being defined over 

structural configurations (daughter-of-S for Subject, sister-of-V for Object). Because we maintain 

transformations (as purely descriptive tools) and constructions (in the same manner), lexically 

governed processes (say, Wrap or Dative Shift) do have a place in our grammar; and so do 

construction-specific constraints (Wh-islands, CNPC, CSC). However, phrase structure and, more 

What we keep What we don't 

abstract case atomic node labels 

lexical entries atomic traces 

lexical rules binding principles based on c-command (principles A, B, C) 

Clause Reduction / restructuring c-command 

theta roles complex node labels composed of sets of feature(s) (specifications) 

the case filter configurational definitions of grammatical relations 

the principle of full interpretation constituent structure trees 

the structure preserving hypothesis copy traces 

the theta-criterion derivations 

the Wh-Island constraint 
economy principles (Minimal Link Condition, Greed, Enlightened 

Self-Interest, Suicidal Greed, Procrastinate, Earliness, Last Resort) 

the Coordinate Structure Constraint empty nodes 

transformations Agree (feature checking / valuation / donation / sharing…) 

the Complex NP Constraint phrase structure rules 

  (Relativized) minimality 

  the A-over-A principle 

  the chain condition 

  Empty Category Principle 

  the Extension condition 

  the No-Tampering Condition 

  the head movement constraint 

  the principle of recovery of deletion 

  the projection principle 

  the superiority condition 

  the visibility condition 

  X-bar theory 

 Merge 

 Subjacency 



104 

 

specifically, X-bar theory and Merge, do not (nor do specific conditions over these; the NTC and the 

Extension Condition are thus eliminated as unnecessary). Structure is not obtained by means of 

discrete recursive combinatorics, and it is not the aim of the theory presented here to provide a 

recursive enumeration of the strings generated by a grammar: in contrast, we aim at obtaining a 

‘finite, rigorous characterization’ of English sentences (the expression is Langendoen & Postal’s) by 

means of descriptive connectivity graphs which exhaust the sets of relations in specific expressions. 

More generally, there are no second-order principles which quantify over rules of the grammar 

(Postal, 2010: 6; Pullum & Scholz 2001); only first-order conditions over admissible expressions. The 

rejection of IA formalisms has been explicit throughout the paper (we hope), due to its ambivalence: 

they are too restrictive in some cases (more often than not, they do not allow for discontinuity and 

multidominance; they are also committed to uniformity desiderata), and too permissive in others 

(requiring gratuitous ad hoc assumptions, for instance, to restrict structure building or mapping; see 

Peters & Ritchie, 1973 for an early analysis of the unbounded generative power of some generative 

grammars). Phrase structure rules and derivations are replaced by graph admissibility conditions, and 

reordering transformations are replaced by…well, also graph admissibility conditions. It is crucial to 

note that (in line with other model-theoretic approaches) at no point are we dealing with infinite sets 

of (weakly generated) sentences. There is no structure building vs. structure mapping (or construal vs. 

movement) debate. No movement also means no chains, copies, traces, and conditions over their 

distribution (thus, no ECP). Qua second-order condition (over Move-α), the Head Movement 

Constraint has no place in this theory; nor does Relativized Minimality if conceptualized as a 

condition over rules (a constraint over Move / Agree), Superiority, or A-over-A (among others). Any 

principle of the form No rule can relate X, Y in configuration C (e.g., Chomsky’s 1977: 101 

formulation of Superiority; Rizzi’s 2004: 223 formulation of Relativized Minimality) quantifies over 

a rule, and thus belongs in a proof-theoretic –but not a model-theoretic- framework.    

Our adoption of a radical version of economy of expression further restricts the possibility of 

having base-generated empty nodes (essentially, anything dominating only Ø can, and must, be 

pruned). There is also no universal hierarchy of functional nodes and abstract morphemes, as the 

presence of any node must be empirically motivated for each expression of the language: only 

individual expressions satisfy or not the model.  

 

 

 

 

 

 

 

 

 

 

 


