

ULTRA: Universal Grammar as a Universal Parser

David P Medeiros1

1Department of Linguistics, University of Arizona, Tucson, AZ, USA

* Correspondence:
medeiros@email.arizona.edu

Keywords: syntax, linearization, parsing, Universal Grammar, word order, typology, Universal
20, stack-sorting

Abstract

A central concern of generative grammar is the relationship between hierarchy and word order,
traditionally understood as two dimensions of a single syntactic representation. A related concern is
directionality in the grammar. Traditional approaches posit process-neutral grammars, embodying
knowledge of language, put to use with infinite facility both for production and comprehension. This
has crystallized in the view of Merge as the central property of syntax, perhaps its only novel feature.

 A growing number of approaches explore grammars with different directionalities, often with
more direct connections to performance mechanisms. This paper describes a novel model of
universal grammar as a one-directional, universal parser. Mismatch between word order and
interpretation order is pervasive in comprehension; in the present model, word order is language-
particular and interpretation order (i.e. hierarchy) is universal. These orders are not two dimensions
of a unified abstract object (e.g., precedence and dominance in a single tree); rather, both are
temporal sequences, and UG is an invariant real-time procedure (based on Knuth’s stack-sorting
algorithm) transforming word order into hierarchical order.

 This shift in perspective has several desirable consequences. It collapses linearization,
displacement, and composition into a single performance process. The architecture provides a novel
source of brackets (labeled unambiguously and without search), which are understood not as part-
whole constituency relations, but as storage and retrieval routines in parsing. It also explains why
neutral word order within single syntactic cycles avoids 213-like permutations. The model identifies
cycles as extended projections of lexical heads, grounding the notion of phase. This is achieved with
a universal processor, dispensing with parameters.

 The empirical focus is word order in noun phrases. This domain provides some of the clearest
evidence for 213-avoidance as a cross-linguistic word order generalization. Importantly, recursive
phrase structure “bottoms out” in noun phrases, which are typically a single cycle (though further
cycles may be embedded, e.g. relative clauses). By contrast, a simple transitive clause plausibly
involves two cycles (vP and CP), embedding further nominal cycles. In the present theory, recursion
is fundamentally distinct from structure-building within a single cycle, and different word order
restrictions might emerge in larger domains like clauses.

1 Introduction

One of the most significant recent developments for linguistic theory is the appearance of high-

 ULTRA: Universal Grammar as a Universal Parser

2

quality datasets on the full range of cross-linguistic variation. In the past, generative studies typically
relied on detailed examination of one or several languages to illuminate syntactic mechanisms. While
this approach is certainly fruitful, the accumulation of information about large numbers of languages
opens new possibilities for sharpening understanding.

 Within generative grammar, considerable attention has been given to recursion as a (or even
the) fundamental property of language (see Berwick & Chomsky 2016 for discussion). This is
formalized in a core operation called Merge, combining two syntactic objects (ultimately built from
lexical items) into a set containing both. Recursion follows from the ability of Merge to apply to its
own output. Merge also captures the essential fact that sentences have internal structure (bracketed
constituency), each layer corresponding to an application of Merge.

 Contrary to this framework, I argue that it is a conceptual error to view sentences as
groupings (whether sets, or something else) of lexical items. The error inheres in thinking of lexical
items as coherent units existing at a single level. This leads to thinking of sentences as single-level
representations as well. Words, put simply, aren’t things; they are a pair of processes, extended in
time. In the context of comprehension, the relevant processes are recognition of the word, and
integration of its meaning into an interpretation. I develop a novel view of the structure of sentences
in terms of these two kinds of processes. Crucially, a non-trivial relationship governs their relative
sequencing: one word may occur earlier than another in surface order, yet its meaning may be
integrated later. Considering sentences as unified, atemporal representations built atop impenetrable
lexical atoms leaves us unable to capture the fundamentally temporal phenomena involved, in which
the two aspects of each word are not bundled together, and the processes for different words
interweave.

 This paper proposes a novel model of grammatical mechanisms, called ULTRA (Universal
Linear Transduction Reactive Automaton). Within local syntactic domains forming the extended
projection of a lexical root (such as a verb or noun), ULTRA employs Knuth’s (1968) stack-sorting
algorithm to directly map surface word orders to underlying base structure. The mapping succeeds
only for 213-avoiding orders. This is an intriguing result, as 213-avoidance arguably bounds neutral
word order variation across languages, in a variety of syntactic domains. While the local sound and
meaning representations in this model are sequences, hierarchical structure nevertheless arises in the
dynamic action of the mapping. The bracketed structures found here, although epiphenomenal,
closely match those built by Merge, with some crucial differences (arguably favoring the present
theory).

 Stack-sorting proves to be an effective procedure for linking word order and hierarchical
interpretation, encompassing linearization, displacement, composition, and labeled brackets. The
theory invites realization as a real-time performance process. Pursuing that realization significantly
recasts the boundaries between performance and competence. Remarkably, ULTRA requires no
language-particular parameters; an invariant algorithm serves as grammatical device for all
languages. Put simply, I propose that Universal Grammar is a universal parser.

 Nevertheless, stack-sorting is too limited a mechanism to describe all the phenomena of
human syntax. Three kinds of effects are left hanging: unbounded recursion, non-neutral orders, and
the existence of apparently distinct languages. Moreover, understanding stack-sorting as a processing
system encounters two obvious problems: it is a unidirectional parser, not trivially reversible for
production; and it conflicts with strong evidence for word-by-word incrementality in comprehension.

 ULTRA: Universal Grammar as a Universal Parser

3

 Although constructing a complete model of syntax and processing goes far beyond the scope
of the paper, the problems that arise in basing a parser-as-grammar model on stack-sorting warrant
consideration. I appeal to the distinction between reactive and predictive processes, casting stack-
sorting as a universal reactive routine. A separate predictive module plays a crucial role in
production, and in the appearance of distinct, relatively rigid word orders. Prediction also helps
reconcile ULTRA with incremental interpretation. I appeal to properties of memory to resolve further
problems, speculating that primacy memory (distinct from the recency memory underpinning stack-
sorting) is the source of another cluster of syntactic properties, including long-distance movement,
crossing dependencies, and the special syntax of the “left periphery”. Finally, I suggest that episodic
memory—independently hierarchical in structure, in humans—plays a key role in linguistic
recursion.

 The structure of this paper is as follows. Section 2 argues that the “base” structure within each
local syntactic domain is a sequence. Section 3 explores the generalization that 213-avoidance
delimits information-neutral word order possibilities, across languages. Section 4 proposes a stack-
sorting procedure to capture 213-avoidance in word order. Section 5 shows how further syntactic
effects follow from stack-sorting. Section 6 compares ULTRA to existing accounts of 213-avoidance
in word order, focusing on Universal 20. Section 7 pursues the realization of stack-sorting in real-
time performance. Section 8 addresses the challenges in taking stack-sorting as the core of Universal
Grammar, sketching some possible extensions. Section 9 concludes.

2 Linear base

 Syntactic combination could take many forms. An emerging view is that combination largely
keeps to head-complement relations (Starke 2004, Jayaseelan 2008). The term “head” has at least two
different senses, in this context. First, in any combination of two syntactic objects, one is “more
central” to the composite meaning. Let us call this notion of head the root, noting that in extended
projections of nouns and verbs, the lexical noun or verb root is semantically dominant. The other
sense of head concerns which element determines the combinatoric behavior of the composite; let us
call this notion of head the label.

 In older theories of phrase structure, the two senses of head (root and label) converged on the
same element; a noun, for example, combined with all its modifiers within a noun phrase.
Headedness thus mapped to hierarchical dominance; the root projected its label above its dependents.
To illustrate, a combination of adjective and noun, such as red books, would be represented as
follows.

(1) NP

 AdjP N
 red books

 This traditional conclusion about the relationship of dependency and hierarchy is overturned
in modern syntactic cartography (Rizzi 1997, Cinque 1999, and subsequent work). Cartographic
approaches propose that syntactic combination follows a strict, cross-linguistically uniform
hierarchy, within each extended projection. This hierarchy involves a sequence of functional heads,
licensing combination with various modifiers in rigid order. The phrase red books is represented as
follows.

 ULTRA: Universal Grammar as a Universal Parser

4

(2) FP

 AdjP
 F NP
 red
 books

 Here, the adjective is the specifier of a dedicated functional head (F), which labels the
composite, determining its combinatoric behavior. In cartographic representations heads are
uniformly below their dependents, which appear higher up the spine.

 Questions arise about these representations, which postulate an abundance of unpronounced
material. A curious observation is that functional heads and their specifiers seem not to occur
together overtly, as formalized in Koopman’s (2000) Generalized Doubly-Filled Comp Filter.

 Starke (2004) takes Koopman’s observation further, arguing that heads and specifiers do not
co-occur because they are tokens of the same type, competing for a single position. Starke recasts the
cartographic spine as an abstract functional sequence (fseq), whose positions can be discharged
equally by lexical or phrasal material. Pursuing Starke’s conception, the adjective-noun combination
would be represented as below.

(3) AdjP
 red

 NP
 books

 Again, we have reversed traditional conclusions about the hierarchy of heads and dependents.
Nevertheless, the notion of root (picking out the noun) is still crucial, as the modifiers occur in the
hierarchical order dictated by its fseq.

 Syntactic combination of this sort is sequential, within each extended projection. These
“base” sequences encode bottom-up composition, so it is natural to order the sequence in the same
way (bottom-up). The base (i.e., fseq, cartographic spine) is widely taken to be uniform across
languages, and to express “thematic”, information-neutral meaning (contrasted with discourse-
information structure).1

 A grammar, on anyone’s theory, specifies a formal mapping linking sound and meaning
(more accurately, outer and inner form, allowing for non-auditory modalities). This specification
could take many forms. Sequential representation of the base allows a remarkably simple formulation
of the sound-meaning mapping. This reformulation yields a principled account of a class of word

1 This underlies Chomsky’s claim that the distinction between External Merge (the base) and Internal Merge
(displacement) correlates with the Duality of Semantics: “External Merge correlates with argument structure, internal
Merge with edge properties, scopal or discourse-related (new and old information, topic, etc.).” (Chomsky 2005: 14)
However, some neutral word orders require Internal Merge to derive (even allowing free linearization of sister nodes; see
Abels & Neeleman 2012). ULTRA maintains the identification of the base with thematic structure, while rejecting the
empirically problematic claim that displacement gives rise to scopal and discourse-information properties.

 ULTRA: Universal Grammar as a Universal Parser

5

order universals. Moreover, while the interface objects (word orders, and base trees) involved in the
mapping are sequences, bracketed hierarchical structure arises as a dynamic effect.

 There are various ways of conceptualizing the relationship between the base and surface word
order. The usual view is that the base orders the input to a derivation, yielding surface word order as
the output. That directionality is implicit in terms used to describe the hierarchy-order relation:
linearization, externalization, etc. This paper pursues a different view, where surface word orders are
inputs to an algorithm that attempts to assemble the base as output. Significantly, the only inputs that
converge on the uniform base under this process are 213-avoiding; all 213-containing word orders
result in deviant output.

3 *213 in neutral word order

213-avoidance arguably captures information-neutral word order possibilities in a variety of syntactic
domains, across languages. By 213-avoidance, I mean a ban on surface order …b…a…c…, for
elements a » b » c, where » indicates c-command in standard tree representations of the base
(equivalently, dominance in Starke’s trees). In other words, neutral word orders seem to avoid a mid-
high-low (sub)sequence of elements from a single fseq. The elements forming this forbidden contour
need not be adjacent, in surface order or in the base fseq.

 213-avoidance is widely believed to delimit the ordering options for verb clusters, well-
known in West Germanic (see Wurmbrand 2006 for an overview). Barbiers et al.’s (2008) extensive
survey of Dutch dialects found very few instances of this order; German dialects seem to avoid this
order as well.2 Meanwhile Zwart (2007) analyzes 213 order in Dutch verb clusters as involving
extraposition of the final element.3

 The best-studied domain supporting 213-avoidance in word order is Greenberg’s Universal
20, describing noun phrase orders.

“When any or all of the items (demonstrative, numeral, and descriptive adjective)
precede the noun, they are always found in that order. If they follow, the order is
either the same or its exact opposite.” (Greenberg 1963: 87)

 Subsequent work has refined this picture. Cinque (2005) reports that only 14 of 24 logically
possible orders of these elements are attested as information-neutral orders (Table 1).

Dem Num Adj N
4

Dem Num N Adj
3

Dem N Num Adj
1

N Dem Num Adj
2

*Num Dem Adj N
0

*Num Dem N Adj
0

*Num N Dem Adj
0

*N Num Dem Adj
0

2 Schmid and Vogel (2004) report examples of this order in German dialects, but note that focus seems to be involved.
Intriguingly, many instances of 213 order are only felicitous under special discourse-information conditions. However,
Salzmann has recently described neutral 213 verb cluster orders in Swiss German. I leave this possible counter-example
to future investigation.
3 Verb clusters are an instance of Restructuring, whereby multiple clauses are treated syntactically as monoclausal.
Extraposition places the extraposed element in a separate domain. Zwart’s observation thus allows us to maintain the
generalization that single-domain neutral orders are 213-avoiding.

 ULTRA: Universal Grammar as a Universal Parser

6

*Adj Dem Num N
0

*Adj Dem N Num
0

Adj N Dem Num
1

N Adj Dem Num
2

*Dem Adj Num N
0

Dem Adj N Num
1

Dem N Adj Num
3

N Dem Adj Num
1

*Num Adj Dem N
0

Num Adj N Dem
1

Num N Adj Dem
2

N Num Adj Dem
2

*Adj Num Dem N
0

*Adj Num N Dem
0

Adj N Num Dem
1

N Adj Num Dem
4

Table 1: Possible noun phrase orders. Cinque’s (2005: 319-320) report of the number of
languages exhibiting each order is given by a number: 0 = unattested; 1 = very few
languages; 2 = few languages; 3 = many languages; 4 = very many languages. Cells with
unattested orders are shaded for additional clarity. Attested orders are all and only the 213-
avoiding permutations of the Dem » Adj » Num » N base.

 Cinque describes these facts with a constraint on movement from a uniform base.
Specifically, he proposes that all movements move the noun, or something containing it, to the left
(Section 6 details Cinque’s theory and related accounts). What is forbidden is remnant movement.

 Noun phrase orders obey a simple generalization: attested orders are all and only 213-
avoiding permutations. All unattested orders have 213-like subsequences. For example, unattested
*Num Dem Adj N contains subsequences Num Dem Adj…, and Num Dem … N, representing mid-
high-low contours with respect to the fseq.

4 Stack-sorting as a grammatical mechanism

 There is a particularly simple procedure that maps 213-avoiding word4 orders to the uniform
base, called stack-sorting5. I describe an adaptation of Knuth’s (1968) stack-sorting algorithm, which
uses last-in, first out (stack) memory to sort items by their relative order in the base. This is a partial
sorting algorithm: it only achieves the desired output for some input orders.

(4) STACK-SORTING ALGORITHM DEFINITIONS
 While input is non-empty, I: next item in input.
 If I » S, Pop. S: item on top of stack.
 Else Push. x » y: x c-commands y in the base (e.g. Dem » N).
 While Stack is non-empty, Push: moves I from input onto stack.
 Pop. Pop: moves S from stack to output.

 (4) maps all and only 213-avoiding word orders to a 321-like hierarchy, corresponding to the
base. 213-containing orders are mapped to a deviant output, distinct from the base. By hypothesis,
that is why such orders are typologically unavailable: they are automatically mapped to an
uninterpretable order of composition. This explains the Universal 20 pattern (Tables 2, 3).

4 By focusing on word order, I am also setting aside morphological ordering and features. While I cannot pursue the issue
here, there is evidence that morphology obeys similar cross-linguistic restrictions, and there is no reason why the sorting
procedure could not apply to sub-word units.
5 Stack-sorting is usually described as 231-avoiding. However, linguists effectively number their hierarchies backwards,
assigning the highest number to the bottom of the hierarchy, the first element interpreted.

 ULTRA: Universal Grammar as a Universal Parser

7

1234 ! 4321 1243 ! 4321 1423 ! 4321 4123 ! 4321

*2134 !*2431 *2143 !*2431 *2413 ! *4231 *4213 !*4231

*3124 ! *3421 *3142 !*3421 3412 ! 4321 4312 ! 4321

*1324 ! *3421 1342 ! 4321 1432 ! 4321 4132 ! 4321

*2314 ! *3241 2341 ! 4321 2431 ! 4321 4231 ! 4321

*3214 ! *3241 *3241 ! *3421 3421 ! 4321 4321 ! 4321

Table 2: Result of stack-sorting logically possible orders of 4 elements, in the format input
! output. 213-avoiding orders (white cells) are stack-sorted into the 4321 base sequence.
Note that the correctly stack-sorted orders correspond exactly to the attested noun phrase
orders, as reported by Cinque (2005).

 Output " Stack " Input
Start - - 1234
Push 1 1 234
Push 2 2/1 34
Push 3 3/2/1 4
Push 4 4/3/2/1
Pop 4 4 3/2/1
Pop 3 43 2/1
Pop 2 432 1
Pop 1 4321

 Output " Stack " Input
Start - - 1243
Push 1 1 243
Push 2 2/1 43
Push 4 4/2/1 3
Pop 4 4 2/1 3
Push 3 4 3/2/1
Pop 3 43 2/1
Pop 2 432 1
Pop 1 4321

 Output " Stack " Input
Start - - 1423
Push 1 1 423
Push 4 4/1 23
Pop 4 4 1 23
Push 2 4 2/1 3
Push 3 4 3/2/1
Pop 3 43 2/1
Pop 2 432 1
Pop 1 4321

 Output " Stack " Input
Start - - 4123
Push 4 4 123
Pop 4 4 123
Push 1 4 1 23
Push 2 4 2/1 3
Push 3 4 3/2/1
Pop 3 43 2/1
Pop 2 432 1
Pop 1 4321

 Output " Stack " Input
Start - - *2134
Push 2 2 134
Pop 2 2 134
Push 1 2 1 34
Push 3 2 3/1 4
Push 4 2 4/3/1
Pop 4 24 3/1
Pop 3 243 1
Pop 1 *2431

 Output " Stack " Input
Start - - *2143
Push 2 2 143
Pop 2 2 143
Push 1 2 1 43
Push 4 2 4/1 3
Pop 4 24 1 3
Push 3 24 3/1
Pop 3 243 1
Pop 1 *2431

 Output " Stack " Input
Start - - *2413
Push 2 2 413
Push 4 4/2 13
Pop 4 4 2 13
Pop 2 42 13
Push 1 42 1 3
Push 3 42 3/1
Pop 3 423 1
Pop 1 *4231

 Output " Stack " Input
Start - - *4213
Push 4 4 213
Pop 4 4 213
Push 2 4 2 13
Pop 2 42 13
Push 1 42 1 3
Push 3 42 3/1
Pop 3 423 1
Pop 1 *4231

 Output " Stack " Input
Start - - *3124
Push 3 3 124
Pop 3 3 124
Push 1 3 1 24
Push 2 3 2/1 4
Push 4 3 4/2/1
Pop 4 34 2/1
Pop 2 342 1
Pop 1 *3421

 Output " Stack " Input
Start - - *3142
Push 3 3 142
Pop 3 3 142
Push 1 3 1 42
Push 4 3 4/1 2
Pop 4 34 1 2
Push 2 34 2/1
Pop 2 342 1
Pop 1 *3421

 Output " Stack " Input
Start - - 3412
Push 3 3 412
Push 4 4/3 12
Pop 4 4 3 12
Pop 3 43 12
Push 1 43 1 2
Push 2 43 2/1
Pop 2 432 1
Pop 1 4321

 Output " Stack " Input
Start - - 4312
Push 4 4 312
Pop 4 4 312
Push 3 4 3 12
Pop 3 43 12
Push 1 43 1
Push 2 43 2/1
Pop 2 432 1
Pop 1 4321

 Output " Stack " Input
Start - - *1324
Push 1 1 324
Push 3 3/1 24
Pop 3 3 1 24
Push 2 3 2/1 4
Push 4 3 4/2/1
Pop 4 34 2/1
Pop 2 342 1
Pop 1 *3421

 Output " Stack " Input
Start - - 1342
Push 1 1 342
Push 3 3/1 42
Push 4 4/3/1 2
Pop 4 4 3/1 2
Pop 3 43 1 2
Push 2 43 2/1
Pop 2 432 1
Pop 1 4321

 Output " Stack " Input
Start - - 1432
Push 1 1 432
Push 4 4/1 32
Pop 4 4 1 32
Push 3 4 3/1 2
Pop 3 43 1 2
Push 2 43 2/1
Pop 2 432 1
Pop 1 4321

 Output " Stack " Input
Start - - 4132
Push 4 4 132
Pop 4 4 132
Push 1 4 1 32
Push 3 4 3/1 2
Pop 3 43 1 2
Push 2 43 2/1
Pop 2 432 1
Pop 1 4321

 ULTRA: Universal Grammar as a Universal Parser

8

 Output " Stack " Input
Start - - *2314
Push 2 2 314
Push 3 3/2 14
Pop 3 3 2 14
Pop 2 32 14
Push 1 32 1 4
Push 4 32 4/1
Pop 4 324 1
Pop 1 *3241

 Output " Stack " Input
Start - - 2341
Push 2 2 341
Push 3 3/2 41
Push 4 4/3/2 1
Pop 4 4 3/2 1
Pop 3 43 2 1
Pop 2 432 1
Push 1 432 1
Pop 1 4321

 Output " Stack " Input
Start - - 2431
Push 2 2 431
Push 4 4/2 31
Pop 4 4 2 31
Push 3 4 3/2 1
Pop 3 43 2 1
Pop 2 432 1
Push 1 432 1
Pop 1 4321

 Output " Stack " Input
Start - - 4231
Push 4 4 231
Pop 4 4 231
Push 2 4 2 31
Push 3 4 3/2 1
Pop 3 43 2 1
Pop 2 432 1
Push 1 432 1
Pop 1 4321

Output " Stack " Input
Start - - *3214
Push 3 3 214
Pop 3 3 214
Push 2 3 2 14
Pop 2 32 14
Push 1 32 1 4
Push 4 32 4/1
Pop 4 324 1
Pop 1 *3241

 Output " Stack " Input
Start - - *3241
Push 3 3 241
Pop 3 3 241
Push 2 3 2 41
Push 4 3 4/2 1
Pop 4 34 2 1
Pop 2 342 1
Push 1 342 1
Pop 1 *3421

 Output " Stack " Input
Start - - 3421
Push 3 3 421
Push 4 4/3 21
Pop 4 4 3 21
Pop 3 43 21
Push 2 43 2 1
Pop 2 432 1
Push 1 432 1
Pop 1 4321

 Output " Stack " Input
Start - - 4321
Push 4 4 321
Pop 4 4 321
Push 3 4 3 21
Pop 3 43 21
Push 2 43 2 1
Pop 2 432 1
Push 1 432 1
Pop 1 4321

Table 3: Stack sorting computations for 4-orders. All and only the 213-avoiding orders,
corresponding to attested DP orders (Cinque 2005), are sorted into 4321.

 Let us illustrate how (4) parses some noun phrase orders: Dem-Adj-N, N-Dem-Adj, *Adj-
Dem-Num.

(5) Dem-Adj-N: PUSH(Dem), PUSH(Adj), PUSH(N), POP(N), POP(Adj), POP(Dem).

(6) N-Dem-Adj: PUSH(N), POP(N), PUSH(Dem), PUSH(Adj), POP(Adj), POP(Dem).

 For attested orders, the nominal categories POP in the order <N, Adj, Dem>, matching their
bottom-up hierarchy.

(7) *Adj-Dem-N: PUSH(Adj), POP(Adj), PUSH(Dem), PUSH(N), POP(N), POP(Dem).

 For the unattested 213-like order, items POP in the deviant order *<Adj, N, Dem>, failing to
construct the universal interpretation order.

 That’s nice: (4) maps attested orders to their universal meaning, simultaneously ruling out
unattested orders. But beyond such a mapping, an adequate grammar must explain other aspects of
knowledge of language, including surface structure bracketing. If grammar treats surface orders and
base structures as sequences6 (locally), where can such bracketed structure come from?

5 Stack-sorting: linearization, displacement, composition, and labeled brackets

In this section, I show that stack-sorting effectively encompasses linearization, displacement, and
composition, as well as assigning brackets, labeled unambiguously and without search. Moreover, it
does all of this without language-particular parameters.

6 In formal language theory terms, stack-sorting is a kind of linear transduction. Linear transduction has largely been
ignored as a possible model of grammar, in part because it seemed incapable of describing the hierarchical structure of
linguistic expressions. Some researchers (e.g., Marco Kuhlmann and Markus Saers) have recently explored linguistic
applications of transduction grammars, in the context of inter-language translation.

 ULTRA: Universal Grammar as a Universal Parser

9

 In the standard (“Y-model”) view, linearization and composition are distinct interface
operations, interpreting structures built in an autonomous syntactic module by Merge. In ULTRA,
linearization goes in the other direction, loading surface word order item-by-item into memory, and
reassembling it in order of compositional interpretation.

5.1 Displacement is a natural property of a stack-sorting grammar

Displacement is a natural feature of stack-sorting; from one point of view, it is the basic property of
the system. In standard accounts, constituents that compose together in the interpretation should
appear adjacent in surface order. This arrangement is forced by phrase structure grammars.
Displacement, whereby elements that compose together are separated by intervening elements in
surface order, has always seemed a surprising property, in need of explanation.

 Things work quite differently in ULTRA. A key assumption of the Merge-based view is
discarded: there is no level of representation encompassing word order and the fseq within a unified
higher-order object. Instead, word order and base hierarchy are disconnected sequences, related
dynamically. Non-adjacent input elements can perfectly well end up adjacent in the output.
Displacement, rather than being the exception, is the rule; every element in the surface order is
“transformed”, passing through memory before retrieval for interpretation.7

5.2 Brackets and labels without primitive constituency

The algorithm (4) implicitly assigns labeled bracketed structure8 to each surface order, matching
almost exactly the structures assigned by accounts like Cinque (2005). Explicitly, pushing (storage
from word order to stack) corresponds to a left bracket, and popping (retrieval from stack for
interpretation) to a right bracket. These operations apply to one element at a time; it is natural to think
of that element as labeling the relevant bracket. See Table 4, which provides the stack-sorting
computations for all surface permutations of a 3-element base.

Output " Stack " Input Output " Stack " Input
Start - - 123 Start - - 231
[Push 1 23 [Push 2 31
[Push 2/1 3 [Push 3/2 1
[Push 3/2/1] Pop 3 2 1
] Pop 3 2/1] Pop 32 1
] Pop 32 1 [Push 32 1
] Pop 321] Pop 321

 Output " Stack " Input Output " Stack " Input
Start - - 132 Start - - 312
[Push 1 32 [Push 3 12

7 Displacement under stack-sorting is limited to word order permutation within a single cycle. Long-distance
displacement, such as successive-cyclic wh-movement, requires different mechanisms; see Section 8.2.
8 Stack-sorting is intended as a parsing algorithm. There are standard techniques for extracting bracketed structure from
strings with a stack-based parser, such as SR (shift-reduce) parsing. An SR parser has a set of “grammar rules”,
specifying licensed surface configurations; when a set of elements on top of the stack match a grammar rule, they may be
reduced, replacing them in the stack with the non-terminal symbol from the left-hand side of the rule (e.g., VP, NP on top
of the stack may be reduced to S, by the rule S ! NP VP). A sentence is successfully parsed if fully reduced to the start
symbol S; reduction steps realize its phrase-structural analysis. This is quite unlike the stack-sorting procedure, which
deploys no grammar rules, nor reduce steps, and applies parsing steps to one element at a time.

 ULTRA: Universal Grammar as a Universal Parser

10

[Push 3/1 2] Pop 3 12
] Pop 3 1 2 [Push 3 1 2
[Push 3 2/1 [Push 3 2/1
] Pop 32 1] Pop 32 1
] Pop 321] Pop 321

 Output " Stack " Input Output " Stack " Input
Start - - 213 Start - - 321
[Push 2 13 [Push 3 21
] Pop 2 13] Pop 3 21
[Push 2 1 3 [Push 3 2 1
[Push 2 3/1] Pop 32 1
] Pop 23 1 [Push 32 1
] Pop *231 FAILED SORT] Pop 321

Table 4: Stack-sorting computations for orders of 3 elements. Each order induces a unique
sequence of pushes and pops, annotated with left or right brackets, respectively. The
surface order is at top right within each computation, passing sequentially though memory
to the output, at bottom left.

 Examining these brackets, the sequence of pushes and pops (storage and retrieval) for each
order implicitly defines a tree, as shown in Figure 1. These are the so-called Dyck trees9, the set of all
ordered rooted trees with a fixed number of nodes (here, 4). Compare these to the binary-branching
trees assigned under Cinque’s (2005) account, with non-remnant, leftward movement affecting a
right-branching base (Figure 2). The brackets are nearly identical, as are their labels, taking some
liberties with the technical details of Cinque’s account10.

[1[2[3 3]2]1] [3 3][1 [2 2] 1] [3 3][2 2][1 1] [2 [3 3] 2][1 1] [1 [3 3][2 2] 1]

Figure 1: Brackets, and corresponding push-pop trees, for accepted (stack-sortable) orders
of three elements. These are simply the Dyck trees with 4 nodes.

[11[22[333]2]1] [[333][11[222]1] [[[333][222]][111]] [[333][[222][111]]] [[22[333]2][111]] [11[[333][222]]1]

Figure 2: Binary-branching trees for remnant-movement-avoiding derivations of attested
orders of three elements, with corresponding bracketing. The lexical root (e.g., N in a noun
phrase) is shown as a black triangle, while structures with a terminal and trace of
movement are represented with a double branch ||. The trees are represented this way to

9 The Dyck trees of successive sizes are counted by the Catalan numbers (1, 2, 5, 14, 42, …). These numbers also count
permutations avoiding any three-element subsequence.
10 Technically, in Cinque’s theory the dependent modifiers do not label the phrases containing them. Instead, in line with
Kayne’s (1994) Linear Correspondence Axiom, they are phrasal specifiers of silent functional heads. The labeling on the
brackets derived instead more closely matches Starke’s representations.

 ULTRA: Universal Grammar as a Universal Parser

11

highlight the correspondence with the Dyck trees for these orders derived from stack-
sorting.

 Setting aside the 321 tree(s) for the moment, the Dyck trees are systematic, loss-less
compressions of Cinque’s trees, with every subtree that is a right-branching comb in the Cinque tree
replaced with a linear tree (see Jayaseelan 2008) in the Dyck tree. For this correspondence, which
amounts to pruning all terminals in the binary tree, the lexical root (e.g., noun in a DP) must not be
pruned. Elements from the surface order are associated to each node of the Dyck tree except the
highest11, with linear order read left-to-right among sister nodes, and top-down along unary-
branching paths. For example, for surface order 132, 1 is associated to the sole binary-branching
node in its Dyck tree, 3 and 2 to its left and right daughters (Figure 3).

 1 1
 3 2 3 2
 [1 [3 3][2 2] 1] [11[[333][222]]1]

Figure 3: Two bracketed representations of 132 surface order, and corresponding trees. At
left is the structure found by reading stack-sorting operations as brackets; surface elements
are identified with each node (except the topmost, dashed). Linear order is read off top-
down along unary-branching paths, and left-to-right among sister nodes. In the
corresponding binary-branching tree representing its derivation by movement (right),
pronounced elements are identified only with terminal nodes.

 Meanwhile, 321 order, assigned a ternary tree by stack-sorting, has two remnant-movement-
avoiding derivations.12 In one possible derivation, 3 inverts with 2 immediately after 2 is Merged,
then the 32 complex moves past 1 after 1 is Merged. In the other possible derivation, the full base
structure is Merged first, then 23 moves to the left, followed by leftward movement of just 3.13

 A key empirical question is whether 321 orders exhibit two distinct bracketed structures, as
binary-branching treatments allow, or only the single, “flat” structure predicted here. The issue is
even more acute for 4 elements, as in Universal 20, where there are up to 5 distinct Merge

11 This departs from the usual view that words are terminals, with non-terminals representing constituents.
12 Beyond collapsing ambiguous binary branching to flat, beyond-binary structure, the ternary Dyck tree for 321 order
otherwise corresponds to the binary trees as indicated above: prune all terminals in the binary tree, preserving the lexical
root (N).
13 Some might object to extraction from already-moved objects, violating “Freezing”. However, such subextraction is
required to derive attested N-Dem-Adj-Num (4132) order.

 ULTRA: Universal Grammar as a Universal Parser

12

derivations14 for 4321 order. Luckily, this (N Adj Num Dem) is the most common noun phrase order;
future research should illuminate the issue.15

5.3 Section summary

 Stack-sorting captures a surprising amount of syntactic machinery, normally divided among
different modules. In the usual view, an autonomous generative engine builds constituent structures,
interpreted at the interfaces by further processes of linearization and composition. In ULTRA,
linearization and composition reflect a single procedure. Constituent structure is not primitive, but
records the storage and retrieval steps by which stack-sorting assembles the interpretation.16 This
produces a bracketed surface structure, labeled appropriately, largely identical to the bracketed
structure in accounts postulating movement (Internal Merge) from a uniform base (formed by
External Merge). However, where standard theories countenance multiple derivations for some
surface orders (and ambiguous binary-branching structure), the present account assigns unique
beyond-binary bracketing. Significantly, there is no role for language-particular features to drive
movement. Displacement is handled automatically by stack-sorting, and is in fact its core feature.

6 Comparison with existing accounts of Universal 20

This section compares the stack-sorting account of Universal 20 to existing Merge-based accounts
(Cinque 2005, Abels & Neeleman 2012, and Steddy & Samek-Lodovici 2011). I argue that the stack-
sorting account is simpler, while avoiding problems that arise in each of these existing alternatives.

6.1 The account of Cinque (2005)

Cinque proposes a cross-linguistically uniform base hierarchy, reflecting a fixed order of External
Merge. He proposes that movement (Internal Merge) is uniformly leftward, while the base is right-
branching, in line with Kayne’s (1994) LCA. He stipulates that remnant movement in the noun
phrase is barred: each movement affects the noun, or a constituent containing it. His base structure
for the noun phrase is (8).

(8) AgrWP

 AgrW

0 WP

 DemP W’

14 For Cinque (2005), dedicated Agreement Phrases above each modifier-introducing category provide the landing sites of
movement. This sharply reduces possible movements. But these AgrPs are technical devices introduced to comply with
Kayne’s LCA, rather than a central part of his theory. See Abels & Neeleman (2012) for discussion.

15 Cinque (2005: 320) gives the following partial list of languages with this order: Cambodian, Javanese, Karen, Khmu,
Palaung, Shan, Thai, Enga, Dagaare, Ewe, Gungbe, Labu and Ponapean, Mao Naga, Selepet, Yoruba, West Greenlandic,
Amele, Igbo, Kusaeian, Manam, Fa d’Ambu, Nubi, Kugu Nganhcara, Cabécar, Kunama, and Maori.

16 The claim that surface structure is an epiphenomenon of processing echoes ideas of Steedman’s Combinatory
Categorial Grammar (CCG). He argues against viewing “[…] Surface Structure as a level of representation at all, rather
than viewing it (as computational linguists tend to) as no more than a trace of the algorithm that delivers the
representation that we are really interested in, namely the interpretation.”(Steedman 2000: 3)

 ULTRA: Universal Grammar as a Universal Parser

13

 W0 AgrxP

 Agrx

0 XP

 NumP X’

 X0 AgrYP

 AgrY

0 YP

 AdjP Y’

 Y0 NP

 The overt modifiers are specifiers of dedicated functional heads (e.g., X0), below agreement
phrases providing landing sites for movement. This structure, and his assumptions about movement,
derives all and only the attested orders. The English-like order Dem-Num-Adj-N surfaces without
movement; all other orders involve some sequence of movements of NP, or something containing it.

6.2 The account of Abels & Neeleman (2012)

Abels & Neeleman (2012) modify Cinque’s analysis, discarding elements introduced to conform to
the LCA (including agreement phrases and dedicated functional heads). They argue that the LCA
plays no explanatory role; all that is required is that movement is leftward, and remnant movement is
barred. They allow free linearization of sister nodes, utilizing a considerably simpler base structure
(9). They omit labels for non-terminal nodes as irrelevant to their analysis (Abels & Neeleman 2012:
34).

(9)
 Dem
 Num
 Adj N

 In their theory, eight attested orders can be derived without movement, by varying the linear
order of sisters. The remaining attested orders require leftward, non-remnant movement. In principle,
their system allows a superset of Cinque’s (2005) derivations; some orders can be derived through
linearization choices or through movement. However, restricting attention to strictly necessary
operations, and supposing that free linearization is simpler than movement, their derivations are
generally simpler than Cinque’s.

6.3 The account of Steddy & Samek-Lodovici (2011)

Steddy & Samek-Lodovici (2011) offer another variation on Cinque’s (2005) analysis. They propose
an optimality-theoretic account, retaining Cinque’s base structure (8). Linear order is governed by a
set of Align-Left constraints (10), one for each overt element.

(10) a. N-L – Align(NP, L, AgrWP, L)
 Align NP’s left edge with AgrWP’s left edge.
 b. A-L – Align(AP, L, AgrWP, L)
 Align AP’s left edge with AgrWP’s left edge.

 ULTRA: Universal Grammar as a Universal Parser

14

 c. NUM-L – Align(NumP, L, AgrWP, L)
 Align NumP’s left edge with AgrWP’s left edge.
 d. DEM-L – Align(DemP, L, AgrWP, L)
 Align DemP’s left edge with AgrWP’s left edge.
(From Steddy & Samek-Lodovici 2011: 450)

 These alignment constraints incur a violation for each overt element or trace separating the
relevant item from the left edge of the domain, and are variably ranked across languages. Attested
orders are optimal candidates under some constraint ranking. The unattested orders are ruled out
because they are “harmonic-bounded”: some other candidate incurs fewer higher-ranked violations,
under any constraint ranking. Therefore, they can discard the constraints on movement that Cinque
(2005) and Abels & Neeleman (2012) adopt. The leftward, non-remnant character of movement
instead falls out from alignment principles.

6.4 Problems with existing accounts

Although these accounts differ in details, they share some problematic features. First, all of them
capture the word order pattern in three tiers of explanation: (i) a uniform base structure, (ii) syntactic
movement, and (iii) principles of linearization. In all three accounts, (i) describes the order of
External Merge. Details of (ii) and (iii) vary between the accounts. For Cinque (2005) and Steddy &
Samek-Lodovici (2011), all orders except Dem-Num-Adj-N involve movement; Abels & Neeleman
(2012) require movement for only six attested orders. With respect to linearization, Cinque (2005)
utilizes Kayne’s (1994) LCA; Abels & Neelman (2012) have movement uniformly to the left, but
base-generated sisters freely linearized on a language-particular basis; Steddy & Samek-Lodovici
(2011) have language-particular constraint rankings.

 These accounts all require different grammars for different orders. In Cinque’s (2005) system,
features driving particular movements must be learned. The same is true for Abels & Neelman
(2012), with additional learning of order for sister nodes. Steddy & Samek-Lodovici (2011) require
learning of the constraint ranking that gives rise to each order. All these accounts face trouble,
therefore, with languages permitting freedom of order in the DP; in effect they must allow for
underspecified or competing grammars, to capture the different orders.

 Finally, all these accounts have some measure of structural or grammatical ambiguity, for
some orders. For Cinque (2005), one kind of ambiguity comes about in choosing whether to move a
functional category, or the Agreement phrase embedding it; this choice has no overt reflex. Although
his theory sharply limits the number and landing site of possible movements, these limitations are
somewhat artificial; little substantive would change if we postulated further silent functional layers to
host further movements, or allowed multiple specifiers. In the limit, this allows the full range of
ambiguous derivations discussed in section 5. Abels & Neeleman’s (2012) approach allows this
ambiguity among different movement derivations, as well as the derivation of many orders through
either movement or reordering of sister nodes. Finally, Steddy and Samek-Lodovici (2011) face a
different ambiguity problem: some orders are consistent with multiple constraint rankings (thus,
multiple grammars).

6.5 Comparison with the stack-sorting account

The stack-sorting account fares better with respect to these issues. Instead of postulating separate
tiers of base, movement, and linearization principles, the relevant machinery is realized in one
algorithmic process. The sorting algorithm is universal, eschewing language-particular features to

 ULTRA: Universal Grammar as a Universal Parser

15

drive movement, order sister nodes, or rank alignment constraints. Such a theory is ideally situated to
account for the free word order phenomenon.17 Furthermore, each order induces a unique sequence of
storage and retrieval operations, tracing a unique bracketing. Within domains characterized by
neutral word order and a single fseq, there is no spurious structural or grammatical ambiguity, for any
word order.

7 Universal Grammar as universal parser

This section develops the view that stack-sorting can form the basis for an invariant performance
mechanism, realizing Universal Grammar as a universal parser. This modifies traditional conclusions
about competence and performance, while providing a novel view of what a grammar is.

7.1 Rethinking competence and performance

In generative accounts, a fundamental division exists between competence and performance
(Chomsky 1965). Competence encompasses knowledge of language, conceived of as an abstract
computation determining the structural decomposition of infinitely many sentences. Separate
performance systems access the competence system’s knowledge during real-time processing. In
terms of Marr’s (1982) three-tiered description for information-processing systems, competence
corresponds to the highest, computational level, specifying what the system is doing, and why.
Performance corresponds, rather loosely, to the lower, algorithmic level, describing how the
computation is carried out, step-by-step.

 Of course, Marr’s hierarchy applies to the information-processing in language, under the
present theory as well as any other. However, the division of labor between these components is
significantly redrawn here, with much more of the burden of explanation carried by performance.18 A
crucial difference is that in ULTRA, bracketed structure is not within the purview of competence.
Instead, such structure arises in the interaction of competence with the stack-sorting algorithm,
during real-time parsing. The knowledge ascribed to the competence grammar is simpler, including
the innate fseq as a core component.19 In a way, this aligns with the views of Chomsky’s recent work,
in which competence is fundamentally oriented for computing interpretations, with externalization
“ancillary”.

7.2 A universal parser

A novel claim of ULTRA is that there is a single parser for all languages. This departs from the
nearly universal assumption that parsers interpret language-particular grammars. But even within that
traditional view, the appeal of universal mechanisms has been recognized.

“The key point to be made, however, is that the search should be a search for
universals, even—and perhaps especially—in the processing domain. For it would

17 What requires explanation, from this point of view, is why languages should settle on distinct, relatively rigid word
orders. See section 8.
18 Marcus has endorsed this mode of explanation: "[A] theory of parsing should attempt to capture wherever possible the
sorts of generalizations that linguistic competence theories capture; there is no reason in principle why these
generalizations should not be expressible in processing terms.” (Marcus 1980: 10)

19 See Chesi & Moro (2015) for related discussion, and a different perspective.

 ULTRA: Universal Grammar as a Universal Parser

16

seem that the strongest parsing theory is one which says that the grammar interpreter
itself is a universal mechanism, i.e. that there is one highly constrained grammar
interpreter which is the appropriate machine for parsing all natural languages.”
(Marcus 1980: 11)

 The idea that “the parser is the grammar” has a long history; see Phillips (1996, 2003),
Kempson et al (2001), and the articles in Fodor & Fernandez (2015) for recent perspective. Fodor
refers to this as the performance grammar only (PGO) view.

“PGO theory enters the game with one powerful advantage: there must be
psychological mechanisms for speaking and understanding, and simplicity
considerations thus put the burden of proof on anyone who would claim that there is
more than this.” (Fodor 1978: 470)

 However, while granting that this entails a simpler theory, Fodor rejects the idea, finding no
motivation for movement outside an autonomous grammar (ibid., 472). This presupposes that
movement is fundamentally difficult for parsing mechanisms (which should prefer phrase-structural
mechanisms to transformational ones). However, in ULTRA, displacement is not a complication over
more basic mechanisms; displacement is the basic mechanism.

7.3 Displacement is not unique to human language

It is often said that displacement is unique to human language, and artificial codes avoid this
property.20 But displacement appears in coding languages, in exactly the same sense that it appears in
ULTRA. A simple example illustrates: the order in which users press keys on a calculator is not the
order in which the corresponding computations are carried out. In practice, calculators compile input
into Reverse Polish Notation for machine use, via Dijkstra’s Shunting Yard Algorithm (SYA).

 The example is not an idle one; the stack-sorting algorithm (4) is essentially identical to the
SYA.21 Lexical heads (nouns and verbs) are “shunted” directly to interpretation, as numerical
constants are in a calculator. Meanwhile the satellites forming their extended projections are stack-
sorted according to their relative rank, just like arithmetic operators. In this analogy, cartographic
ordering parallels the precedence order of arithmetic operators.

 In fact, though the property is little used, the SYA is a sorting protocol; many input orders
lead to the same internal calculation. As calculator users, we utilize one input scheme (infix
notation), but others would do as well. The standardized input order for calculators has the same
status as particular languages with respect to ULTRA: users may fall into narrow ordering habits, but
the algorithm automatically processes many other orders.

7.4 Grammaticality and ungrammaticality

One of the central tasks ascribed to grammars is distinguishing grammatical sentences of a language
from ungrammatical strings. In ULTRA, knowledge of grammaticality is very different from

20: For example: "These 'displacement' properties are one central syntactic respect in which natural languages differ from
the symbolic systems devised for one or another purpose, sometimes called 'languages' by metaphoric extension (formal
languages, programming languages); there are other respects, including semantic differences." (Chomsky 1995: 222)
21 Thanks to Michael Jarrett for discussion.

 ULTRA: Universal Grammar as a Universal Parser

17

knowledge of ungrammaticality. The former kind of knowledge is fundamentally about computing
interpretations. But the invariant process interpreting one language’s surface order can equally
interpret the orders of other languages. From this point of view, there is only one I-language, and a
single performance grammar that delivers it. While this conclusion is appealing, an important
question remains: where do individual languages come from, with apparently different grammars?

8 Possible extensions to a more complete theory of syntax

This section addresses two kinds of problems that follow from interpreting stack-sorting as a
performance device. The first concerns reconciling the theory with what is known about real-time
language processing; the second concerns extending the model to properties of syntax that are left
unexplained. Even discussing these problems in depth, much less justifying any solutions, is beyond
the scope of this paper. The intent is merely to sketch the challenges, and indicate directions for
further work.

8.1 Reaction vs. prediction: incrementality and rigid word order

With respect to processing, one problem is that this approach seems to be contradicted by strong
evidence for word-by-word incrementality in comprehension (especially in the Visual World
paradigm; see Tanenhaus & Trueswell 2006). ULTRA is “pedestrian” in the sense Stabler (1991)
cautions against. Within each domain, bottom-up interpretation cannot begin until the lexical root of
the fseq is encountered.

 One possibility for reconciling ULTRA with incrementality draws on the distinction between
reactive processes, such as the stack-sorting procedure, and predictive processing (see Braver et al.
2007, Huettig & Mani 2016). The idea is that stack-sorting is a reactive mechanism for language
perception; this is contrasted with—and necessarily supplemented by—predictive capacities,
associated with top-down processing, and production.22 The latter system alone contains learned,
language-particular grammatical knowledge. This proposal echoes other approaches with a two-stage
parsing process, such as Frazier & Fodor’s (1978) Sausage Machine. ULTRA resembles their
Preliminary Phrase Packager (PPP), a fast low-level structure-builder, distinguished from the larger-
scale problem-solving of their Sentence Structure Supervisor (SSS). Marcus expresses a similar view,
describing a parser as a “fast, ‘stupid’ black box” (Marcus 1980: 204) producing partial analyses,
supplemented with intelligent problem-solving for building large-scale structure.

 I suggest that evidence for word-by-word incrementality can be reconciled with the present
theory through an interaction between reaction and prediction, exploiting the notion of
“hyperactivity” (Momma et al. 2015). The idea is that comprehension can skip ahead, giving the
appearance of incrementality, if a lexical root (noun or verb) is provided in advance by prediction.
Something like this seems to be true.

“There is growing evidence that comprehenders often build structural positions in
their parses before encountering the words in the input that phonologically realize
those positions [...] To take just one example, in a head-final language such as
Japanese it may be necessary for the structure building system to create a position for

22 The so-called “P-chain” closely identifies prediction and production (see, e.g., Dell & Chang 2014).

 ULTRA: Universal Grammar as a Universal Parser

18

the head of a phrase before it has completed the arguments and adjuncts that precede
the head.” (Phillips & Lewis 2013: 19)

 A complementary predictive system could help solve two further problems for ULTRA:
explaining how production is possible, and why there are distinct languages with different, relatively
rigid word orders. The stack-sorting algorithm is a unidirectional parser; there is no trivial way of
“reversing the flow” for production. Facing this uncertainty, it would be natural to rely on prediction
to supply word order in production.23 To simplify production, it is helpful for word order to be
predictable; in turn, word order tendencies in the linguistic environment can be learned by this
system. This suggests a feedback loop, and a plausible route for the emergence and divergence of
relatively rigid word orders.

8.2 Primacy vs. recency and the Duality of Semantics

A number of important syntactic properties remain unexplained. In order to extend the proposal to a
remotely adequate theory, these properties must be addressed somehow. These include, first, a cluster
of syntactic properties relating to A-bar syntax, and the so-called Duality of Semantics. I suggest that
this distinctive kind of syntax relates to an important distinction in short-term memory, between
primacy and recency, drawing on Henson’s (1998) Start-End Model (SEM).24 In Henson’s model,
primacy and recency are distinct effects, reflecting content-addressable coding of two aspects of
serial position.

 Recency is naturally associated with stack (last-in, first-out) memory. Primacy, on the other
hand, is naturally described by queue (first-in, first-out) memory. Besides optimal order of access,
there is another important difference between primacy and recency effects. Put simply, the first
element in a sequence remains the first element, no matter how many more elements follow; the
primacy signature of a given element is relatively stable over the time scale relevant to parsing.
Recency is different: each element in a sequence is a new right edge, suppressing the accessibility to
recency-based memory of everything that precedes it. Thus, we expect a kind of “use-it-or-lose-it”
pressure within recency memory, but not primacy memory.

 Tentatively, I would like to suggest that distinct primacy and recency memory codes underlie
the Duality of Semantics, and the division between A-bar and A-syntax. Recency, associated with a
stack, is the basis for information-neutral, local permutation, generally characterized by nesting
dependencies.25 Supposing that primacy is crucially involved in non-neutral, A-bar-like syntax
suggests an account for a cluster of surprising properties. Most obvious is the association of
discourse-information effects with the “left periphery”: the left edge of domains is where we expect

23 The Dynamic Syntax framework (Kempson et al., 2001) adopts a broadly similar view of production as parasitic on
comprehension (thanks to Colin Phillips for discussion).
24 In discussing memory architectures for language processing, Caplan & Waters (2013) point out that SEM is
“reasonably well-established” in the psychological literature as a model of short-term memory, and yet no existing
theories of linguistic parsing incorporate it.
25 Stack-sorting alone can handle some local crossing dependencies. This is surprising, given the usual identification of
automata utilizing push-down stacks with context-free grammars, and nesting dependencies. For example, 1423, 4132,
and 4231 are attested noun phrase orders (Dem-N-Num-Adj, N-Dem-Adj-Num, and N-Num-Adj-Dem). All three exhibit
crossing relations, in that the (selectional) dependency between 4 and 3 crosses the dependency between 2 and 1. In
Merge-based accounts, these orders require movement. But as these orders are 213-avoiding, they are stack-sortable.

 ULTRA: Universal Grammar as a Universal Parser

19

primacy memory to play a significant role.26 An involvement of primacy memory also suggests an
analysis of Superiority effects in multiple wh-movement constructions. In Merge-based theories,
such constructions (exhibiting crossing dependencies) are problematic, and require stipulative
devices like Richards’ (1997) “Tucking-In” derivations. Thinking of the effects as involving primacy
memory suggests a simpler account: ordering of multiple wh-phrases is a matter of first-in, first-out
access (queue memory). A final property of this alternative syntactic system that can be rationalized
is long-distance movement. Possibly, the availability of long-distance movement for A-bar relations
results from the stability of primacy memory, making items encountered in the left periphery
accessible for recall later without great difficulty, in contrast to recency memory (which can only
support short, local recall). While this is suggestive, addressing the vast literature on A-bar syntax
must be left to future research.

8.3 What about recursion?

A final problem looming in the background is recursion. ULTRA operates within syntactic domains
characterized by a single fseq. This requires some comment, as recursion is a fundamental property
of syntax. For recursion as well, properties of memory, and intervention of a complementary
predictive system, might be crucial. Intriguingly, human episodic memory appears to be
independently hierarchical in structure, perhaps unlike related animals (Tulving 1999, Corballis
2009). In the SEM model, episodic tokens are created for groups, within grouped sequences (Henson
1998). Linguistic recursion requires some further mechanism for treating the group token
corresponding to one sequence as an item token in another sequence.

 As discussed in section 6, in ULTRA, structural ambiguity does not arise without ambiguity
of meaning, within single domains. However, structural ambiguity arises inevitably when multiple
domains are present, in terms of which domain embeds in another, or where to attach an element that
could discharge positions in two distinct domains. This is where the “fast, stupid black box” is
helpless, and must call on other resources. One obvious source of help in stitching together multiple
domains is a separate predictive system, with access to top-down knowledge of plausible meanings in
context. The persistent problem of resolving embedding ambiguities also provides motivation for
rigid word order, which sharply reduces attachment possibilities.

 An important point is that brackets are defined relative to a particular fseq. Recursive
embedding of one domain in another (for example, a nominal as argument of a verb) involves
projection of a bracket corresponding to the entire embedded phrase, within the embedding domain.27
Consider the following example.

26 It may seem suspicious to associate A-bar relations of all kinds to the left periphery; what about wh-in situ
constructions? Richards (2010) notes that in Japanese, in situ wh-phrases occur at the left edge of a special prosodic
domain, which extends rightward to the complementizer where they take scope.
27 Psycholinguistic evidence suggests that interpretation of clausal recursion proceeds top-down (Bach et al 1986, Joshi
1990). Thus, in a recursive structure like [CP1 … [CP2 … [CP3 …]]], the order of interpretation is <CP1, CP2, CP3>.

 This suggests an intriguing extension of the present theory. Suppose recursive embedding is also parsed by
stack-sorting. If the required output of stack-sorting recursive domains is 123-like (top-down) order among cycles, then
we predict avoidance of 231-like orders. 231-avoidance is one way of expressing the Final-Over-Final Constraint (FOFC;
see Sheehan et al 2017 for a recent review). Thus, we can explain FOFC effects with this theory, insofar as they obtain
over higher-order (recursive) structure. Consider, for example, one robust FOFC effect, the avoidance of V-O-Aux orders
across Germanic (and beyond). The nominal is a distinct domain embedded within the clause. The clause itself arguably

 ULTRA: Universal Grammar as a Universal Parser

20

(11) The dog chased a ball.

 There are three sorting domains here: two nominal projections, embedded in a third, verbal
projection (setting aside the possibility that clauses contain two domains, vP and CP phases). Their
ULTRA bracketing appears below.

(12) NP1 = [the [dog dog] the]

 NP2 = [a [ball ball] a]

 VP = [NP1 [chased chased] [NP2 NP2] NP1]

 This example illustrates the ambiguity that accompanies embedding. The issue is how to link
the nominal phrases to positions in the verb’s fseq (i.e., to theta roles). As theta roles are not overtly
expressed (case-marking is an unreliable guide), the reactive parser must draw on external means (for
example, language-particular ordering habits, or predictions of plausible interpretations).

 A final point about recursion returns to the issue of how calculators work, via Dijkstra’s
Shunting Yard Algorithm. Such computations are recursive. But recursion isn’t handled by the
parsing algorithm; rather, it arises at the level of interpretation, where partial outputs of arithmetic
operations feed into further calculations. A similar conclusion (recursion is semantic, not syntactic) is
possible within the present framework, given the similarities between ULTRA and the SYA.
Notably, both procedures compile input into Reverse Polish Notation, a so-called concatenative
programming language, expressing recursive hierarchical operations unambiguously in serial format.

8.4 Do we even need an algorithm?

I have shown how a particularly simple algorithm captures a range of syntactic phenomena. But the
question is, why this algorithm? Other sorting procedures are possible in principle, and would lead to
different permutation-avoidance profiles. How do we justify selecting stack-sorting as the right
procedure for syntactic mapping?

 There are three crucial ingredients. The first is the orientation of the system as a parser,
mapping sound to meaning. This is not logically necessary; it is simply one of the reasonable choices.
The second factor is the linear nature of sound and meaning. This is straightforward for sound
sequences, but much less so for interpretations, where it is simply a bold hypothesis. The third
ingredient is the choice of stack memory. This can plausibly be tied to the Modality effect:
intelligible speech input engenders unusually strong recency effects (Surprenant et al., 1993). It
seems a small leap to suppose that the formal stack employed in the algorithm may simply (and
crudely) reflect the dominance of recency effects in memory for linguistic material.

 So far, stack-sorting has been implemented with an explicit algorithm. That may be
unnecessary. Rather than thinking of stack-sorting as a set of explicit instructions, we might reframe

contains two cycles (vP and CP), with Aux in a higher cycle than V. Then V-O-Aux gives elements of vP, DP, CP, a 231-
like order over the top-down embedding hierarchy [CP [vP [DP]]].

 If this is on the right track, then 213- and 231-avoidance characterize different levels of structure (bottom-up
assembly within local domains, vs. top-down recursion). I leave exploration of this possibility to future work.

 ULTRA: Universal Grammar as a Universal Parser

21

it as an anti-conflict bias between the accessibility of items in memory, in terms of recency effects,
and retrieval for a rigid interpretation sequence. If that is on the right track, it is possible that no
novel cognitive machinery had to evolve to explain these effects. What remains is to understand
where the ordering of interpretations (the fseq) itself comes from, a matter on which I will not
speculate here.

9 Conclusion

Summarizing, a simple algorithm (4) maps 213-avoiding word orders to a bottom-up compositional
sequence, while mapping 213-containing orders to deviant sequences. While the input and output of
the mapping are sequences, hierarchical structure is present: the algorithmic steps realize left and
right brackets, almost exactly where standard accounts place them. The account differs from standard
accounts in assigning unambiguous bracketing to all orders.

 This model improves on existing accounts of word order restrictions, which invoke additional
stipulations (e.g., constraints on movement, together with principles of linearization), beyond core
syntactic structure-building. In ULTRA, these effects fall out from a single real-time process. In turn,
syntactic displacement, long seen as a curious complication, emerges as the fundamental grammatical
mechanism. No learning of language-particular properties is required; one grammar interprets many
orders.

 It should be clear that the system described here is only one part of syntactic cognition. This
system builds one extended projection at a time; further mechanisms are required to embed one
domain in another. However, that may be a virtue: it is tempting to identify the domains of operation
for this architecture with phases, which are thus special for principled reasons.

 Moreover, stack-sorting only handles information-neutral structure. This ignores another
important component of syntax, so-called discourse-information structure, associated with potentially
long-distance A-bar dependencies. This deficiency, too, may be a virtue, suggesting a principled
basis for the Duality of Semantics. I speculated that primacy memory plays a central role in these
effects, potentially explaining several curious properties (leftness, long distance, and crossing).

 Raising our sights, the larger conclusion is that much of the machinery of syntactic cognition
might reduce to effects not specific to language. Needless to say, this is just a programmatic sketch;
future research will determine whether and how ULTRA’s stack-sorting might be integrated into a
more complete model of language.

Conflict of Interest

The author declares that the research was conducted in the absence of any commercial or financial
relationships that could be construed as a potential conflict of interest.

Funding

This project did not benefit from external funding sources.

 ULTRA: Universal Grammar as a Universal Parser

22

Acknowledgments

Portions of this work were first developed in a graduate seminar at the University of Arizona (2015),
and presented at the POL Symposium in Tokyo (2016), LCUGA 3 (2016), and the LSA Annual
Meeting (2017). I am grateful to audiences at those venues, and to numerous colleagues for helpful
discussion. I would like to single out the following for thanks: Klaus Abels, David Adger, Bob
Berwick, Tom Bever, Andrew Carnie, Noam Chomsky, Guglielmo Cinque, Jennifer Culbertson,
Sandiway Fong, Thomas Graf, John Hale, Heidi Harley, Norbert Hornstein, Michael Jarrett, Richard
Kayne, Hilda Koopman, Diego Krivochen, Marco Kuhlmann, Massimo Piattelli-Palmarini, Colin
Phillips, Paul Pietroski, Marcus Saers, Yosuke Sato, Dan Siddiqi, Dominique Sportiche, Juan
Uriagereka, Elly van Gelderen, Andrew Wedel, and Stephen Wilson. I am especially grateful to the
graduate students who participated in my Stack-Sorting Research Group (2015-2016). Of course, all
errors and misunderstandings in this paper are my own.

References

Abels, K., & Neeleman, A. (2012). Linear asymmetries and the LCA. Syntax, 15(1), 25-74.

Barbiers, S., van der Auwera, J., Bennis, H., Boef, E., de Vogelaer, G., & van der Ham, M. (2008).
Syntactic Atlas of the Dutch Dialects Volume II. Amsterdam: Amsterdam University Press.

Berwick, R., & Chomsky, N. (2016). Why Only Us: Language and Evolution. Cambridge, MA: MIT
Press.

Braver, T. S., Gray, J. R., & Burgess, G. C. (2007). Explaining the many varieties of working
memory variation: Dual mechanisms of cognitive control. Variation in working memory, 76-
106.

Caplan, D., & Waters, G. (2013). Memory mechanisms supporting syntactic comprehension.
Psychonomic bulletin & review, 20(2), 243-268.

Chesi, C., and Moro, A. (2015) The subtle dependency between Competence and Performance. in Á.
J. Gallego and D. Ott (eds.) "50 Years Later: Reflections on Chomsky’s Aspects". MIT
Working Papers in Linguistics, 77:33-46

Chomsky, N. (1965). Aspects of the Theory of Syntax. Cambridge, MA: MIT Press.

Chomsky, N. (1995). The Minimalist Program. Cambridge, MA: MIT press.

Chomsky, N. (2005). Three factors in language design. Linguistic inquiry, 36(1), 1-22.

Cinque, G. (1999). Adverbs and functional heads: A cross-linguistic perspective. Oxford: Oxford
University Press.

Cinque, G. (2005). Deriving Greenberg’s universal 20 and its exceptions. Linguistic inquiry 36(3),
315-332.

Corballis, M.C. (2009). Mental time travel and the shaping of language. Experimental Brain
Research 192(3), 553-560.

Dell, G.S. and Chang, F. 2014. The P-chain: Relating sentence production and its disorders to

 ULTRA: Universal Grammar as a Universal Parser

23

comprehension and acquisition. Phil. Trans. R. Soc. B, 369(1634), 20120394.

Fodor, J.D. (1978). Parsing strategies and constraints on transformations. Linguistic Inquiry 9(3),
427-473.

Fodor, J.D. and Fernandez, E. (eds.) (2015) Special Issue on Grammars and Parsers: Toward a
unified theory of language knowledge and use. Journal of psycholinguistic research 44(1).

Frazier, L., & Fodor, J.D. (1978). The sausage machine: A new two-stage parsing model. Cognition
6(4), 291-325.

Greenberg, J. (1963). “Some universals of grammar with particular reference to the order of
meaningful elements,” in Universals of language, ed. J. Greenberg. 73-113. Cambridge, MA:
MIT Press.

Henson, R. N. (1998). Short-term memory for serial order: The start-end model. Cognitive
psychology 36(2), 73-137.

Huettig, F., & Mani, N. (2016). Is prediction necessary to understand language? Probably not.
Language, Cognition and Neuroscience 31(1), 19-31.

Jayaseelan, K.A. (2008). Bare phrase structure and specifier-less syntax. Biolinguistics 2(1), 87-106.

Joshi, A. K. (1990). Processing crossed and nested dependencies: An automaton perspective on the
psycholinguistic results. Language and cognitive processes 5(1), 1-27.

Kayne, R. (1994). The Antisymmetry of Syntax. Cambridge, MA: MIT Press.

Kempson, R., Meyer-Viol, W., and Gabbay, D. (2001). Dynamic Syntax. Oxford: Blackwell.

Knuth, D. (1968). The Art of Computer Programming 3: Sorting and Searching.

Koopman, Hilda. (2000). The Syntax of Specifiers and Heads. London: Routledge.

Marcus, M.P. (1980). Theory of Syntactic Recognition for Natural Languages. Cambridge, MA: MIT
press.

Marr, D. (1982). Vision: A Computational Investigation into the Human Representation and
Processing of Visual Information. New York: W.H. Freeman.

Momma, S., Slevc, L. R., & Phillips, C. (2015, March). The timing of verb planning in active and
passive sentence production. Poster presented at the 28th annual CUNY Conference on Human
Sentence Processing, Los Angeles, CA.

Phillips, C. (1996). Order and structure. (Doctoral dissertation, Massachusetts Institute of
Technology).

Phillips, C. (2003). Linear order and constituency. Linguistic Inquiry 34(1), 37-90.

Phillips, C., & Lewis, S. (2013). Derivational order in syntax: Evidence and architectural
consequences. Studies in Linguistics 6, 11-47.

 ULTRA: Universal Grammar as a Universal Parser

24

Richards, N. (1997). What moves where when in which language? (Doctoral dissertation,
Massachussetts Institute of Technology).

Richards, N. (2010). Uttering trees. Cambridge, MA: MIT Press.

Rizzi, L. (1997). “The fine structure of the left periphery,” in Elements of Grammar: Handbook in
Generative Syntax, Liliane Haegeman, ed., 281–337. Dordrecht: Kluwer.

Schmid, T., and Vogel, R. (2004). Dialectal variation in German 3-verb clusters: A surface oriented
OT account. Journal of Comparative Germanic Linguistics 7(3), 235-274.

Sheehan, M., Biberauer, T., Roberts, I., Pesetsky, D., & Holmberg, A. (2017). The Final-Over-Final
Condition: A Syntactic Universal (Vol. 76). Cambridge, MA: MIT Press.

Stabler Jr, E. P. (1991). “Avoid the pedestrian’s paradox,” in Principle-based parsing: Computation
and psycholinguistics, R. Berwick, S. Abney, and C. Tenny, eds., 199-237. Dordrecht: Kluwer.

Starke, M. (2004). “On the inexistence of specifiers and the nature of heads,” in The Cartography of
Syntactic Structures, Vol. 3: Structures and Beyond, A. Belletti, ed., 252-268. New York:
Oxford University Press.

Steddy, S. & Samek-Lodovici, V. (2011). On the ungrammaticality of remnant movement in the
derivation Greenberg’s universal 20. Linguistic Inquiry 42(3), 445-469.

Steedman, M., (2000). The Syntactic Process. Cambridge, MA: MIT Press.

Surprenant, A. M., Pitt, M. A., & Crowder, R. G. (1993). Auditory recency in immediate memory.
The Quarterly Journal of Experimental Psychology 46(2), 193-223.

Tanenhaus, M. K., & Trueswell, J. C. (2006). “Eye movements and spoken language
comprehension,” in Handbook of psycholinguistics, 863-900.

Tulving, E. (1999). “On the uniqueness of episodic memory,” in Cognitive neuroscience of memory
Nilsson, L., & Markowitsch, H.J., eds. Ashland, OH: Hogrefe & Huber, 11-42.

Wurmbrand, S. 2006. “Verb clusters, verb raising, and restructuring,” in The Blackwell Companion
to Syntax, Vol. V, Everaert, M. and van Riemsdijk, H., eds., Oxford: Blackwell, 227-341.

Zwart, C.J. 2007. “Some notes on the origin and distribution of the IPP-effect,” in Groninger
Arbeiten zur germanistischen Linguistik 45, 77-99. Groningen: University of Groningen.

