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Abstract

To successfully learn language — and more specifically how to use verbs correctly — chil-
dren must solve the linking problem: they must learn the mapping between the thematic roles
specified by a verb’s lexical semantics and the syntactic argument positions specified by a
verb’s syntactic frame. We use an empirically-grounded and integrated quantitative frame-
work involving corpus analysis, experimental meta-analysis, and computational modeling to
implement minimally distinct versions of mapping approaches that (i) are either specified a
priori or learned during language acquisition, and (ii) rely on either an absolute or a relative
thematic role system. Using successful verb class learning as an evaluation metric, we em-
bed each approach within a concrete model of the acquisition process and see which learning
assumptions are able to match children’s verb learning behavior at three, four, and five years
old. Our current results support a trajectory where children (i) may not have prior expectations
about linking patterns between ages three and five, and (ii) begin with a relative thematic sys-
tem, progressing towards optionality between a relative and an absolute system. We discuss
implications of our results for both theories of syntactic representation and theories of how
those representations are acquired. We also discuss the broader contribution of this study as
a concrete modeling framework that can be updated with new linking theories, corpora, and
experimental results.

1 Introduction

To successfully learn how to use a verb, children must learn (at least) three pieces of information:
(1) the syntactic properties of the verb, such as the syntactic frames that it can appear in, (ii) the
lexical semantics of the verb, including the thematic roles assigned by the verb, and (iii) a mapping
between the thematic roles specified by the verb’s lexical semantics and the syntactic argument

*We are very grateful to Megan Crowhurst, Christina Tortora, two anonymous reviewers, and the audiences at the
Symposium on Advances in Distributional Models of Language and Meaning 2017, the UC Irvine Language Science
Colloquium 2017, SynLinks 2016, and the McGill Linguistics Colloquium 2016 for very useful feedback. Anything
we got wrong is our fault. This material is based upon work supported by the National Science Foundation under
Grant No. BCS-1347028 to LP and BCS-1347115 to JS.



positions specified by the verb’s syntactic frame(s). The learning of this third component is often
called the linking problem.

At the level of individual verbs and individual syntactic frames, the linking problem doesn’t
appear to be much of a problem. We might imagine that children simply learn the mapping between
thematic roles and syntactic positions for each combination of a verb and syntactic frame one at
a time. However, this doesn’t account for children’s ability to generalize their knowledge to new
verbs. That is, if the linking between thematic roles and syntactic positions is only ever learned
on a verb-by-verb basis, how could children use a new verb appropriately without hearing all its
possible uses? It seems children must be learning linking patterns at a more abstract level because
they’re capable of generalizing linking patterns from one verb to another (sometimes incorrectly
during the course of development): see, for example, Gropen, Pinker, Hollander, Goldberg, and
Wilson|(1989); Naigles|(1990); Naigles and Kako|(1993); Gelman and Koenig|(2001); Bunger and
Lidz (2004); Huttenlocher, Vasilyeva, and Shimpi (2004); Kidd, Lieven, and Tomasello| (2006));
Conwell and Demuth! (2007); |Papafragou, Cassidy, and Gleitman (2007);|Bunger and Lidz (2008));
Thothathirt and Snedeker| (2008)); |Scott and Fisher| (2009); |Yuan and Fisher] (2009); Kidd, Lieven,
and Tomasello (2010); Becker (2014} and Hartshorne, Pogue, and Snedeker (2015).

The additional complexity of the linking problem becomes apparent when we consider the
broader linking patterns that we see cross-linguistically. Two core linking patterns emergd—'_-]:

(1) For the vast majority of verbs in accusative languages, AGENT-like thematic roles tend to ap-
pear in syntactic subject position, PATIENT-like thematic roles tend to appear in syntactic object
position, and INSTRUMENT/SOURCE/GOAL-like roles tend to appear in oblique syntactic positions
such as indirect object or object of PP.

(i1) Exceptions to this pattern tend to be contained within very specific semantic classes of verbs
(see section 2] for examples).

How and why does this regularity in linking patterns emerge? There are currently two general
approaches. The first is that the linking patterns could result from children possessing explicit
innate knowledge of the linking patterns themselves, such that the linking pattern does not need to
be learned during development. We’ll call these innate-mapping approaches. We note that innate-
mapping approaches may be coupled with either early maturation or late maturation of the innate
linking knowledge, in terms of the predicted developmental trajectory. Early maturation predicts
the knowledge is present as young as we can test, while late maturation predicts the knowledge to
only be present in older children. The second possibility is that the linking patterns could derive
from the interplay between the input that children receive and the learning mechanisms underlying
verb learning. We’ll call these derived-mapping approaches. Derived-mapping approaches would
predict that the linking knowledge will take time to develop, and so it would be less likely to be
present in younger children.

To empirically compare these approaches, we must create a framework that meets two criteria:
it must be possible to (i) systematically manipulate the presence or absence of prior knowledge
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positions using grammatical labels (e.g., subject) rather than phrase structure labels (e.g., spec-TP).



of linking patterns, and (ii) evaluate both approaches on a neutral metric of success. We note
that achieving knowledge of the linking pattern itself can’t be the metric of success because the
innate-mapping approach builds that pattern into the learner explicitly, and thus would automat-
ically “win” under such a metric. With this in mind, we propose to measure success by assess-
ing one prominent type of acquired knowledge that relies on learning linking patterns: whether
developmentally-attested verb classes can be learned from the data children encounter, given a
computationally modeled child who either explicitly has or doesn’t have prior linking knowledge.
In other words, we’ll use an argument from acquisition to evaluate theories of knowledge repre-
sentation (Pearl, Ho, & Detrano, 2016; Pearl, 2017) for linking patterns.

Though the verb class learning literature and the linking pattern literature don’t always intersect
(presumably because the verb class learning literature focuses on development, and the linking pat-
tern literature focuses on adult end states), we believe that verb class learning is a useful common
denominator for evaluating the two major approaches. This is because the linking pattern is defined
over verb classes (see section [2)). More specifically, because innate-mapping approaches predict
linking knowledge to also be operative during language learning, it’s reasonable to expect modeled
learners that incorporate that innate linking knowledge to better match the observed developmental
trajectory of human children. Exactly how much prior linking knowledge aids a modeled learner
in achieving children’s observed verb class learning behavior is an empirical question — one that
we investigate here using our integrated quantitative framework of the acquisition process.

For this study, we explore two of the most prominent innate-mapping approaches in the litera-
ture that are built on cognitively plausible assumptions about the thematic role systems available to
children during development: (i) the Uniformity of Theta Assignment Hypothesis (UTAH: Baker
1988, building on Perlmutter and Postal 1984), which uses an absolute thematic system, and (ii)
the relativized Uniformity of Theta Assignment Hypothesis (rUTAH: [Larson 1990, Speas1990,
Grimshaw| 1990), which uses a relative thematic system. We contrast these with derived-mapping
versions that use the same thematic systems, but which don’t build in knowledge of how to map
to syntactic positions. In this way, these two derived-mapping approaches are minimally differ-
ent from UTAH and rUTAH, leveraging the cognitively plausible approaches to thematic systems,
but without the added assumption of innate linking patterns. Our modeling framework can there-
fore contribute to two sets of debates: the debate between innate-mapping and derived-mapping
approaches, and the debate about the details of the thematic role system.

Within our integrated quantitative framework, we create computationally modeled learners that
rely on different combinations of assumptions (e.g., innate-mapping vs. derived-mapping, absolute
vs. relative thematic systems). The framework uses existing child-directed corpus data to deter-
mine the input for each modeled learner and existing child behavioral evidence to determine the
target output knowledge modeled learners should achieve. The modeled learners use hierarchical
Bayesian inference to infer verb classes from realistic input distributions, and these inferred verb
classes are compared against the target verb classes at different ages. The modeled learner whose
output best matches the target verb classes (known by children) can be considered the modeled
learner which is most likely to encode the learning assumptions children actually use.

The rest of this paper is organized as follows. We first discuss the linking problem in more de-
tail, along with the theoretically-motivated solutions mentioned above: the innate-mapping UTAH



and rUTAH, and their derived-mapping equivalents. We then discuss our use of verb class learn-
ing as a neutral evaluation for comparing different approaches. We also present the verb classes
that children have acquired by ages 3, 4, and 5, as derived from a review of 38 studies from the
experimental acquisition literature; we additionally review the verb behaviors examined in those
studies, where verb behavior refers to which syntactic frames a verb can appear in, and the thematic
role information of its arguments within each frame. We subsequently introduce our acquisition
modeling framework, highlighting (i) the components necessary to implement a modeled learner
that attempts to learn verb classes, and (ii) how different learning assumptions impact a modeled
learner. This includes discussion of how a modeled learner interprets the syntactic and conceptual
information available in the input, as well as the empirical data from the CHILDES Treebank (Pearl
& Sprouse, |2013a) that the modeled learner’s input is based on. We also discuss the hierarchical
Bayesian inference process that allows the modeled learner to use the available input to infer verb
classes.

Our first key finding is that there’s always at least one modeled learner at every age who per-
forms relatively well, which affirms that verb classes can be probabilistically learned from rel-
atively sparse linguistic and conceptual information, as opposed to requiring richer information.
Our second key finding is that the modeled learner (and therefore, the specific learning assumption
combination) that best matches children’s verb class knowledge can change over time. Here, we
assume that the progression of learning assumptions that best matches children’s verb class knowl-
edge is a reasonable reflection of children’s true learning assumptions. With this as a working
hypothesis about children’s underlying knowledge, our results support a developmental trajectory
that begins at three years old with a relative thematic system; it then progresses towards option-
ality between absolute and relative thematic systems. Interestingly, our results also support either
innate-mapping or derived-mapping approaches to linking, depending on the other learning as-
sumptions active in three-, four-, and five-year-olds. We discuss the implications of our current
results for syntactic theory, acquisition theory, and future experimental and computational studies
of verb learning. Finally, at the broadest level, we discuss the value of explicit, integrated quan-
titative frameworks like the one here for exploring fundamental questions in syntactic theory and
language acquisition, and how the framework we develop here can be extended with additional
empirical data and additional theoretical proposals.

2 The linking problem and its potential solutions

In this section, we describe the specific linking theories that we evaluate in this study. Readers
familiar with the linking problem, UTAH, and rtUTAH should feel free to skim this section.

2.1 A brief introduction to the linking problem

As mentioned above, the linking problem is predicated on two observations. First, there seems
to be a primary pattern robustly observed cross-linguistically (see |Baker] 1997 for a review), as
shown in the English examples in|(1)l This pattern has AGENT-like roles in the syntactic subject



position, PATIENT-like roles in syntactic object position, and INSTRUMENT/SOURCE/GOAL-like
roles in oblique syntactic positions.

(1) The primary pattern

a. Jack cut the pie with a knife.

(subject = AGENT, object = PATIENT, object of PP = INSTRUMENT)
b. Jack stole the jewels from the store.

(subject = AGENT, object = PATIENT, object of PP = SOURCE)
c. Lily sent the letter to her parents.

(subject = AGENT, object = PATIENT, object of PP = GOAL)

Second, verbs that are exceptions to this primary pattern tend to form well-defined semantic classes
(again, see Baker 1997 for a brief review). For instance, in English, one example is the semantic
class known as psych-verbs, which involve one of the verb arguments experiencing a psycholog-
ical or mental state (see Postal, 1971, Belletti & Rizzi, |1988, and Dowty, 1991, among many
others). The psych-verb pair in |[(2)| involves two verbs, fear and frighten, that have very similar
lexical semantics but nonetheless yield two distinct linking patterns: the EXPERIENCER of the psy-
chological state and the apparent CAUSER of the psychological state alternate syntactic positions.
Interestingly, we don’t tend to find this sort of alternation for verbs from other semantic classes.

2) Psych-verb examples

a. Lily fears spiders.

(subject = EXPERIENCER, object = CAUSER)
b.  Spiders frighten Lily.

(subject = CAUSER, object = EXPERIENCER)

A second example of exceptions connected to semantically-defined verb classes involves split-
intransitivity, where intransitive verbs can be subdivided into two or more subclasses (some-
times called unergative and unaccusative) that are derived from the lexical semantics of the verbs
(Perlmutter, 1978}, Burziol |1986; [Levin & Rappaport Hovav, 1995} Sorace, [2000). In English, we
can see this in the examples in unergative sneeze maps an AGENT to the subject position while
unaccusative arrive maps a PATIENT to the subject position.

3) Split-intransitivity examples
a. Jack sneezed during the meeting.
(subject = AGENT)
b.  The package arrived during the meeting.
(subject = PATIENT)

The regularity of the primary pattern cross-linguistically and the semantic coherence of the excep-
tions to it have spurred theories of representation (e.g., explicit linking patterns like UTAH and
rUTAH) that compactly encode this regularity. From a representational standpoint, this compact
representation would allow easier storage and use of the relevant knowledge that links thematic
roles to syntactic positions. From a developmental standpoint, this compact representation would



helpfully constrain children’s hypotheses and so enable them to solve the linking problem more
quickly (Pearl et al., 2016} |Pearl, [2017).

As mentioned above, developmental approaches diverge on whether this linking pattern repre-
sentation is available innately as explicit knowledge (innate-mapping) or is instead derived from
language experience (derived-mapping). For innate-mapping approaches, the primary pattern
comes for free and children learn exceptions (such as certain psych-verbs and split-intransitivity
verbs) through language experience, drawing on learned knowledge of lexical semantics and spe-
cific grammatical mechanisms (e.g., the movement operation in Minimalism). In contrast, for
derived-mapping approaches, all linking patterns (both the primary one and any exceptions) are
inferred from experience with particular verbs. General mechanisms of abstraction allow children
to generalize across verbs and learn any linking patterns that exist, based on the input available.

To be clear, there can be significant variability among the theories within each type: innate-
mapping theories can vary substantially in how they capture the exceptions to the mapping (Fillmore,
1968 |[Perlmutter & Postall, |1984; Jackendoft] 1987; [Larson) {1988 (Grimshaw), |1990; [Larson, [1990;
Speas, |1990; Dowty, 1991; Baker, |1997), and derived-mapping theories can vary substantially
in how they capture regularities (Bowerman, 1988; [Tomasello, 1992; Braine & Brooks, [1995;
Goldberg, (1995 [Tomasello, 2003} Goldberg, 2006; Boyd & Goldberg, 2011} Goldberg, [2013).
Given this, we intend to compare modeled learners instantiating (i) approaches that assume or
don’t assume prior explicit linking knowledge, and (ii) more fine-grained differences within each
approach. To that end, we have focused on two prominent innate-mapping solutions, UTAH and
rUTAH, and their derived-mapping counterparts; importantly from a cognitive standpoint, these
approaches rest on plausible assumptions about the complexity of the thematic system available
during development (discussed in section 4.2.2)) but differ in the thematic system details.

2.2 The Uniformity of Theta Assignment Hypothesis (UTAH)

UTAH (Fillmorel, [1968|; [Perlmutter & Postal, [1984; Jackendoff, |[1987; Baker, 1988, |Grimshaw,
1990; [Speas, |1990; Dowty, 1991} Baker, [1997) has two components: (i) an inventory of thematic
roles that will be used for the calculation of syntactic position, and (ii) an expected mapping be-
tween each of the thematic roles and syntactic positions. Here, we assume the implementation
from Baker (1997), which posits an inventory of three thematic macro- or proto-roles (Dowty,
1991): proto-AGENT, proto-PATIENT, and OTHER. This implementation is agnostic about the ex-
istence of finer-grained thematic roles at a semantic level. All it requires is that any finer-grained
typology of thematic roles map to the three proto-roles necessary for the syntactic calculation. In
this way, UTAH represents a categorical or absolute approach to the thematic system, where each
proto-role is a fixed thematic category. Under this implementation, thematic roles that tend to in-
volve internal causation map to proto-AGENT, roles that tend to involve external causation map to
proto-PATIENT, and all other roles map to OTHER (Levin & Rappaport Hovav, [1995)). Example [(4)]
lists 13 common finer-grained thematic roles from the literature, and how they would map to the
three proto-roles in this implementation.



“4) Example UTAH mapping with three fixed proto-roles

a. proto-AGENT: AGENT, CAUSER, EXPERIENCER (when internally-caused), POSSES-
SOR

b.  proto-PATIENT: PATIENT, THEME, EXPERIENCER (when externally-caused), SUB-
JECT MATTER

Cc. OTHER: LOCATION, SOURCE, GOAL, BENEFACTOR, INSTRUMENT

Baker’s (1997) implementation assumes that the proto-AGENT role maps to the syntactic subject
position, the proto-PATIENT role maps to the syntactic object position, and that the OTHER role
maps to oblique object positions (such as object of PP).

To see this UTAH implementation in action, we can apply it to examples of primary and ex-
ceptional patterns. For primary pattern sentences like Jack cut the pie with a knife, the subject is
a proto-AGENT, the direct object is a proto-PATIENT, and the oblique object is OTHER. For psych-
verbs, this implementation of UTAH leverages the internal-vs-external causation distinction: in
Lily fears spiders, Lily is causing her own mental state, and is thus a proto-AGENT; in Spiders
frighten Lily, spiders are causing Lily’s mental state, and thus Lily is the proto-PATIENT. For the
unergative sneezed in Jack sneezed during the meeting, Jack is the proto-AGENT, and mapped to
the subject. For the unaccusative arrived in The package arrived during the meeting, this imple-
mentation would claim that the package enters the syntactic derivation as the object of arrive, thus
respecting UTAH. The package would then be moved to the subject position by an additional mech-
anism (such as the movement operation in GB/Minimalism). Appendix [A.1]in the supplementary
materials provides a more explicit walk-through of this UTAH implementation.

2.3 The relativized Uniformity of Theta Assignment Hypothesis (rUTAH)

rUTAH (Larson, 1988, 1990; Grimshaw, 1990; Speas, 1990) also has two components: (i) a
hierarchy of thematic roles that will be used for the calculation of syntactic position, and (ii) an
expected mapping between the relative position of thematic roles on the hierarchy and syntactic
positions. The basic idea is that for any given utterance, the rUTAH calculation requires the learner
to first determine an ordering relation among the utterance’s thematic roles, based on a previously-
established thematic role hierarchy. This hierarchy is presumably based on a some sort of relative
salience of the different thematic roles, possibly even outside of the domain of language itself
(though most rtUTAH-based analyses leave open the etiology of the thematic role hierarchy). The
learner can then use that ordering relation of the utterance’s roles to map each role to a syntactic
position: the thematic role that is highest in the hierarchy will map to the (structurally) highest
syntactic position, the next highest thematic role will map to the next highest syntactic position,
and so on. Here, we created a thematic role hierarchy based on the hierarchies developed in Larson
(1988, [1990) using the 13 common thematic roles from the literature mentioned above. This
hierarchy is given in[(5) and example utterance mappings are in Note that some roles
may not be strictly ordered with respect to each other in the hierarchy. For instance, LOCATION
and SOURCE are equally salient in the hierarchy in

For this implementation, we assume that syntactic subjects are structurally higher than syntactic
objects, which in turn are higher than oblique objects.



&) Hierarchy:
AGENT > CAUSER > EXPERIENCER > POSSESSOR >
SUBJECT MATTER > CAUSEE > THEME > PATIENT >
(LOCATION, SOURCE, GOAL, BENEFACTOR, INSTRUMENT)

For primary pattern sentences like Jack cut the pie with a knife, there are three thematic roles:
AGENT, PATIENT, and INSTRUMENT. The thematic hierarchy places them in that order (AGENT
> PATIENT > INSTRUMENT), so they map to subject, object, and oblique object positions respec-
tively. For psych-verbs like fear in Lily fears spiders, rtUTAH would posit that Lily is an EXPERI-
ENCER, while spiders is a SUBJECT MATTER. As such, Lily will map to the subject position, and
spiders will map to the object position. In contrast, for psych-verbs like frighten in Spiders frighten
Lily, rtUTAH would posit that spiders is now a CAUSER, though Lily is still an EXPERIENCER. Be-
cause CAUSER > EXPERIENCER, spiders will map to the subject position, and Lily will map to
the object position. Finally, for the intransitive verbs sneezed in Jack sneezed during the meeting
and arrived in The package arrived during the meeting, both verbs only have one syntactic posi-
tion and one thematic role; so, the argument appears in subject position regardless of its thematic
role. Appendix [A.2]in the supplementary materials provides a more explicit walk-through of this
rUTAH implementation.

24 UTAH vs. rUTAH

To be clear, the implementations of UTAH and rUTAH that we adopt here are just two of many
possible implementations of these theories. We don’t believe that there’s anything special about the
specific implementations that we chose (and future studies should investigate other implementa-
tions). What’s critical for our purposes, because we intend to model the acquisition process, is that
UTAH and rUTAH involve two distinct types of thematic systems that are developmentally plausi-
ble. That is, to map thematic roles onto syntactic positions, children are likely to either (i) make a
small number of coarse intermediate categories of thematic roles corresponding to proto-roles, or
(i1) view some roles as more salient than others, and order roles accordingly. In each case, the crit-
ical step is limiting the number of thematic roles that children must attend to and track statistically,
either in absolute terms or in relative terms. That said, we do believe that the implementations of
UTAH and rUTAH that we have chosen for our models are relatively representative of the theory
types as a whole, at least as far as the two theories are represented in the theoretical literature.

2.5 Derived-mapping equivalents of UTAH and rUTAH

Derived-mapping approaches don’t postulate any expected mapping between thematic roles and
syntactic positions at the beginning of acquisition. Instead, some verbs and their linking patterns
are first learned in isolation; then, over time, if enough verbs are learned with the same properties,
a class is formed via general-purpose learning mechanisms that allows these linking patterns (and
other verb behaviors) to generalize. In other words, over time, children will build verb classes that
can be used to make predictions about novel verbs. In this way, derived-mapping approaches can
capture both the regularities and the exceptions that we observe within and across languages. Both



result from different verb classes derived in a bottom-up way from experience. More specifically,
children learn patterns associated with individual verbs, create verb classes based off of those verbs,
and then generalize to more abstract patterns (e.g., an expected linking pattern within a given verb
class). So, children derive an expectation for linking pattern mappings over time, rather than being
innately equipped with this expectation. We note that derived-mapping approaches would need to
identify another source of the primary linking pattern’s cross-linguistic robustness. That is, because
knowledge of the explicit linking pattern isn’t innate, the consistency of the primary linking pattern
across languages must come from somewhere else under a derived-mapping approach. Moreover,
we note that derived-mapping approaches clearly must assume some kinds of innate knowledge
and abilities (e.g., the general-purpose learning mechanisms they rely on are typically considered
to be innate). It’s just that derived-mapping approaches don’t assume that the explicit linking
pattern knowledge itself is innate, the way innate-mapping approaches do.

2.6 Evaluating the expectation for a mapping

To evaluate the role of expected mappings in acquisition, we begin with the thematic role systems
from either UTAH (an absolute set of 3 proto-roles) or rtUTAH (a relative hierarchy), and manipu-
late the presence or absence of an expected link between thematic roles and syntactic positions. To
reiterate, we focus on UTAH and rUTAH because they’re prominent innate-mapping approaches,
and can easily generate minimally different derived-mapping versions. Importantly, by manipulat-
ing whether a modeled learner has or doesn’t have prior knowledge of a linking pattern between
thematic roles and syntactic positions, we can evaluate whether having or not having this knowl-
edge yields behavior that matches children’s observable behavior with respect to verb classes. Any
results can then be interpreted with respect to innate-mapping and derived-mapping approaches to
solving the linking problem.

3 Verb classes as an evaluation metric

3.1 Verb classes defined by verb behaviors

To compare different approaches to solving the linking problem, we evaluate these approaches on a
shared goal: the acquisition of developmentally observed verb classes. The predominant approach
to defining verb classes in the literature (e.g., Levin 1993) is by verb behavior: which syntactic
frames a verb can appear in, as well as the thematic role information of its arguments within each
frame. For example, both want and seem can appear in the syntactic frame NP V IP_ ;.. (e.g.,
Jack wants/seems to laugh). However, want gives the subject NP Jack an EXPERIENCER role while
seem gives the subject NP no role (instead, that NP’s role comes only from the embedded verb).
We additionally include animacy information of a verb’s arguments (e.g., Jack is +animate) as part
of a verb’s behavior. (See section §.2] for the developmental motivation to include animacy infor-
mation.) A verb class can then be defined as a distribution over verb behavior, i.e., the combination
of syntactic frames, positional thematic roles, and animacy of arguments a verb appears with. For
example, one verb class during the course of development may consist of the verbs that are known



only to be passivizable by a certain age (+passive): they appear with the syntactic frame NP be/get
Voparticiple (€.8., The cookie was/got eaten), and in that frame, the subject NP is the PATIENT though
the NP can be either +/-animate. Another verb class may consist of verbs known to both be pas-
sivizable and able to take a non-finite 7o sentential complement (+passive, +non-finite 70): they
exhibit the passive behavior noted above, and in addition allow the syntactic frame NP V IP_f;, .

3.2 Target states: Verb classes known by children at different ages

To evaluate the performance of our modeled learners, we need to establish a target knowledge state
for them to reach. We’re also interested in the developmental trajectory of verb class knowledge,
and so want to assess a modeled learner’s ability to capture child knowledge at different ages.
Importantly, English child verb classes may well differ from English adult verb classes and so we
use the experimental acquisition literature on children’s comprehension and production of verbs as
evidence of children’s knowledge of verb classes.

To derive those verb classes, we first did a meta-analysis of 38 articles from the experimental
acquisition literature (see Appendix [B]in the supplementary materials). Based on this, we extracted
(1) the set of verbs that children comprehend and/or produce at different ages, and (ii) the set of
verb behaviors that are associated with these verbs at those ages. This meta-analysis yielded 12
verb behaviors (see Table|1|) for 86 verbs that can be used to define child verb classes in EnglishE]
The full results of our meta-analysis of the experimental literature can be found in Appendix [B]

Because the input data available to our modeled learners from the CHILDES Treebank (Pearl
& Sprouse, 2013b) range up to five years old, we focused on the verb classes children seem to
know by age three, four, and five. (These corpus data are discussed in more detail in section )
We additionally restricted these classes to verbs appearing five or more times in the age-appropriate
input sets for three- , four- , and five-year-olds, with the idea that a modeled learner could infer
something from the distribution of verbs appearing at least this often. This process resulted in the
verbs and derived verb classes characterized by different verb behaviors that are summarized in
Table [2] for a total of 15-25 verb classes comprising 60-84 verbs from ages three to five. The full
description of these child verb classes are in Appendix |C| of the supplementary materials (Tables
and[9)).

One important property of the child verb classes serving as the modeled learner target state is
that a specific verb can change its verb class over time (based on child behavior with that verb); this
therefore means the content of verb classes can change over time. For example, the class where
verbs are known only to be passivizable ([+passive]) at age three contains 20 verbs, while the same
class at age four contains 26 verbs (it adds 6 verbs over time). As another example, see belongs
to the passivizable ([+passive]) class at age three, the passivizable class that also allows that com-
plements ([+passive, +that-complement]) at age four, and the passivizable class that allows both
that and whether/if complements ([+passive, +that-complement, +whether/if -complement]) at age
five. We note that because these verb classes are derived from existing behavioral data, the changes
to a verb’s class represent either (i) development of verb class knowledge, or (i1) a (current) lack of

2We note that the earliest age documented in the experimental literature was used as the age of acquisition for the
verb behavior associated with a specific verb.
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Table 1: Verb behaviors associated with specific verbs from child behavioral study meta-analysis.

verb behavior example description

Unaccusative The ice melted. Intransitive (NP V) frame where subject is
PATIENT.

Ditransitive Jack sent Lily the apple. Verb allows double object construction
(NP V NP NP).

Passivizable Jack was tricked/laughed at. Verb allows passive frame (NP be/get

Vparticiple) Where subject is PATIENT of
verb or verbal complex.

Control object Lily asked him to escape. Embedded subject is GOAL of matrix verb
and AGENT of embedded verb in NP V NP
IP_ t;nic frame.

Raising object Lily wanted him to escape. Embedded subject is AGENT of embedded
verb only in NP VNP IP_ f;,,;s frame.

Control subject Jack tried to escape. subject is AGENT of matrix verb and em-
bedded verb in NP V IP_ ¢;,,;;. frame.

Raising subject Jack happened to escape. subject is AGENT of embedded verb only
in NP VIP_ ;¢ frame.

Psych: Subject experiencer Jack loved Lily. subject is EXPERIENCER of verb in NP V
NP frame.

Psych: Object experiencer  The giant frightened Jack. object is EXPERIENCER of verb in NP V
NP frame.

Non-finite fo complement I want (him) to go. Verb allows a non-finite fo complement,

with or without an embedded subject (NP
V (NP)IP_ finite)-

that-complement Lily hoped that Jack escaped. Verb allows finite complement headed by
that (NP V CPypq¢).
whether/if -complement Lily wondered whether Jack escaped. Verb allows finite complement headed by

whether or if (NP 'V CPpether/it)-

empirical data about knowledge of verb behavior at younger ages. Under the working assumption
that these are developmental changes to verb class knowledge over time, we test our modeled learn-
ers at three ages, determining which modeled learners (representing different learning assumption
combinations) can best match children’s verb class knowledge development.

3.3 Assessing verb class learning
3.3.1 The Rand Index

Each modeled learner outputs a set of inferred verb classes, with each class containing one or
more verbs, and each verb belonging to only one class. We want to assess how well these inferred
verb classes match the true verb classes derived from observed child behavior. Because the output
is similar to that of a clustering task (i.e., the modeled learner outputs clusters of verbs, which
are the inferred verb classes), we consider evaluation metrics from the machine learning literature
on clustering. For this study, we use the Rand Index (RI; Rand, |1971) because it’s a common
measure in the clustering literature and it has an intuitive absolute interpretation. Those readers
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Table 2: Summary of verb classes derived from child behavioral data for three, four, and five-year-
olds. This includes the number of derived verb classes, the number of verbs appearing five or more
times in the dataset captured by those classes, and the verb behaviors that comprise the derived
verb classes.

age # classes # verbs verb behaviors

3yrs 15 60 unaccusative, ditransitive, non-finite fo complement, passivizable,
that complement
4yrs 23 76 unaccusative, ditransitive, non-finite fo complement, passivizable,

that complement, control object, control subject, psych object ex-
periencer, psych subject experiencer, raising object, raising sub-
ject

Syrs 25 84 unaccusative, ditransitive, non-finite fo complement, passivizable,
that complement, control object, control subject, psych object ex-
periencer, psych subject experiencer, raising object, raising sub-
ject, whether/if complement

already familiar with this metric should feel free to skip the explanation below.

The RI is a pairwise measure derived from signal detection theory. When considering a pair
of verbs, there are two possible true states: the two verbs are clustered together into a single
class in children’s minds, or the two verbs are separated into two distinct classes. Similarly, there
are two possible modeled learner output states: the two verbs are clustered into a single class in
the modeled learner, or the two verbs are separated into two distinct classes. Crossing the true
child and modeled learner output states leads to four possible combinations, as shown in Table [3]
When two verbs are the same kind in the true state (True child state: Together), they should be
clustered together in the modeled learner output. A true positive (TP) occurs when the modeled
learner clusters these verbs together, while a false negative (FN) occurs when the modeled learner
separates these verbs. When two verbs are not the same kind in the true child state (True child
state: Separate), they should be separated by the modeled learner. A true negative (TN) occurs
when the modeled learner does separate them, while a false positive (FP) occurs when the modeled
learner clusters them together. The Rl is the ratio of correct classifications (true positives and true
negatives) to the total number of classifications made (true positives, true negatives, false positives,
and false negatives): 75—y —rprFw- The intuitive appeal of this ratio is that credit is given both
for correctly putting verbs together into the same class and for correctly keeping them separate.
The RI ranges between 0 (no classifications are correct) and 1 (all classifications are correct): 0 <
RI < 1. The interpretation of the RI is intuitive in an absolute sense: an RI of .5 means that
half of the classifications were correct; equivalently, for any randomly chosen verb pair, there is a
probability of .5 that the modeled learner’s output will agree with the true child state.
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Table 3: Signal detection theory distinctions relevant for the Rand index (RI) when applied to a
verb pair.

Modeled learner output state
Together Separate
Together | True Positive False Negative
Separate | False Positive  True Negative

True child state

3.3.2 Evaluating an RI score relative to chance

One limitation of the RI is that the distribution of RI scores for any given number of classes is not
known; therefore we can’t determine from the RI score alone if the RI score we obtain is particu-
larly good or particularly bad. We might therefore want to perform some sort of test that compares
the observed RI score to the distribution of RI scores expected by a null hypothesis (either chance,
or some other null expectation). One solution to this problem is to use a randomization test that
randomizes the three types of information (i.e., the parameters) that the modeled learners are infer-
ring from their input: the number of verb classes, the size of each verb class, and the assignment
of individual verbs to these classes. In particular, using the same generative process the modeled
learners will use (described more fully in Section4.3]and Appendix [E.2]of the supplementary ma-
terials), we generate a random number of classes of random size, and randomly assign verbs to
these classes. We can then calculate an RI score for this randomized set of classes, which is equiv-
alent to an RI under the null hypothesis that the parameters are exchangeable. We can repeat this
process some large number of times (e.g., 10,000) to estimate a distribution of RI scores under this
null hypothesis. We can then calculate the probability of obtaining our observed RI score (or one
more extreme) under the null hypothesis using this distribution. We report the observed RI and the
threshold for significance at p<.01J]

4 Computationally modeling the acquisition of verb classes

4.1 The acquisition framework

We follow the view that language acquisition is an information-processing task, where children use
their available input to build an internal system of linguistic knowledge whose behavioral output
we can observe (Lidz & Gagliardi, 2015} (Omaki & Lidz, [2015; Pearl, [in press). The framework
of Pearl (in press)), building on that of [Lidz and Gagliardi| (2015]) and (Omaki and Lidz| (2015)),
articulates several crucial components of this task, underscoring how theories of representation
and theories of the learning process work together to create a complete theory of acquisition.

3 Another common method for evaluating RI scores relative to chance is to convert RI scores into a new measure
known as the adjusted Rand Index (ARI) (Hubert & Arabiel [1985). We discuss this option in more detail in Ap-
pendix [D]in the supplementary materials. We note that using the ARI instead of (or in combination with) the RI and
randomization test described in the main text does not qualitatively change the results we report.
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For our purposes, there are three crucial pathways. First, there’s the input-intake pathway,
where the external signal, the input, is encoded by the child into an internal mental representa-
tion we’ll call the linguistic intakef_f] The parts of the linguistic intake that are identified by the
acquisition system as relevant for acquisition are called the acquisitional intake. For example, an
input utterance of What’s she climbing over? might be encoded by the child as containing cer-
tain syntactic and conceptual information — this is the linguistic intake, which serves as the child’s
representation of that utterance at this stage of development. This encoding process will depend
on the child’s ability to deploy her existing linguistic and extralinguistic knowledge in real time,
given her developing cognitive abilities. The acquisitional intake is the portion of that representa-
tion relevant for the acquisition task at hand — for example, perhaps only syntactic structure may be
relevant for learning about certain constraints on wh-dependencies (as in |Pearl & Sprouse, 2013a)),
but perhaps conceptual information may be relevant for learning about the verb argument structure
of climb. The acquisitional intake is determined by the child’s learning biases about what informa-
tion is relevant in the linguistic intake. For verb class learning, this pathway will determine how
the age-appropriate child-directed speech samples serving as input are transformed into different
acquisitional intakes, depending on the modeled learner’s learning assumptions.

The second pathway is the intake-inference pathway, which takes the acquisitional intake and
does inference on that intake to generate the most up-to-date hypotheses or generalizations about
the linguistic system encoded by the developing grammar. The exact update procedures used will
depend on the child’s current learning biases. For example, a child might use purely statistical
inference within a hypothesis space defined in terms of clusters of salient features, or a hypothesis-
testing approach within a hypothesis space defined in terms of linguistic parameters. For verb class
learning, this pathway will involve hierarchical Bayesian learning that generates the verb classes
in the modeled learner’s developing grammar (i.e., the learner’s inferred classes), based on the
syntactic, conceptual, and linking information in the acquisitional intake.

The third pathway is the grammar-behavior pathway. This pathway describes how the child’s
internal representations (encoded by the linguistic intake of the moment and the developing gram-
mar) are transformed into various types of external behavior that we can observe, such as utterance
generation, truth-value judgments, or looking times. This depends both on the state of the child’s
internal representations and the production systems that operate on those representations to pro-
duce observable behavior. For example, an internal representation of What’s she climbing over?
that involves both syntactic and conceptual information might cause a child to generate the utter-
ance What’s she dancing on? using her developing grammar, because the new utterance has similar
syntactic and conceptual properties to the utterance in the linguistic intake. For verb class learning,
this pathway will involve how the verb classes in the modeled learner’s developing grammar (i.e.,
the inferred classes in the learner’s output) compare to the verb classes derived from observed child
behavior at ages three, four, and five.

By using this framework — and, more specifically, these three pathways — we can make theories
of acquisition (which involve both theories of representation and theories of the learning process)

“What we call the linguistic intake has been referred to in the framework mentioned above as “perceptual intake”
because it’s what the child is capable of perceiving from the available input at that point in development; we choose
“linguistic” to highlight that this representation includes more than just perceptual information.
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explicit and testable against available empirical data (Pearl, 2014; Pearl & Sprouse, 2015} Pearl,
2017, in press). Here, this means that we can evaluate different theories of how to solve the linking
problem by how well they enable a modeled learner to learn verb classes the way children seem
to. More specifically, each modeled learner implements a combination of learning assumptions
that corresponds to different theoretical claims (e.g., an absolute vs. relative thematic system, prior
knowledge of the mapping vs. no prior knowledge). By seeing if a given modeled learner can learn
the verb classes children do at different ages, we can evaluate the utility of these assumptions for
acquisition.

4.2 The input-intake pathway
4.2.1 Input

Children’s input signal can include both linguistic information (e.g., spoken or signed productions)
and non-linguistic information (e.g., contextual information about intended meaning). We take re-
alistic samples of this input signal from the CHILDES Treebank (Pearl & Sprouse, 2013a)), which
contains speech directed at children between one and five years old, annotated with linguistic and
non-linguistic information. In particular, around 180,000 child-directed speech utterances from the
BrownEve, BrownAdam, and Valian corpora (Brown, 1973} Valian, 1991) have been annotated
with syntactic, conceptual, and thematic information. First, these utterances have syntactic phrase
structure, based on an adapted version of the Penn Treebank annotation system. This annotation
was done using a combination of automated and hand annotation (see Pearl and Sprouse| (2013al)
and the included readme file at http://www.socsci.uci.edu/~lpearl/CoLalLab/CHILDES Treebank/
childestreebank.html for details). Second, animacy for each NP argument was annotated by hand.
We included animacy because a number of acquisition studies have demonstrated that animacy is
a useful cue for learning verb classes (Scott & Fisher, [2009; Becker, [2009; Kirby, 2009a, 2010;
Becker & Estigarribia, 2013; Becker, 2014} 2015; Hartshorne et al., 2015). Third, thematic roles
for the arguments of each verb (except the copula be) were annotated by hand using 13 thematic
role labels that are common in the literature (again, see the readme file mentioned above for de-
tails).

We divided these utterances into age ranges based on the age of the child the speech was
directed at: less than 3 years of age, less than 4 years of age, and less than 5 years of age. We
then constructed datasets representing the input to a child of a particular age. We note that the
datasets used as input for models of older children (e.g., <4yrs, representing a four-year-old child)
include the data directed at younger children (e.g., <3yrs + data directed at children between the
ages of three and four). This is because we assume older children would learn from all the data
they’ve heard up until that point. Table 4| provides a detailed summary of the statistics for each
input dataset.

4.2.2 Linguistic intake

From the input signal, children extract their linguistic intake. The information they extract depends
on what information is salient to them and what they can plausibly extract from the input in real
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Table 4: Child-directed speech data used as input to modeled three-year-old, four-year-old, and
five-year-old learners. This includes the sources of these data in the CHILDES Treebank, the
number of children the speech was directed at, the age range of the children the speech was directed
at, the total number of utterances and words, the total number of verb types, and the number of
verb types appearing 5 or more times in the dataset.

dataset sources # children ages #utt #words #vbs #vbs>5
<3yrs  BrownEve, 22 1;6-2;8 ~39.8K =~197K 555 239
Valian
<4yrs  BrownEve, 23 1;6-4;0 =~50.7K =254K 617 267
Valian,
BrownAdam3to4
<Syrs  BrownEve, 23 1;6-4;10 =~56.5K =~285K 651 285
Valian
BrownAdam3to4
BrownAdam4up

time. We consider several types of information children could plausibly extract for learning about
verb classes: one syntactic, one conceptual, and one linking conceptual and syntactic information.

Syntactic information seems plausible, as children are known to be adept at syntactic boot-
strapping — that is, using the syntactic context — when learning about verbs (Landau & Gleitman,
1985}, |Gleitmanl, [1990; |Gillette, Gleitman, Gleitman, & Lederer, [1999; [Fisher, Gertner, Scott, &
Yuan, 2010; Gutman, Dautriche, Crabb¢, & Christophe, [2015}; Harrigan, Hacquard, & Lidz,|[2016).
One way to implement syntactic information is via phrase structure, with verb argument positions
like subject labeled, as shown in|(6a)

Another plausible information source is the concept of animacy (e.g., a penguin is animate,
while an ice cube isn’t). Animacy is something young children are known to both be sensitive to as
a general property and also use as a cue in experimental studies to predict how verbs will behave
(Scott & Fisher, 2009; Becker, 2009; Kirby, 2009a, 2010; Becker, 2014, [2015; Hartshorne et al.,
2015). Moreover, if children are able to harness animacy effectively in their input, it’s possible
to use the animacy of a verb’s arguments (in particular, whether the argument is inanimate) to
distinguish verb behaviors such as those associated with subject-raising, subject-control, object-
raising, and object-control (Kirby, 2009a, 2010; Becker & Estigarribial 2013} Becker, 2014). One
way to implement this conceptual information is for the verb’s NP arguments to be labeled as
+/-animate, as in [(6b)}

A third source of information corresponds directly to linking theories, as it concerns the link
between conceptual information like thematic roles and syntactic position. More specifically, in-
fants under a year old are sensitive to the presence of thematic roles (<10 months: |(Gordon, [2003;
<6 months: [Hamlin, Wynn, & Bloom, 2007; Hamlin, Wynn, Bloom, & Mahajan, 2011), making
thematic roles a plausible information source for learning verb classes. UTAH and rUTAH assume
a built-in mapping from the intermediate thematic representation (whether fixed proto-roles like
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UTAH or an ordered hierarchy like rUTAH) to syntactic positions like subject; derived-mapping
approaches using the same thematic systems don’t assume this mapping is present initially. Impor-
tantly, all approaches require the child to extract the syntactic positions of the verb’s arguments,
and be aware of their thematic role, as shown in

Here, we make the simplifying assumption that the perceptual encoding process creating the
linguistic intake is perfectly reliable (an assumption that can be relaxed in future work). Imple-
mentationally speaking, this means we assume that when given an input utterance like it’s falling
off from the BrownEve corpus in the CHILDES Treebank (Pearl & Sprouse, 2013a), we assume a
linguistic intake that encodes syntactic and conceptual information, such as[(6)]

(6) Example linguistic intake for it’s falling off.

a.  Syntactic information for falling: 1P
NPsubject VP
|
\ | Vprog  PRT
i s | |
falling  off

b.  Animacy information:
it (subject rq11ing) = -animate

c. Thematic information:
it (subjectfa”mg) = THEME tqiing

4.2.3 The acquisitional intake

From this linguistic intake, the modeled learners extract their acquisitional intake. The exact ac-
quisitional intake depends on the learning assumptions the learner is using.

For the syntactic information, syntactic frames encoding surface argument structure can be de-
rived from the phrase structure of the verb usage. For example, the utterance it’s falling off might
yield a frame for fall involving the NP subject and the particle, either with or without the pro-
gressive morphology that surfaces on the verb itself (+/-surface-morphology), as in Whether
children heed the verbal surface morphology when encoding syntactic frames for their acquisitional
intake is currently unknown, given available developmental data. Importantly, how the modeled
learner deals with verbal morphology must be fixed before a modeled learner can be constructed.
Since either option is plausible, we implement modeled learners of both kinds — that is, our mod-
eled learners will also vary on whether they encode the verb’s surface morphology in their syntactic
frames.
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(7)  fall syntactic frame options for it’s falling off

a. +surface-morphology: NP V.., PRT
b.  -surface-morphology: NP V PRT

Another key point of variation is whether the mapping from the intermediate thematic represen-
tation is present or not. This affects whether the modeled learner expects a mapping a priori
(expect-mapping). If the modeled learner expects a mapping (+expect-mapping), then it will be
sensitive to violations of that expectation. Our modeled learners interpret these violations as in-
stances of movement. That is, the learner will abstract away from the specific roles and positions,
and instead only take in the fact that movement occurred, as shown in If instead the mod-
eled learner doesn’t yet expect a mapping (-expect-mapping), the learner will track the distribution
of the intermediate thematic representation. That is, the learner will take in the details of which
(proto-)role occurred in which position, as shown in[(8c)] In this way, the expectation of a mapping
directly impacts the learner’s acquisitional intake.

(8) Acquisitional intake for The ice was melted by the girl, using +/-expect-mapping

a. The ice = PATIENT = subject
the girl = AGENT = object of PP
b.  +expect-mapping
(i) absolute (UTAH): proto-PATIENT = subject, proto-AGENT = object of PP
Unexpected. Indicates +movement.
Acquisitional intake: 2 instances of movement
(i) relative (r'UTAH): 2ND-HIGHEST = subject, HIGHEST = object of PP
Unexpected. Indicates +movement.
Acquisitional intake: 2 instances of movement
c. -expect-mapping
(1)  absolute: proto-PATIENT = subject, proto-AGENT = object of PP
Acquisitional intake:
1 proto-PATIENT as subject, 1 proto-AGENT as object of PP
(i) relative: 2ND-HIGHEST = Subject, HIGHEST = object of PP
Acquisitional intake:
1 2ND-HIGHEST as subject, 1 HIGHEST as object of PP

The different learning assumptions affecting the learner’s acquisitional intake and their different
combinations are shown in Table [5] Given the 3 binary choices (+/-surface-morphology, ab-
solute/relative thematic system, and +/-expect-mapping), we implement 8 modeled learners: a
+surface-morphology and -surface-morphology variant for learners using one of the two thematic
systems and either expecting or not expecting a mapping. Note that all modeled learners use
the animacy of a verb’s arguments, in addition to syntactic frame information and thematic role
information. Where they differ is how exactly they use the syntactic frame and thematic role infor-
mation.

As an example, let’s consider the different acquisitional intakes for the utterance it’s falling
off, whose linguistic intake was shown in [(6)] All learners encode one instance of an inanimate
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Table 5: Example of a child’s linguistic intake from |(6)| of the utterance it’s falling off for the four
modeled learner types. To save space, surface morphology is in parentheses to indicate the two
modeling options for each learner type.

absolute thematic absolute thematic relative thematic relative thematic
expected mapping | no expected mapping | expected mapping | no expected mapping
NP V (;r09) PRT NP V (;r09) PRT NP V (;r09) PRT NP V (;r09) PRT
subject _ 4 pim =1 subject _gpim =1 subject _gpim =1 subject _4pim =1
movement = 1 subject proto—parient = 1 movement = 0 subjectyguest = 1

argument in subject position (subject_ ;). So, there’s no difference in the acquisitional intake
with respect to animacy. For those learners ignoring surface morphology on the verb, only the core
verb frame would be extracted: NP V PRT. For learners heeding surface morphology, the fact that
the verb is in the progressive would additionally be included: NP V.., PRT.

The exact thematic information extracted depends on the thematic system (absolute/relative):
with an absolute thematic system, the thematic role of the subject (THEME) is mapped to proto-
PATIENT; with a relative thematic system, the learner uses the thematic role hierarchy to map
the thematic role of the subject (THEME) to the HIGHEST role because it’s the only thematic role
present. If there’s no expectation of mapping, the learner encodes the distribution of thematic rep-
resentations (here, proto-PATIENT or HIGHEST in subject position). If there is in fact an expectation
of mapping, the learner encodes whether the observed mapping obeys or violates that expectation.
For the absolute thematic representation with a mapping expectation (UTAH), a proto-PATIENT
in subject position violates the expected mapping and so is interpreted as movement; in contrast,
for the relative thematic representation with a mapping expectation (rUTAH), the HIGHEST role in
subject position obeys the expected mapping and so is interpreted as no movement.

4.3 The intake-inference pathway

Each modeled learner uses the acquisitional intake defined by its respective learning assumption
combination to update its hypotheses about verb classes (i.e., its generalizations about which
verbs behave alike in its developing grammar); a successful assumption combination will allow
the learner to match children’s observable behavior for verb classes. We implement this update
process using hierarchical Bayesian inference, where the learner assumes the generative process
depicted in Figure |1| (the generative process is represented with standard plate diagram notation
for hierarchical Bayesian modeling). The observable verb data V in the acquisitional intake are
generated by combining the available syntactic, animacy, and thematic information in the acquisi-
tional intake, mediated by the latent representation of verb classes C. Below we provide high-level
descriptions of the different components of the inference process shown in Figure |1l Interested
readers can refer to Appendix [E|in the supplementary materials for more details on the inference
implementation.

Observable data are available for each verb v; € V, in the form of the frames [ that verb is
used in, which include the syntactic structure, the animacy of the arguments, and the thematic roles
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Figure 1: Plate diagram for a generative model of verb classes, based on syntactic, animacy, and
thematic information from individual verbs in the input. Observable verb data 1/ (and specifically
verb frame instances F;) are generated based on the underlying verb class information C, which
involves different characteristics M and B tracked by modeled learners (specifically, multinomial
characteristics v like syntactic frame information and binomial characteristics ¢ like argument
animacy information).

present. For example, the verb fall may appear multiple times, in instances such as it’s falling off,
she fell down, don’t fall!, and London Bridge is falling down. Each frame instance F; for a verb
appears with some frequency [; — for example, it’s falling off might occur three times.

The objective of the modeled learner is to infer the set of verb classes C' that generate the ob-
servable verb data. Each verb v; belongs to its verb class c;. The learner doesn’t know beforehand
how many verb classes there are, what size they are, or which verb belongs to which. However, via
the verb class hyperparameters . and ~., the learner has a bias for classes distributed in a power
law distribution, where a few classes have many verbs and the rest of the classes have few verbs.

Each verb class c; has certain binomial characteristics B and multinomial characteristics M as-
sociated with it. Binary characteristics ¢ € B include whether the subject, object, and oblique ob-
Jject are animate (+/-animate). If the modeled learner involves an expected mapping, then whether
the mapping was violated (and so interpreted as movement) is also a binary characteristic. Each
class will have some probability of preferring each option Toe, - For example, a class c¢; might pre-
fer inanimate to animate subjects, With T_animate,yp;ee; = 0-70 and T animate, ;e = 0-30. During
the course of learning, the learner infers these probabilities for each verb class. The hyperparam-
eters (34,, B4,) implement an initial uniform probability over the possible binary options, thereby
implementing no bias a priori.

Multinomial characteristics ¢ € M include which syntactic frame a verb appears in (e.g., NP
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V PRT for it’s falling down). If the modeled learner doesn’t assume a mapping between thematic
roles and syntactic positions, then the syntactic position is also a multinomial property (e.g., if the
proto-AGENT appears in subject, object, or oblique object position). Each class will have some
probability of preferring each option 9wcj. For example, a class ¢; might primarily prefer the NP
V PRT and NP V syntactic frames, giving them higher probabilities, and disprefer the frame NP
VIP (Onp v prr = 0.50, Onp v =040, ..., Onp v 1p = 0.00). During the course of learning, the
learner infers these probabilities for each verb class. The hyperparameter o, implements an initial
uniform probability over the possible multinomial options, thereby implementing no bias a priori.

Importantly, the learner infers different verb classes precisely because the characteristics of
verb classes differ sufficiently. In particular, given the observed instances of verb usage, the learner
uses Bayesian inference to infer (1) how many verb classes there are, (i1) what the characteristics of
each verb class are, and (ii1) which class each verb belongs to. The best hypothesis is the one that
maximizes the probability of the observed data, balanced against the prior preference for classes
distributed in a power law distribution.

This inference is accomplished via Gibbs sampling operating over the data as a single batch
(see Appendix [E|in the supplementary materials), which is guaranteed to converge on the optimal
answer if given sufficient time to search the hypothesis space (i.e., Gibbs sampling is an optimal
inference process). This is part of what makes the modeled learners ideal learners — the inference
computation is implemented by an optimal inference process that is not intended to be realistically
constrained. Instead, humans likely approximate this inference process to accomplish the same
computation and execute inference incrementally as data are encountered.

A reasonable question is why we should use an ideal inference process rather than a realistically
constrained process to model language acquisition. Typically, acquisition modelers will start with
an optimal inference process in order to know if the mental computation specified by the model is a
potential match to human behavior (here, child language acquisition behavior) (Pearl, in press). If
not, this is a signal that the learning assumptions encoded in the model are unlikely to be right. That
is, if a modeled learner can’t get close to human behavior even when the mental computation is
performed as perfectly as possible, then that computation is probably not the right one. This would
mean the learning assumptions that circumscribe that mental computation (here: using syntactic,
animacy, and thematic information in particular ways) are not useful.

In contrast, if a modeled learner using optimal inference can match human behavior, this sug-
gests the learning assumptions are plausible. Subsequent work could then explore how acquisition
unfolds when inference is non-optimal (e.g., subject to the cognitive constraints children have and
the incremental nature of learning). In the meantime, the ideal learning model using optimal infer-
ence serves as a useful proof-of-concept in the search for learning assumptions that can potentially
solve the acquisition problem under investigation. More generally, it’s important to determine that
learning assumptions are potentially useful to children before investigating if they’re usable by
children. This is the approach we pursue here.

4.4 The grammar-behavior pathway

This pathway determines how a modeled learner’s output will be evaluated when the target is
observed behavior. In section [3.2] we described the verb classes derived from observed child
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behavior. It’s reasonable to believe that such verb classes are a legitimate target state reflecting
children’s underlying knowledge because of how we think of the grammar-behavior pathway. In
particular, we assume here that if children’s comprehension and/or production indicate that they
treat two verbs similarly with respect to some verb behavior (e.g., being passivizable), this trans-
parently reflects children’s developing grammars — that is, the two verbs in question are clustered
together in children’s minds with respect to that verb behavior. If children’s verb comprehension
and/or production indicate two verbs are clustered together for all currently tested verb behaviors
for those verbs, then we assume that the verbs are in the same class in children’s developing gram-
mars. This is how the verb classes in Tables in Appendix [C of the supplementary materials
were derived.

We take these verb classes, derived for children ages three, four, and five, as representative
of the developing grammars of children of these ages. So, modeled learner output is compared
against them using the measures discussed in section [3.3] The modeled learners whose inferred
classes best match these child verb classes at particular ages can be thought to encode the learning
assumptions that children have at those ages.

S Modeling results

Recall that each of the eight modeled learners uses a different combination of learning assumptions,
based on how linguistic and non-linguistic information are used (Table[5). For each learner, we ran
an ideal learner implementation 10 times over each age-based dataset (<3yrs, <4yrs, or <5yrs).
The resulting ten sets of inferred verb clusterings were aggregated into a single set of verb classes,
using a simple threshold: any verb pair together in more than 75% of the runs (i.e., >7 of 10) was
put together in the aggregate verb clustering; similarly, any verb that was in a class of its own (a
singleton) for more than 75% of the run was put as a singleton in the aggregate verb clustering for
that modeled learner. Each modeled learner’s aggregate verb clusterings for each dataset appear
in Appendix [ in the supplementary materials. Figure 2] shows RI when compared to the child
verb classes relevant for different ages of acquisition (i.e., verb classes learned by age three for
the <3yrs dataset; verb classes learned by age four for the <4yrs dataset; verb classes learned
by age five for the <5Syrs dataset). For the RI randomization tests, we use a threshold of p<.01
for significance (two-tailed). We indicated the threshold for the null hypothesis (randomizing all
three parameters) with a solid horizontal line. We also added a single asterisk (*) to models that are
significant under this null hypothesis. The learners surpassing the p<.01 threshold are summarized
in Table

Taken together, what stands out is that there are learners at each age who are doing better
than chance, though the collection of learning assumptions that successful learners encode varies
by age. Below we interpret these results with respect to the four linking theory proposals: the
innate-mapping UTAH and rUTAH, and their derived-mapping equivalents.

UTAH assumes an absolute thematic system and innate knowledge of the linking pattern. This
set of assumptions (absolute, +expect-mapping) is not compatible with the assumptions of suc-
cessful modeled learners at three years old, though it is at four and five years old. So, UTAH
would need to be coupled with a late-maturation developmental theory, where the absolute the-
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Success of the four models relative to real child acquisition data

absolute thematic system absolute thematic system relative thematic system relative thematic system
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Figure 2: Rand Index (RI) scores for all modeled learners. The four major modeled learner types
are organized into columns, with classic UTAH and rUTAH in purple. Surface morphology is
nested within each major modeled learner type. The solid horizontal lines indicate the (upper)
p<.01 threshold for the (two-tailed) randomization tests randomizing across all three parameters
in the model: number of classes, size of classes, and verb assignment to classes. An asterisk (*)
means the result was significant for the randomization test. The white numbers within each bar
report the RI index value to three decimal places.

Table 6: Modeled learners by age passing the p<.01 threshold, based on RI scores. Learning as-
sumptions shown are which thematic system is used (absolute/relative), whether a mapping from
thematic roles to syntactic positions is expected (expect-mapping), and whether surface morphol-
ogy on verbs is heeded for verb syntactic frames (surface-morphology). Each row represents a set
of modeled learners above threshold at matching children’s verb classes.

age thematic system expect-mapping surface-morphology

<3yrs relative +/- -

<dyrs absolute . +/- -
absolute/relative - +

<Syrs absolute/relat%ve + +/-
absolute/relative - -
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matic knowledge and innate linking knowledge only become available at age four or later. We note
that if such knowledge emerges at four, children would also need to ignore verb surface morphol-
ogy.

rUTAH assumes a relative thematic system and innate knowledge of the linking pattern. This
set of assumptions (relative, +expect-mapping) is compatible with the assumptions of successful
learners at three and five years old, but not at four years old. So, rtUTAH would need to be coupled
with a developmental theory where the innate linking knowledge is either (a) inaccessible at age
four for some reason, or (b) actually isn’t accessible until age five, and so children at age three
don’t have access to the innate linking knowledge (relative, -expect-mapping). That is, rtUTAH
requires either a U-shaped developmental theory or a late-maturation developmental theory.

The derived-mapping variant of UTAH assumes an absolute thematic system and derived
knowledge of the linking pattern. This set of assumptions (early: absolute, -expect-mapping;
late: absolute, +expect-mapping) doesn’t seem obviously compatible with the assumptions of suc-
cessful learners at three years old. This is because all successful learners at this age rely on the
relative thematic system. So, the child would need to derive both the absolute thematic system and
the linking pattern after this age. At four and five however, there are successful learners relying
on the absolute thematic system. So, a derived-mapping UTAH child could have derived both this
thematic system and the linking pattern knowledge at four or five. If linking knowledge is derived
by four, the child would be ignoring surface morphology; if linking knowledge is derived by five,
the child could heed or ignore surface morphology.

The derived-mapping variant of rUTAH assumes a relative thematic system and derived knowl-
edge of the linking pattern. This set of assumptions (early: relative, -expect-mapping; late: relative,
+expect-mapping) is compatible with the assumptions of successful learners at all ages. For exam-
ple, at three, children relying on a relative thematic system wouldn’t expect a mapping (and would
also ignore surface morphology); at four, they wouldn’t expect a mapping (but now would heed
surface morphology); at five, they would have derived linking knowledge and expect a mapping
(and either heed or ignore surface morphology).

Taken together, our results highlight the connection between theories of representation and
theories of development. While our results are compatible with both innate-mapping approaches
(UTAH, rUTAH) and their derived-mapping equivalents, they argue against an early-maturation
innate theory of development. That is, neither of the innate-mapping linking theory proposals
seem immediately compatible with early-maturation innate knowledge. Instead, the linking knowl-
edge (and sometimes the thematic knowledge) would need to develop later (late-maturation innate-
mapping); conversely, the linking knowledge (and sometimes the thematic knowledge) could be
derived from language experience, as in the derived-mapping approaches. To choose among these
linking theory proposals, we therefore need more empirical data about the other learning assump-
tions (i.e., thematic systems and attention to surface morphology) that English children use at ages
three, four, and five when creating verb classes. We return to this empirical need in the next section.
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6 Discussion

We believe that a significant contribution of this work is the integrated quantitative framework it-
self, which provides a concrete way for linking theory proposals to both (i) generate developmental
predictions, and (i1) be evaluated on those developmental predictions. In particular, the framework
implements an acquisition process that is both empirically-grounded and theoretically-motivated.
Empirical data determine the modeled learner’s input, desired output, and motivate the probabilis-
tic learning mechanism used for inference; theoretical proposals determine the representations that
control how the learner’s input is transformed into the intake that drives learning. Below we dis-
cuss the results of using this framework for the particular linking proposals investigated here, and
also how this framework can be used in the future as (i) more empirical data become available, or
(i1) different theories of representation and/or development are proposed.

6.1 Implications for theories of representation and development

Given the complexity of the learning problem of creating dozens of verb classes, and given that
the learning assumptions implemented in the modeled learners here only involve a subset of all
the possible information children could be using to solve that problem, our first noteworthy re-
sult is that any of the learning assumption combinations are successful. Though we started this
project from the assumption that syntactic frames, thematic information, and animacy information
from child-directed input would be sufficient to learn verb classes, there’s no a priori reason to
believe that this information would be sufficient. So, these results empirically support the common
assumption in the literature that these specific pieces of information are sufficient to learn verb
classes the way children seem to.

From the perspective of theories of linguistic representation, these results have two implica-
tions. First, both UTAH and rUTAH are reasonably accurate at capturing children’s representa-
tions at some point in development. This provides developmental support that they are plausible
representational theories. Moreover, because they are compatible with the oldest children’s verb
behavior (at five years old), they are also plausible representational theories for adults.

However, one particularly notable finding is that not all the options capture younger children’s
behavior equally (at three and four years old). The results here suggest three-year-olds are more
likely to rely on a relative thematic system, while older children may not. This has real impli-
cations for what needs to be built in to yield the linguistic development we observe in children.
Here, it seems that the conceptual categories corresponding to proto-roles are not required (which
UTAH relies on); moreover, there may not need to be a built-in expectation of a specific mapping
between thematic roles and syntactic positions (as early-maturation innate-mapping approaches
would predict). Instead, both types of knowledge could potentially develop later (or be accessed
later if children don’t have sufficient cognitive resources to do so earlier in development for some
reason).

Both innate-mapping and derived-mapping approaches are compatible with these results, but
then require different promissory notes. For late-maturation innate-mapping approaches, a devel-
opmental account is needed either for (1) why the knowledge itself develops later, or (i1) why chil-
dren’s access to this knowledge develops later. Either avenue also requires evidence from develop-
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mental neurobiology. For derived-mapping approaches, the required knowledge would be derived
from language experience, rather than being innately specified. Under this approach, it remains to
be seen exactly how the conceptual categories of the absolute thematic system and the expectation
of a mapping would be derived from children’s input. That is, a viable derived-mapping approach
should demonstrate what prior knowledge and abilities are needed in combination with children’s
input to derive both the appropriate conceptual categories and the appropriate mapping. Future
computational modeling may be able to contribute to this investigation. Moreover, another future
step would focus on the precise mechanisms that derived-mapping approaches can use to explain
the distribution of linking patterns across languages. In particular, derived-mapping approaches
would need to demonstrate how the linking patterns observed cross-linguistically can be derived
from children’s input in each language.

6.2 Open questions

There are a number of open questions that the current results highlight, both in terms of the em-
pirical foundations and the theories of representation and development. Here we classify these
questions into three types: experimental, computational, and theoretical avenues of inquiry.

6.2.1 Experimental avenues

One avenue for future experimental work is to increase the number of verbs and verb classes that
are used in early acquisition studies. Though our corpus analysis yielded up to 285 verbs appearing
five or more times (<3yrs: 239, <4yrs: 267, <Syrs: 285) in the CHILDES Treebank, the available
experimental data about specific verb behaviors yielded far fewer verbs on which to evaluate our
simulations (<3yrs: 60, <4yrs: 76, <Syrs: 84). This means there are nearly 200 verbs for each
age group that we have model predictions for, but no behavioral data about (and therefore were
not reported here). With more targeted child language experiments, we’ll have a broader empirical
basis to evaluate our acquisition theories against. For example, at three years old, there are two
modeled learners who best match what we know currently about three-year-old verb classes. These
learners both rely on the relative thematic system and ignore surface morphology on verbs. The
learner which doesn’t expect a mapping puts together keep and stop in one class and miss and
say in a separate class, while the learner which does expect a mapping groups all these verbs
together into the same class. Do three-year-olds expect different behaviors for these four verbs, or
the same behaviors? Once we know, we can better choose between the two learning assumption
combinations that currently best fit three-year-old behavior.

This lack of behavioral data also applies to the verb behaviors we know about — here, there
were 12 attested verb behaviors, but there are many more where we need knowledge of how spe-
cific verbs behave (e.g., intransitivity, monotransitivity, unergativity, verbs taking non-finite com-
plements with -ing, verbs taking small clause complements, wager-class verbs). Again, with a
broader child behavioral foundation, we’ll be better able to choose among the modeled learner
options and the learning assumptions they encode.
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6.2.2 Computational avenues

One avenue for computational work is complementary to the future experimental work with chil-
dren. Each modeled learner here has generated a set of verb classes which is that learner’s internal
representation of which verbs behave like other verbs. Each verb class has a set of characteristics
(involving syntactic and conceptual preferences) that can be used to generate precise predictions
for any experimental setup. For example, we can calculate the probability distribution over verbs
that a modeled child will prefer to use with a particular utterance that has certain syntactic and
conceptual characteristics (e.g., She __ to laugh = subject  qpipm, NP V IP_ fipisc, subjectiypprizncer)-
This corresponds to what might be observed in child productions. We can also calculate the proba-
bility distribution over utterances that a modeled child will prefer to use for a particular verb (e.g.,
want might have a high probability for She _ to laugh while make has a low probability). This
corresponds to both the productions a child might generate, and also the ease with which a child
would comprehend a verb used in a particular utterance. Both of these are examples of the modeled
learner generating concrete behavioral predictions that can be experimentally evaluated. When the
predictions diverge and only one matches children’s behavior, we then have additional empirical
support for whichever modeled child (and therefore, whichever specific combination of learning
assumptions) was successful.

We can also make more sophisticated computational models that capture both the incremen-
tal nature of children’s learning and children’s cognitive constraints. Recall that the ideal learner
model implementations here operate by learning from all the data at once that children of a certain
age will have seen, and optimally executing the inference over those data. As mentioned, this is a
first step in understanding the mental computations that occur during acquisition. Future work can
relax some of the idealized assumptions present in the ideal modeled learners used here. For ex-
ample, one option is to make more realistic learners that (i) learn from data as they’re encountered
one utterance at a time (rather than as a batch), and (ii) use an inference approximation, rather
than Gibbs sampling, to converge on the final set of verb classes (e.g., see the learning approaches
of [Fazly, Alishahi, & Stevenson, 2010, Barak, Fazly, & Stevenson, [2014b| and |Barak, Fazly, &
Stevenson, 2014a). Unlike the ideal learner model implementations, these more realistic modeled
learners would be executing a potential inference algorithm that children could be capable of — this
makes these future models algorithmic-level (rather than computational-level) in the sense of Marr
(1982).

The utility of algorithmic-level implementations is to see if the learning assumptions that were
useful for a computational-level learner are still useful when incremental learning and cognitive
constraints are present (Pearl, [2014; |Phillips & Pearl, 2015; Pearl, in press). That is, algorithmic-
level implementations can tell us if the learning assumptions that seem to be useful for ideal learn-
ers are actually usable by real children, who have various constraints on their acquisition computa-
tion. This isn’t always the case — it could turn out that certain learning assumptions are less helpful
to a cognitively constrained learner while other assumptions are more helpful (Phillips & Pearl,
2015} Pearl & Phillips, 2018)).

Assuming that the developmental trajectory suggested by these results holds under future ex-
perimental and (incremental) modeling work, another open question that can be investigated via
computational methods is how the primary linking pattern and the secondary exception patterns
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arise under a derived-mapping approach. That is, how could the expectation for the “right” map-
ping between thematic representations and syntactic positions develop between ages three and five?
Without a built-in expectation of specific mappings, these patterns are dependent on the content
of the input in combination with whatever prior knowledge and abilities children have. If there
are a sufficient number of primary pattern verbs in the input (and/or verb classes) learned at early
stages, then this will lead to the development of the primary pattern expectation. Mathematical
analyses of children’s input that predict when children will make a generalization vs. not, such as
the Tolerance Principle (Yang, 2005} |Legate & Yang) 2013; Schuler, Yang, & Newport, 2016;|Yang
& Montrul, [2017), can provide an answer. Such analyses can either support the ability of realistic
input to help children derive the primary mapping or demonstrate the obstacles to be surmounted
under the derived-mapping approach.

6.2.3 Theoretical avenues

From a theoretical perspective, there may be other solutions to the linking problem that we wish
to investigate using this integrated quantitative framework. Here, we focused on two prominent
options discussed in the theoretical literature (UTAH and rUTAH) that (i) take thematic roles as
their basis, and (ii) involve either an absolute (UTAH) or relative (rtUTAH) perception of these the-
matic roles. While these both seem plausible, other options are certainly available. For example,
perhaps children abstract across thematic roles in different categorical or relative ways than the
implementations explored here (more than 3 proto-roles, different definitions of protoroles, dif-
ferent orderings in the role hierarchy, etc). Relatedly, there could also be different thematic role
distinctions at the basic conceptual level — the 13 roles here were chosen to make the CHILDES
Treebank as useful as possible to the widest range of users (Pearl & Sprouse, |2013a). That said,
there are a number of specific proposals for thematic role systems in the literature; the diversity of
theories only increases when we consider that children’s thematic distinctions might differ from
adults’ in complex ways (especially very young children’s). It could also be that children begin by
not abstracting over thematic roles at all. Instead, they might track mappings from the individual
thematic roles directly to syntactic positions. Finally, as briefly mentioned in section 2.6, it’s also
possible that the source of the linking patterns we see lies outside of syntax (so, not in princi-
ples like UTAH or rtUTAH), and is instead a consequence of a constraint on the types of semantic
representations that language allows (Wood, 2015} |[Kastner, [2016; Myler, 2016)). This is still a
type of innate knowledge; therefore, the quantitative framework developed here could be modified
to compare modeled learners with knowledge of that constraint versus modeled learners without
knowledge of that constraint.

Related to the idea of different underlying thematic systems and how they might change during
development, there may also be a change to the information children are sensitive to in the input.
For example, while younger children may rely on syntactic frames, older children may rely on ad-
ditional and/or more abstract syntactic information. For example, when encountering the utterance
She seemed to laugh, a younger child might extract the syntactic frame NP __ IP_ y;,,;;. for seem. In
contrast, an older child might also perceive the raising dependency, and so encode seem’s syntax as
NP, _ [;p t1 VP_tinite]. Knowing exactly what information children of different ages are able to
both extract from their input and use for learning depends on having precise theories of acquisition
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that combine developing representations with developing abilities to use those representations in
real time.

Moreover, it’s also important to reconcile any current and future findings with existing child
behavioral data. For example, both the late-maturation innate-mapping and derived-mapping ap-
proaches supported by our results here will need to account for data suggesting children do have
some early mapping preferences (Naigles, |1990; Naigles & Kakol [1993; Bunger & Lidz, 2004;
Gertner, Fisher, & Eisengart, 2006; Bunger & Lidz, 2008; Hartshorne et al., |2015). We leave this
exciting theoretical work for the future.

7 Conclusion

To successfully learn language — and more specifically how to use verbs correctly — children must
solve the linking problem: they must learn the mapping between the thematic roles specified by
a verb’s lexical semantics and the syntactic argument positions specified by a verb’s syntactic
frame. Here, we’ve constructed an argument from acquisition for different theoretical approaches
to solving the linking problem. In particular, we’ve used acquisition of verb classes as an evaluation
metric for theories of solving the linking problem, with the idea that a good theory will be able
to account for children’s developing knowledge of verb classes over time. We made different
theoretical options concrete within an integrated quantitative framework of the acquisition process
that relies on corpus analysis, experimental meta-analysis, and computational modeling. More
specifically, we compared different underlying thematic representations to be linked to syntactic
positions, as well as when prior knowledge of a mapping is available.

Our results allowed us to specify for the first time a developmental trajectory of mental repre-
sentations and learning assumptions children may have when learning verb classes. Importantly,
this specification is compatible with both innate-mapping and derived-mapping approaches to solv-
ing the linking problem, in combination with other learning assumptions about the thematic system
and attention to verbal surface morphology. However, our results argue against early-maturation
innate theories of development for either UTAH or rtUTAH. An advantage of innate-mapping ap-
proaches like UTAH and rUTAH is that they can easily explain the cross-linguistic regularity of
linking patterns. So, one fruitful avenue of future work for derived-mapping approaches is to un-
derstand how children derive the regularity we see in linking patterns from their input. Beyond
this, our results support relative thematic representations in three-year-olds, with both absolute and
relative thematic representations potentially available for four- and five-year-olds. More generally,
our quantitative approach to language acquisition allows us to connect together theories of linguis-
tic representation and theories of the learning process, and so better understand both as part of an
integrated theory of language.
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Supplementary Materials

A UTAH and rUTAH implementations

Here we provide a more explicit walk-through of the UTAH and rUTAH implementations we
investigated.

A.l1 UTAH

9) Example UTAH utterance mappings

a. Available roles in Jack cut the pie with a knife

= AGENT, PATIENT, INSTRUMENT

AGENT = proto-AGENT, PATIENT = proto-PATIENT, INSTRUMENT = OTHER
b.  Available roles in Lily fears spiders

= EXPERIENCER, SUBJECT MATTER

EXPERIENCER = proto-AGENT, SUBJECT MATTER = proto-PATIENT
c. Available roles in Spiders frighten Lily

= CAUSER, EXPERIENCER

CAUSER = proto-AGENT, EXPERIENCER = proto-PATIENT
d. Available roles in Jack sneezed during the meeting

= AGENT

AGENT = proto-AGENT
e. Available roles in The package arrived during the meeting

= PATIENT

PATIENT = proto-PATIENT

For primary pattern sentences like the subject is a proto-AGENT, the direct object is a proto-
PATIENT, and the oblique object is OTHER. For the psych-verbs in[(9b)l{(9c)] this implementation of
UTAH leverages the internal-vs-external causation distinction: in Lily fears spiders, Lily is causing
her own mental state, and is thus a proto-AGENT; in Spiders frighten Lily, spiders are causing Lily’s
mental state, and thus Lily is the proto-PATIENT. For the unergative sneezed in [(9d)], Jack is the
proto-AGENT, and mapped to the subject. For the unaccusative arrived in[(9e)} this implementation
would claim that the package enters the syntactic derivation as the object of arrive, thus respecting
UTAH. The package would then be moved to the subject position by an additional mechanism
(such as the movement operation in GB/Minimalism).

A.2 rUTAH
(10) Example rUTAH utterance mappings

a. Available roles in Jack cut the pie with a knife
= AGENT, PATIENT, INSTRUMENT
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AGENT > PATIENT > INSTRUMENT

AGENT = HIGHEST, PATIENT = 2ND-HIGHEST, INSTRUMENT = 3RD-HIGHEST
b.  Available roles in Lily fears spiders

= EXPERIENCER, SUBJECT MATTER

EXPERIENCER > SUBJECT MATTER

EXPERIENCER = HIGHEST, SUBJECT MATTER = 2ND-HIGHEST
c. Available roles in Spiders frighten Lily

= CAUSER, EXPERIENCER

CAUSER > EXPERIENCER

CAUSER = HIGHEST, EXPERIENCER = 2ND-HIGHEST
d. Available roles in Jack sneezed during the meeting

= AGENT

AGENT = HIGHEST
e. Available roles in The package arrived during the meeting

= PATIENT

PATIENT = HIGHEST

For primary pattern sentences like there are three thematic roles: AGENT, PATIENT, and
INSTRUMENT. The thematic hierarchy places them in that order (AGENT > PATIENT > INSTRU-
MENT), so they map to subject, object, and oblique object positions respectively. For psych-verbs
like fear in [(10b), rtUTAH would posit that Lily is an EXPERIENCER, while spiders is a SUBJECT
MATTER. As such, Lily will map to the subject position, and spiders will map to the object posi-
tion. In contrast, for psych-verbs like frighten in rUTAH would posit that spiders is now a
CAUSER, though Lily is still an EXPERIENCER. Because CAUSER > EXPERIENCER, spiders will
map to the subject position, and Lily will map to the object position. Finally, for the intransitive
verbs sneezed both verbs only have one syntactic position and one thematic role; so,
the argument appears in subject position regardless of its thematic role.

B Survey of child behavioral results

B.1 Child behavioral data

This is a synthesis of 38 behavioral acquisition studies relating to verb behaviors known by children
by five years old. The specific verbs attested are used to identify which particular verbs ought (or
ought not) to cluster together at different ages.

B.1.1 Passivizable, intransitive, & monotransitive.

A verb that’s passivizable is often one that can be used transitively (i.e., it allows an object). For
example, eat is both passivizable (It was/got eaten) and (optionally) transitive (I ate it). However,
verbs can also be used in the passive form even if they’re intransitive, because they can take an
indirect object. We can see this with sneeze: It was/got sneezed at and I sneezed at it).
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In terms of acquisition evidence, we should be able to look at studies that investigate com-
prehension of transitive verbs and transitive cues, as well as studies that investigate children’s
comprehension of passives. Moreover, for passives, comprehension of a “short” passive (e.g., It
was/got eaten) should be sufficient, rather than requiring comprehension of a “long” passive (e.g.,
It was/got eaten by the cat). Also, if children comprehend the long passive, they should be able to
comprehend the short passive for that verb.

The ability to comprehend the passive usage of a verb correctly seems to come significantly
after the cues to transitivity are recognized. For example, by two years old, English children rec-
ognize that the frame She’s Xing the man indicates X is a transitive verb and so expect a transitive
meaning where one agent affects another; they also recognize the frame She’s Xing indicates X is
an intransitive verb, and so expect an intransitive (e.g., unaccusative or unergative) meaning with
only a single agent (Naigles, 1990; Naigles & Kako, 1993; Yuan & Fisher, 2009). At 28 months,
they also recognize cues involving multiple frames to identify verbs as optionally transitive vs.
unaccusative (Scott & Fisher, |2009)).

Maratsos 1974. M. P. Maratsos (1974) finds that children can pass an act-out task with full
passives using the verbs bump and push by age four and a half.

Maratsos et al. 1985. M. Maratsos, Fox, Becker, and Chalkley (1985) found that children can
comprehend long passives for these verbs by age 4: find, hold, kick, kiss, push, wash. They
comprehend long passives for these verbs by age 5: like, love. They comprehend long passives for
these verbs by age 9: hate, remember; see.

Gordon & Chafetz 1990. |Gordon and Chafetz| (1990) found that children can comprehend both
short and long passives for these verbs by age 3: drop, eat, carry, hold, hug, kick, kiss, shake,
wash, watch. However, they fail to comprehend either long or short passives for these by age 3 to
4: believe, forget, hate, hear, know, like, remember, see.

O’Brien et al. 2006 & Nguyen et al. 2016. |O’Brien, Grolla, and Lillo-Martin| (2006) found
that children can comprehend long passives for these verbs by age 3 (and 4) when the pragmatic
context makes the use of the passive more felicitous: hug, chase, like, see. However, Nguyen,
Lillo-Martin, and Snyder| (2016) found that three- and four-year-olds only seem to comprehend
long passives for hug and chase, though they comprehend short passives for all four verbs.

Hirsch & Wexler 2007. |Hirsch and Wexler (2007) found that three-year-old children can com-
prehend long passives for these actional verbs at greater than chance rates in a two-choice sentence
picture-matching task: hold, kick, kiss, push. In contrast, only seven-year-old children (and older)
comprehend long passives for these psychological verbs at greater than chance rates: hate, love,
remember; see.
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Crain et al. 2009. |Crain, Thornton, and Murasugi(2009) report samples of elicited long passives
from 9 three-year-olds, 22 four-year-olds, and one five-year-old. We can assume that if these
children produce a passive structure, they have classified the verbs as passivizable. Based on the
samples from the three-year-olds (3;4-3;11), by age three children should have grouped these verbs
together: bleed, crash, eat, hit, hurt, lick, knock, marry, punch, pick up, push, scratch, trip up, turn
(over). Based on the samples from the four- and five-year-olds (4;1-5;0), by age four children
should have additionally grouped these verbs together: bite, hug, jump, kill, kick, kiss, knock, lick,
ride, shoot.

Messenger et al. 2009. Messenger, Branigan, McLean, and Sorace (2009) found that children
can comprehend long passives for these verbs by age 3-4: frighten, shock, annoy, upset, surprise,
scare, pat, bite, pull, hit, carry, squash. However, they were unable to comprehend long passives
at age 3-4 for these verbs: see, hear, love, ignore, remember; hate.

B.1.2 Ditransitive.

Corpus analysis and experimental work discussed below suggests that some verbs that allow (or
require) two objects are identified by age three (Gropen et al., 1989; Snyder & Stromswold, |1997;
Campbell & Tomasellol [2001; |(Conwell & Demuth, 2007; Thothathiri & Snedeker, 2008)), though
there may be some overgeneralizations where verbs are assumed to have the ditransitive behavior
for awhile that shouldn’t (ex: say).

Gropen et al. 1989. Gropen et al. (1989) conducted a corpus analysis of five children’s produc-
tions (including Brown-Eve) and found that the double-object construction was often first produced
between ages 1;8 and 3;3. Their corpus analysis showed that at least two of the five children had
used the following verbs in both dative constructions, with the earliest age of use in parenthe-
sis: give (1;9), get (2;0), read (2;0), bring (2,3), buy (2;11), show (3;0), make (3;4), tell (3;4).
This same analysis showed that at least two of the five children had used the following verbs in
the double-object dative construction, with the earliest age of use in parenthesis: read (1;8), give
(1;9), show (1;9), bring (1,;10), get (2,0), buy (2;11), pour (2;11), tell (3,0), draw (3;4), make
(3;4), teach (3,6), ask (4;7).

This suggests that these verbs may have the ditransitive behavior by these ages: two = read,
give, show, bring, get; three = buy, pour, tell; four = draw, make, teach; five = ask.

In addition, (Gropen et al. (1989) also observed overproductive uses of the double-object con-
struction at these ages for these verbs: write (2;3), say (2;8), eat (3,3), keep (3;8), spend (4,0),
put on (4;1), finish (4,11), fix (5;2). So, the above clusterings may also include these errors (i.e.,
including these verbs at these ages). So, the groupings may look more like this for the ditransitive
behavior: two = read, give, show, bring, get; three = buy, pour, tell, write, say; four = draw, make,
teach, eat, keep, spend; five = ask, put on, finish; six = fix.

Snedeker & Huang 2015, Campbell & Tomasello 2001. |Snedeker and Huang (2015)), citing
Campbell and Tomasello (2001), note that both constructions associated with the dative (i.e., sub-
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ject verb object;,q; objecty;,. [double-object]=She gave him a penguin and subject verb objecty;,
preposition object;,q;- [prepositional]=She gave a penguin to him) are acquired before age three.
More specifically, Campbell and Tomasello| (2001) conducted a corpus analysis of seven children
in the CHILDES database and found that both dative constructions are first produced by age three
(at the latest), and often before age two and a half (five of seven children). The specific verbs
where the majority of children produced multiple dative construction types by age three are bring,
get, give, make, read, and show. So, it is likely children should have grouped these verbs together
by age three. Moreover, if we focus on the verbs that were used in the double-object construction
specifically, these are grouped together: bring, buy, get, give, make, read, show, tell.

Huttenlocher et al. 2004. |Huttenlocher et al. (2004) found that four- and five-year-olds had
structural priming for both dative constructions across these verbs: bake, bring, buy, deliver, feed,
give, serve, show, teach, throw. This suggests these verbs have been clustered together by age four
into a class that allows the double-object dative and the prepositional dative.

Conwell & Demuth 2007. Conwell and Demuth| (2007) find that three-year-olds demonstrate
abstract structural knowledge of both the double-object and prepositional dative constructions,
using elicited repetition with novel verbs. In particular, three-year-olds will use the prepositional
construction for a novel verb when it’s been modeled in the double-object construction, suggesting
they understand these are related. So, it is likely three-year-olds have a verb class that includes the
double-object construction (i.e., the ditransitive behavior).

Thothathiri & Snedeker 2008. |Thothathiri and Snedeker (2008) note that naturalistic produc-
tion isn’t definitive about categorization — in particular, children’s productions could be simple im-
itations of their input rather than generalizations formed via a verb class. Thothathiri and Snedeker
(2008)) conduct priming studies with three- and four-year-olds children to determine whether class-
level knowledge exists for dative constructions (double-object and prepositional). This presumably
also indicates which verbs belong to that class, as children who can generalize with a construction
to a new usage are doing so because the verb belongs to the class.

In the first set of experiments, four-year-olds show both within-verb priming (with give) and
across-verb priming (show priming give for the double-object construction, bring priming give for
the prepositional dative). These results suggest that four-year-olds cluster together show and give
for the double-object construction, and potentially also bring for datives in general.

In the second set of experiments, three-year-olds also show both within-verb and across-verb
priming with these verbs: bring, hand, pass, send, show, throw, toss. The priming effect was
stronger for the double-object construction, which suggests this class has definitely been formed.
So, by three, children have likely clustered together these verbs (along with give) into a class that
allows the ditransitive construction.
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B.1.3 Unaccusatives and unergatives.

Both experimental evidence (Bunger & Lidz, 2004) and analysis of naturalistic productions (Déprez
& Pierce, |1993]; Snyder & Stromswold, [1997) suggest that English children have begun forming a
class of unaccusative verbs by age two. Experimental evidence (Bunger & Lidz, 2008)) additionally
suggests that English children have begun forming a class of unergative verbs by age two.

Depréz & Pierce 1993. Déprez and Pierce| (1993) investigated three English children’s naturally
produced speech between the ages of one and a half and two years old. They found that post-verbal
subjects (i.e., VS order, like going it) occurred only with be and with unaccusatives such as break,
go, come, and fall. This suggests that English children have grouped these unaccusatives together
by age two (presumably noting the PATIENT-like role of the subject).

Snyder & Stromwold 1997. |Snyder and Stromswold (1997) conducted a corpus analysis in the
naturalistic productions of 12 English children to determine the age at which the verbs break,
come, fall, go, grow, and leave were first produced in an “unaccusative context”. This age range
was found to be between 1;6 and 2;7. So, we might interpret this as children recognizing that these
six verbs can be used unaccusatively by age two and clustering them together.

Gelman & Koenig 2001. Gelman and Koenig| (2001) find that five-year-olds and adults use the
animacy of a subject to determine how to interpret the verb move in intransitive uses such as Was
this X moving ? In particular, +animate subjects yield an unergative reading while -animate subjects
yield an unaccusative reading. So, by five, children seemed to have created a distinction between
the unergative and unaccusative classes that depends on the animacy of the subject. The three-
year-olds in the study were trending towards this behavior, but their behavioral results weren’t
statistically significant.

Bunger & Lidz 2004, 2008. Bunger and Lidz| (2004) demonstrate experimentally that 2-year-
old English children are able to use syntactic distributional cues to determine that a verb is unac-
cusative. For example, when presented with “The ball is pimming” (sometimes accompanied with
“The girl is pimming the ball”, 2-year-olds infer that pim refers to the “results-focused” action
(like the ball bouncing) that unaccusatives have. This suggests that children have begun forming
an unaccusative verb class by age two, and it has both syntactic and semantic cues associated with
1t.

Bunger and Lidz (2008) demonstrate experimentally that 2-year-old English children also are
able to use both syntactic distributional cues and semantic role information to determine that a verb
is unergative. For example, when presented with “The boy is blicking”, 2-year-olds infer that blick
refers to the “means-focused” action (like pumping a bicycle pump to spin an attached flower) that
unergatives have. This suggests that children have begun forming an unergative verb class by age
two, and it has both syntactic and semantic cues associated with it.
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B.1.4 Control object and raising object.

Kirby 2009, 2009, 2010 & Becker 2014. Becker (2014)) discusses a set of experiments by Kirby
(2009b) in which the raising object verbs want and need were investigated along with the con-
trol object verbs ask and tell. Kirby (2009b} 2011) found that four- and five-year-olds were able
to correctly interpret raising object verb and control objects verb utterances when the embedded
clause is active (e.g., “He wanted Winnie the Pooh to kiss Patrick”, “He asked the farmer to comb
the horse”). Both ages of children are also able to interpret raising object utterances when the
embedded non-finite clause is a passive (“He wanted Tigger to be called by Elmo.”). However,
only five-year-olds were above chance on interpreting control objects with embedded non-finite
passives (She told the policeman to be sniffed by the dog.”).

Additionally, as reported in [Kirby (2009a, |2010), both four- and five-year-olds are sensitive to
the animacy restrictions for control object verbs (and reject utterances like “Elmo told the toys to
be smaller” as “weird” more often than chance). This behavior is different for raising object verbs
(with utterances like “The boy wanted the cake to be chocolate”), where both ages of children
were at chance for accepting the utterances as “okay”. Similarly, as also reported in |[Kirby| (2009a),
2010), four- and five-year-olds treat control object and raising object verbs differently when judg-
ing the acceptability of expletive subjects in the embedded clause (e.g., control object: *The girl
told it to be warm, raising object: The girl wanted there to be cookies in the bag.). Adult-like
judgments do vary by age: four-year-olds only have adult judgments for control object verbs and
reject expletive subjects while five-year-olds only have adult judgments for raising object verbs
and accept expletive subjects. Still, the main point is that they recognize that these types of verbs
behave differently from each other but similarly to ones of the same kind (i.e., want patterns with
need and ask patterns with zell).

This suggests five-year-olds have distinguished raising object from control object verbs, and
four-year-olds may have as well. More specifically, we might expect four- and five-year-olds to
group together want and need in one class and ask and tell in a separate class.

B.1.5 Control subject and raising subject.

Becker 2006. The experiment with children in Becker| (2006) suggests that five-year-olds have
adult-like judgments for verbs allowing inanimate subjects. In particular, they accept inanimate
subjects only for subject raising verbs like seem and appear (e.g., The flower seems to be pink),
and not for control subject verbs like want and try (e.g. The flower wants to be pink). In contrast,
three- and four-year-olds allow all verbs to have inanimate subjects (and so have not differentiated
want and try from seem and appear in this respect). For purposes of verb classification, this

suggests that children place want and try together, separately from seem and appear by five years
old.

Hirsch & Wexler 2007. The comprehension experiments in |[Hirsch and Wexler (2007), which
involved children choosing which of two pictures matched a spoken utterance, suggest that children
can correctly interpret instances of seem that don’t involve raising (e.g., It seems to Homer that
Marge is pushing a cart) as young as three. However, they struggle to comprehend seem instances
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that involve raising (e.g., Homer seems to Maggie to be bowling a ball.. Because no other subject-
raising verbs were tested, it is unclear if children would classify seem as being similar to other
subject-raising verbs.

Becker 2007 and Becker 2009. The experiments in |[Becker (2007, 2009) suggests that three-
and four-year-olds accept expletive subjects for seem and appear (e.g., It seems to be windy, It
appears to be warm) either 83% (three-year-olds) or 91.7% (four-year-olds) of the time. This may
indicate that they recognize that seem and appear are the same kind of predicate. However, these
children also accepted expletive subjects for the control subject verbs want and try either 66.7%
(three-year-olds) or 68.1% (four-year-olds) of the time. Becker (2009) suggests this is because
children of both ages recognize the expletive subject as a cue for raising subject verbs — and so try
to cast control subject verbs as raising subject verbs when they’re used with expletive subjects (/¢
wants to be raining = modal interpretation ~ It’s going to rain.

For the purposes of verb classification, only four-year-olds — but not three-year-olds — accepted
raising subject verbs with expletive subjects more often than control subject verbs with expletive
subjects. |Becker| (2009) suggests that three-year-olds are still determining the class membership
for raising vs. control subject verbs. In particular, only four-year-olds recognize that want and
try should be in a different class than seem and appear (the class that naturally allows expletive
subjects).

Becker 2014. |Becker (2014) discusses a pilot study (pp.206-207) with 5 five-year-olds, and finds
that being used with an inanimate subject is a strong signal to expect that verb to also be used with
the there-expletive (Did there meb to be a banana in the soup?). So, five-year-olds have a strong
sense of cues to raising verb analyses.

B.1.6 Subject-experiencer & object-experiencer verbs.

Experimental studies suggest that children are still in the process of learning how to interpret
subject-experiencer verbs like like, love, and hate in all contexts, even though they use these words
frequently in their naturalistic output and hear them often in their input (Hartshorne et al., 2015).
Five-year-olds, however, can interpret subject-experiencer verbs correctly above chance. In con-
trast, four-year-olds are better at sorting out object-experiencer verbs like surprise and frighten
and interpreting them correctly above chance (Hartshorne et al., [2015) when both the subject and
object are animate. This suggests that there may be an object-experiencer verb class by age 4, as
well as an emerging subject-experiencer verb class.

Hartshorne et al. 2015. |Hartshorne et al| (2015) conducted experimental studies testing chil-
dren’s comprehension of several subject-experiencer verbs (admire, fear, hate, like, love, trust)
and object-experiencer verbs (amaze, bore, confuse, frighten, scare, surprise). They found that
four-year-olds correctly interpreted three higher-frequency object-experiencer verbs above chance
(surprise, frighten, scare) and no subject-experiencer verbs above chance when both subject and
object were animate. In fact, two low frequency subject-experiencer verbs were interpreted as
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object-experiencer verbs above chance (fear, trust). This may suggest that four-year-olds have
grouped these five verbs together: fear, frighten, scare, surprise, trust. When the subject was an-
imate while the object was inanimate, four-year-olds are above chance at interpreting the three
most frequent subject-experiencer verbs correctly: like, love, hate. This suggests that four-year-
olds have grouped these verbs together, though they may not always interpret them correctly if the
object is animate.

B.1.7 Complements: -ing, to, that, whether/if.

Bloom et al. 1984, 1989. Bloom, Tackeff, and Lahey (1984) conducted an analysis of child-
produced speech from four children between the ages of two and three years old. They found
suggestive evidence that children have productive use of non-finite fo in “V-to-V” constructions,
such as I want to see Mommy (though not in “V-NP-to-V” constructions like I want Mommy to get
balloon). This suggests that by three years old, children have begun forming a class of verbs that
take non-finite fo as a complement. The specific verbs that involved complement verb contexts
in child productions were these: ask, forget, get, go, have, know, like, need, show, start, suppose,
teach, tell, try, use, want. A subset of these were used specifically with “how to” instructive
contexts: know, show, teach. Bloom et al.| (1984) note that no -ing complements were produced
by any of the children they looked at. This suggests acquisition of -ing complements occurs after
three years of age.

Bloom, Rispoli, Gartner, and Hafitz (1989) examined the naturalistic productions from these
same children for evidence of productive use of (1) “S-complements” (including both non-finite
-ing clauses such as I see Mommy wash(ing) her hands and finite -that clauses such as I see that
Mommy is washing her hands, and (2) wh-complements, such as I know what the little bear’s
eating. They found that think and see were produced with S-complements while know and see
were produced with wh-complements. However, their evidence did not indicate that these children
realized there was a general rule or class of such verbs. Instead, it seemed “children learned this for
each matrix verb separately”. This suggests that verb classes involving S-complements and wh-
complements (i.e., interrogative clauses, which would include whether/if clauses) aren’t formed
till after three years of age.

Diessel & Tomasello 2001. |Diessel and Tomasello/ (2001) conducted a corpus analysis of seven
English-speaking children’s spontaneous speech between the ages of 1;2 and 5;2. They identified
seven verbs taking an if-complement: see (69/98), tell (14/98), wonder, ask, care, know, happen
(15/98). This suggests that by five, children have clustered together see and tell, and may have also
clustered together ask, care, happen, know, and wonder.

Papafragou et al. 2007. |Papafragou et al.|(2007) investigated the cues children (and adults) use
to identify the meaning of a verb, including the syntactic cue of taking a tensed clausal complement
introduced by complementizer that (e.g., Matt gorps that his grandmother is under the covers.).
When eliciting guesses about verb meaning from 34 children ages 3;7-5;9, they found that this
syntactic frame increased the chances of children guessing belief verbs. In particular, children’s
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guesses included these verbs: be surprised, dream, fall for, guess, know, lie, pretend, think, trick.
This suggests that by four to five, children are forming classes of verbs that allow a tensed sentential
complement (specifically here, the belief verb class).

Kidd et al. 2006, 2010. Kidd et al.| (2006) conducted a sentence recall/lexical priming study
on three-, four-, and five-year-olds involving both high and low frequency verbs that take finite
complements (e.g., think: “I think she is riding away on the horse.”ﬂ Interestingly, children
often made substitutions with different verbs, instead of repeating the verbs previously presented
to them. Three-year-olds substituted in these verbs more than once: think (179/266), bet (34/266),
hope (24/266), see (11/266), know (9/266), say (4/266), and hear (4/266). Four- and five-year-
olds substituted in the same verbs, though with higher incidences for some lower frequency verbs
(know, say) than the three-year-olds. This suggests that by age three, children may have clustered
together these that-complement taking verbs: bet, hear, hope, know, say, see, think.

Kidd et al.| (2010) conducted a similar sentence recall/lexical priming study on four- and six-
year-olds involving both high and low frequency verbs that take finite complements (e.g., say:
‘Mickey says that Minnie is wearing a lovely dress.”). Again, children often made substitutions
with different verbs, instead of repeating the verbs previously presented to them. Four-year-
olds substituted in think nearly 88% of the time (126/143), and used get (1/143), see (3/143),
tell (3/143), and wish (6/143) for the remaining 12%. Six-year-olds substituted think nearly 75%
of the time (102/135), and used find (2/135), laugh (1/135), like (2/135), persuade (1/135), reckon
(13/135), see (5/135), tell (1/135), and wish (1/135) for the remaining 25%. If we assume that
any verb substituted in more than once is reliably affiliated with the class of complementizer-that
verbs, we have the following clusters: at four, children have clustered together see, fell, think, and
wish; at six, they have additionally clustered in find, like, and reckon.

B.2 Verb classes derived from behavioral data

This is a synthesis of the 33 behavioral studies describing the behavior of specific verbs at specific
ages. We note that the earliest age of acquisition documented was used for the verb behavior
associated with a specific verb.

B.2.1 Passivizable.

By age three, children should cluster together these: bleed, carry, chase, crash, drop, eat, hit, hold,
hug, hurt, kick, kiss, knock, lick, like, marry, punch, pick up, push, scratch, see, shake, trip up,
turn (over), wash, watch (Gordon & Chafetz, 1990: short and long passives, O’Brien et al., 2006:
pragmatically felicitous long passives, Nguyen et al., 2016: short passives; Hirsch & Wexler, [2007;
Crain et al., [2009: long passives). Moreover, they should keep them separate from these: believe,
forget, hate, hear, ignore, know, love, remember (Gordon & Chafetz,|1990: short and long passives;
Messenger et al., 2009: long passives).

>Note that the primes didn’t involve complementizer that even though the verbs could all allow it. That is, all the
verbs belonged to the class that optionally allows complementizer that.
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By age four, children should additionally cluster in these: annoy, bite, bump, find, frighten,
Jjump, kill, pat, pull, ride, scare, shock, shoot, squash, surprise, upset (M. P. Maratsos, [1974: long
passives, M. Maratsos et al., |1985: long passives, Messenger et al., 2009: long passives, |Crain et
al.,|2009: long passives).

By age five, children should additionally include these: love (M. Maratsos et al., |1985: long
passives).

By age seven, children should additionally include these: hate, remember (Hirsch & Wexler,
2007: long passives).

B.2.2 Unaccusative.

By two, children have recognized that these verbs can be used unaccusatively and so should be clus-
tered together: break, come, fall, go, grow, leave (Déprez & Pierce, [1993; Snyder & Stromswold,
1997} naturalistic production).

B.2.3 Control object and raising object.

The study by [Kirby| (2009b) suggests that children should group want and need together (raising
object), and cluster together ask and tell (control object) separately by age four.

B.2.4 Control subject and raising subject.

Studies by Becker suggest that children should group want and try (control subject) together, and
separate them from seem and appear (raising subject), by either four years old (Becker, 2007,
2009) or five years old (Becker, |[2000).

B.2.5 Subject-experiencer and object-experiencer.

By age four, children have grouped these high-frequency subject-experiencer verbs together: like,
love, hate (Hartshorne et al., 2015: truth-value judgment task). They have also grouped to-
gether several object-experiencer verbs (frighten, scare, surprise) with lower-frequency subject-
experiencer verbs (fear, trust) (Hartshorne et al.,|2015;: truth-value judgment task).

B.2.6 Complements: to, that, whether.

to-complement. By age three, children have likely clustered together these verbs that can take a
non-finite o complement: ask, forget, get, go, have, know, like, need, show, start, suppose, teach,
tell, try, use, want. A subset of these may be in a separable “how to” instructive context class:
know, show, teach (Bloom et al., [1984; corpus analysis of naturalistic productions).

that-complement. By age three, children have likely clustered together these verbs that option-
ally take a that-complement: bet, hear, hope, know, say, see, think (Kidd et al., 2006: sentence
recall/lexical priming substitution). By age four, children have likely clustered together these verbs
as well: rell, wish (Kidd et al., 2010: sentence recall/lexical priming substitution). By age five,
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children have likely grouped in these belief verbs together that take a sentential complement intro-
duced by complementizer that: be surprised, dream, fall for, guess, lie, pretend, trick (Papafragou
et al., 2007: elicited verbs). By age six, they have additionally clustered in find, like, and reckon
(Kidd et al., 2010: sentence recall/lexical priming substitution).

whether/if -complement. By age five, children have clustered together these verbs that allow if-
complements: see and fell. They may have also clustered together ask, care, happen, know, and
wonder (Diessel & Tomasello, 2001: spontaneous speech productions).

C Verb classes derived from child behavioral data

Table 7: Attested verb behaviors and verb classes derived from child behavioral data for verbs in
the <3yrs dataset appearing 5 or more times.

Verb behavior Attested verbs

Unaccusative 6: break, come, fall, go, grow, leave

Ditransitive 14: bring, buy, get, give, make, pass, pour, read, say, send, show, tell, throw, write
Non-finite fo0 complement 16: ask, forget, get, go, have, know, like, need, show, start, suppose, teach, tell, try, use, want
Passivizable 27:

+: carry, chase, crash, drop, eat, hit, hold, hurt, jump, kick, kiss, knock, lick, like, punch, push,
scratch, see, shake, turn, wash, watch
—: believe, forget, hear, know, remember

that-complement

9: bet, hear, hope, know, say, see, tell, think, wish

Verb classes

15 classes, 60 verbs

[+unaccusative]
[+ditrans]
[+non-finite to]
[+passive]

[-passive]

[+that-comp]

[+unaccusative, +non-finite fo]
[+ditrans, +non-finite t0]
[+ditrans, +that-comp]
[+ditrans, +non-finite t0]
[+passive, +non-finite f0]
[+passive, +that-comp]
[-passive, +non-finite 0]
[-passive, +that-comp]
[-passive, +that-comp, +non-finite fo0]

5: break, come, fall, grow, leave

10: bring, buy, give, make, pass, pour, read, send, throw, write
9: ask, have, need, start, suppose, teach, try, use, want

20: carry, chase, crash, drop, eat, hit, hold, hurt, jump, kick, kiss, knock, lick, punch,
push, scratch, shake, turn, wash, watch

2: believe, remember

: bet, hope, think, wish

2o

: get, show

say

: tell

like

see

: forget

: hear

: know

e R
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Table 8: Attested verb behaviors and verb classes derived from child behavioral data for verbs in
the <4yrs dataset appearing 5 or more times.

Verb behavior

Attested verbs

Unaccusative
Ditransitive

Non-finite o complement
Passivizable

that-complement
Control object
Control subject
Psych: Obj Exp
Psych: Subj Exp
Raising object
Raising subject

6: break, come, fall, go, grow, leave

21: bake, bring, buy, draw, eat, feed, get, give, keep, make, pass, pour, read, say, send

serve, show, teach, tell, throw, write

16: ask, forget, get, go, have, know, like, need, show, start, suppose, teach, tell, try, use, want
38:

+: bite, bump, carry, chase, crash, drop, eat, find, frighten, hit, hold, hurt, jump, kick, kill, kiss, knock,
lick, like, pull, punch, push, ride, scare, scratch, see, shake, shoot, surprise, turn, wash, watch
: believe, forget, hear, know, love, remember

: bet, hear, hope, know, say, see, tell, think, wish

: ask, tell

. try, want

: frighten, scare, surprise

: frighten, like, love

: need, want

: seem

NN WNDNNe |

Verb classes

23 classes, 76 verbs

[+unaccusative]
[+ditrans]
[+non-finite 0]
[+passive]

[-passive]

[+that-comp]

[+raising-subj]

[+unaccusative, +non-finite fo]

[+ditrans, +non-finite 0]

[+ditrans, +passive]

[+ditrans, +that-comp]

[+ditrans, +that-comp, +non-finite to, +control-obj]
[+non-finite to, +control-obj]

[+non-finite 7o, +control-subj]

[+non-finite to, +raising-obj]

[+non-finite to, +raising-obj, +control-subj]
[+passive, +non-finite fo, +psych-subj]
[+passive, +that-comp]

[+passive, +psych-obj]

[-passive, +non-finite 0]

[-passive, +that-comp]

[-passive, +that-comp, +non-finite fo]
[-passive, +psych-subj]

5: break, come, fall, grow, leave

15: bake, bring, buy, draw, feed, give, keep, make, pass, pour, read, send, serve, throw, write
4: have, start, suppose, use

26: bite, bump, carry, chase, crash, drop, find, hit, hold, hurt, jump, kick, kill, kiss, knock,
lick, pull, punch, push, ride, scratch, shake, shoot, turn, wash, watch
2: believe, remember

: bet, hope, think, wish

: seem

2o

: get, show, teach

eat

say

tell

ask

try

: need

want

like

see

: scare, surprise

: forget

: hear

: know

: love

el el el N el ol ol el el e N o o N N N I N
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Table 9: Attested verb behaviors and verb classes derived from child behavioral data for verbs in
the <Syrs dataset appearing 5 or more times.

Verb behavior

Attested verbs

Unaccusative
Ditransitive

Non-finite fo0 complement
Passivizable

that-complement
Control object

Control subject

Psych: Obj Exp
Psych: Subj Exp
Raising object

Raising subject
whether/if -complement

6: break, come, fall, go, grow, leave

23: ask, bake, bring, buy, draw, eat, feed, finish, get, give, keep, make, pass, pour, read, say,

send, serve, show, teach, tell, throw, write

16: ask, forget, get, go, have, know, like, need, show, start, suppose, teach, tell, try, use, want

38:

+: bite, bump, carry, chase, crash, drop, eat, find, frighten, hit, hold, hurt, jump, kick, kill, kiss, knock,
lick, like, love, pull, punch, push, ride, scare, scratch, see, shake, shoot, surprise, turn, wash, watch
—: believe, forget, hear, know, remember

13: bet, dream, guess, hear, hope, know, lie, pretend, say, see, tell, think, wish

. ask, tell

. try, want

: frighten, scare, surprise

: frighten, like, love

: need, want

: seem

: ask, care, happen, know, see, tell, wonder

N = NNWNN

Verb classes

25 classes, 84 verbs

[+unaccusative]
[+ditrans]
[+non-finite 0]
[+passive]

[-passive]

[+that-comp]

[+raising-subj]

[+whether/if-comp]

[+unaccusative, +non-finite 70]
[+ditrans, +non-finite t0]

[+ditrans, +passive]

[+ditrans, +that-comp]

[+ditrans, +that-comp, +non-finite 7o,
+control-obj, +whether-if -comp]
[+ditrans, +non-finite fo, +control-obj,
+whether-if-comp]

[+non-finite to, +control-subj]
[+non-finite to, +raising-obj]
[+non-finite to, +raising-obj, +control-subj]
[+passive, +non-finite fo, +psych-subj]
[+passive, +that-comp, +whether-if -comp]
[+passive, +psych-obj]

[+passive, +psych-obj]

[-passive, +non-finite 0]

[-passive, +non-finite o, +that-comp,
whether/if -comp]

[-passive, +that-comp]

[-passive, +psych-subj]

5: break, come, fall, grow, leave

16: bake, bring, buy, draw, feed, finish, give, keep, make, pass, pour, read, send, serve, throw, write
4: have, start, suppose, use

25: bite, bump, carry, chase, crash, drop, find, hit, hold, hurt, jump, kick, kill, kiss, knock, lick
pull, push, ride, scratch, shake, shoot, turn, wash, watch

2: believe, remember

: bet, dream, guess, hope, lie, pretend, think, wish

: seem

: care, happen, wonder

g0

: get, show, teach

eat

: say

p—

: tell

: ask

try

need

want

: like

see

: scare, surprise
: love

: forget

e DN e et

: know
: hear
1: love

—
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D ARI as a clustering evaluation metric

Another common method for evaluating RI scores relative to chance is to convert RI scores into
a new measure known as the adjusted Rand Index (ARI) (Hubert & Arabie, [1985). The ARI
uses a specific randomness model (the generalized hypergeometric distribution) to calculate an
expected value for the specific number and size of classes returned by the modeled learner. The
RI is then scaled relative to this expected value such that the expected value is 0, an RI of 1
is still 1, and an RI of O becomes -1. The result is the ARI, which ranges between -1 and 1
(=1 < ARI < 1), with scores less than 0 indicating worse than chance performance relative
to the randomness model, O indicating chance performance relative to the randomness model,
and scores greater than O indicating better than chance performance. Note that 1 is still perfect
performance, as in the original RI. We implemented the ARI calculation using the python function
sklearn.metrics.adjusted_rand_score.

We note that the ARI does not specify how far above 0 counts as a significant departure from
the value expected by chance; it also assumes a specific model of randomness that may or may not
hold for a given empirical domain.

Here we briefly summarize the modeling results when ARI is used as the evaluation metric.
Because the ARI builds in a randomness model, such that an ARI of 0O represents chance perfor-
mance, we didn’t perform any statistical tests on the ARI results. The main finding is that all
modeled learners at all ages have an ARI above 0, suggesting that all modeled learners are identi-
fying verb classes that match children’s verb classes more often than chance. Thus, in this sense,
the ARI aligns with all the RI results — all learners performing above chance according to the RI are
performing above chance according to the ARI. What differs is how much above 0 an individual
learner’s ARI is. Below we compare the relative magnitude of the ARI results across learners.

For the three-year-old modeled learners (<3yrs), all four that ignore surface morphology (-
morphology) perform better than the four that heed surface morphology (-morphology: .193-.238,
+morphology: .053-.144). This accords well with the RI results, where both learners who per-
formed better than chance ignored surface morphology. For the four-year-old modeled learners
(<4yrs), the best performing one is one of the ones above chance for the RI results: heeding sur-
face morphology, using the absolute thematic system, and not expecting a mapping (ARI: 0.261).
We note that its ARI score is far better than any of the other modeled learners at this age: ARI
= .080-.143). For the five-year-old modeled learners (<5yrs), the two that appear to substantially
outperform the others heed surface morphology (+morphology), use either the absolute or relative
thematic system, and expect a mapping (+expect-mapping) (absolute: .256, relative: .279, all other
6 modeled learners: .087-.149). These learners are among those that are above chance according
to the RI results, again supporting the RI results.

E Gibbs sampling in the generative model
The plate diagram for the generative model is presented here again for ease of reference, and Table

describes the variables in the plate diagram. Gibbs sampling is done following the process laid
out in the plate diagram and described in more detail in the rest of this appendix. Depending on
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the modeled learner, between 2000 and 4000 iterations of Gibbs sampling were run, with each
iteration involving the sampling of all classes, class properties, and hyperparameters, as described
below. The number of iterations was determined by doing several sample runs across a range of
iteration counts for each intake set, and seeing which one performed best according to the learner’s
log probability of the intake data. The iteration counts used for the results reported in the main text
are as follows:

(1) <3yrs:

+morphology: UTAH (3000), rtUTAH (3000), absolute-no-mapping (2000), relative-no-mapping (2000)

-morphology: UTAH (3000), rtUTAH (3000), absolute-no-mapping (3000), relative-no-mapping (4000)

(i1) <4yrs:

+morphology: UTAH (2000), rtUTAH (2000), absolute-no-mapping (3000), relative-no-mapping (2000)

-morphology: UTAH (2000), rtUTAH (4000), absolute-no-mapping (2000), relative-no-mapping (2000)

(iil) <Syrs:

+morphology: UTAH (3000), rtUTAH (2000), absolute-no-mapping (2000), relative-no-mapping (3000)

-morphology: UTAH (3000), rtUTAH (2000), absolute-no-mapping (4000), relative-no-mapping (2000)

®E

|
|
e
Challls
o

V

Figure 3: Plate diagram for the generative model of verb classes.

E.1 How Gibbs sampling works

The general form of the sampler for a situation where outcome x; takes value £, given previous
outcomes z_; = (z1, ...z;—1), and hyperparameter/pseudocount (3 for all K possible outcomes and
multinomial distribution 6 is:

P(k”z_i,ﬁ):/P(k|9)P(0|x_i7ﬁ)d9:% W
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Variable Interpretation

V total number of verbs

F; total frames for verb j

Fj; frequency of frame i for verb j

C number of classes

Cj class of verb j

0. distribution over class labels

Ve hyperparameter (pseudocounts) for class labels

B number of binary (binomial distribution) properties being tracked
ex: +anim-subj, +anim-obj, +anim-iobj, +mvmt = 4

Tge, distribution over binary property ¢ for class c;

ex: +anim-subj, +anim-obj, +anim-iobj, +mvmt
Be:» Bs,  hyperparameters for Beta distribution prior for property ¢
M number of multinomial properties tracked
ex: syntactic frames, thematic-subj distr, thematic-obj distr, thematic-iobj distr = 4

9¢Cj distribution over multinomial property ¢ for class c;
ex: syntactic frames, thematic-subj distr, thematic-obj distr, thematic-iobj distr
Qv hyperparameter for Dirichlet distribution prior for property

Table 10: Variables used in the plate diagram for the generative model and in the details of the
Gibbs sampling process.

according to the derivation in |Goldwater and Griffiths| (2007)), who refer to the derivation in
MacKay and Peto| (1995), where n;, is the number of times k occurred in z_;.

This is the basis that we can use to do the sampling for all categorical and binary variables
that correspond to a single frame instance (ex: verb classes, +animate-subject, etc). The basic
sampling process involves removing the information of the current item being considered, and
then calculating the sampling probabilities as directed. Once sampling is complete and the item’s
information is updated, we add the new information back in. See |[Resnik and Hardisty (2010) for
an excellent tutorial about Gibbs sampling.

E.2 Probability of the category label for a given verb

For all currently existing categories c; in C and the possibility 7. of creating a new category,
calculate

an + ’YC
Nay + C%
where n.; is the number of verbs with category ¢; (excluding the verb whose class is currently

being sampled (c_;), nqy is the total number of verbs excluding the one being sampled, and C is the
total number of classes currently. So, the equivalent for the possibility of creating a new category

pcatj - P(Cj‘c—jvvc) = (2)
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would be

Ve

_ 3
Uz + C% ( )

P(cnewlc—j;7e) =

These should then all sum to 1.

Note: When generating a random assignment of verbs to classes, use the above process to
generate a class for each verb. That is, for each verb, generate a class (either an existing one or
a new one) according to the probability above. In the results reported in the main text for the
randomization tests, we use the default value v.=1 for this random generation process, which is the
value all modeled learners were initialized with.

E.3 Sampling binary properties

These will include +anim-subj, +anim-obj, and +anim-iobj for all model types. For the model
assuming the mapping is already known, +mvmt would indicate whether the observed syntactic
positions obey r/UTAH transparently or have moved. All of these apply to the probability of an
individual frame f;; appearing with the property within a given verb class c; for a verb v;, with F._,
referring to all the frames in class c; except for the ones from v;. These properties are represented
by g, in the plate diagram.

nd)C' +ﬁ¢1
Poic, = Pfjiles, ey Fo_ i Moo, Bors Boo) = ’ 4)

nallc‘ + 6(;51 + 5(1)0
where Ng,, is the number of frames in category c; that have the property, ny;, . is all the frames
¢
in ¢;, By, 18 the pseudocount for frames exhibiting the property, and [3,, is the pseudocount for
frames not exhibiting the property.
The probability for the entire set of frames [ is the product of each individual frame token’s
probability. We can use each individual frame’s frequency F}; to calculate this, assuming 7, cap-
tures the complete distribution (both ¢; and ¢, probabilities) for property ¢:

Do, = Hp@icj )

for all ¢ frame types in verb v;. In particular, if the frame f;; has the property and appears F};

times, its contribution is pgj_'i ; if frame f;; doesn’t have the property and appears F}; times, its
0,Cj

contribution is (1 — P, Vi,

The joint probablhty of all B binary properties is the product of p,_ for all binary properties ¢:

B
pbinarycj = Hp%j (6)
$=1
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E.4 Sampling multinomial properties

This works similarly to the sampling of binary properties — it’s just that there are more than two op-
tions available. This would apply for the -expect-mapping modeled learner that infers the thematic-
syntactic mappings for each verb class. Each underlying intermediate representation’s thematic
role (e.g.., absolute: AGENT-like or thematic: HIGHEST) would map with some probability to a
syntactic position (subject, object, oblique (indirect) object). So, there would be three probabili-
ties for semantic arguments: Pgsupj—poss Pobj—pos» AN Piopi—pos. Each of these has three options of
where to appear: syntactic subject, syntactic object, or syntactic oblique object. The probabilities
of appearing in those positions are a multinomial distribution.

Syntactic frames are another example that applies to all modeled learners, as a frame can be
one of the F frame types available.

This property would be captured by the 6, in the plate diagram.

nwcj +

Py, = P(fjilci, cojs Fe s Oy, o) = ©)

na”cj + O Oy

where f;; is the ith frame token in the total frames [ for verb v;, ¢; is the category of v;, 0y,
is the distribution over the O options, «, is the pseudocount for all options, Ny, is the number
of frames in class c; that have this value, Nail. is all the frames in class c; that exhibit any of
the values, and O is the number of options of available (e.g., number of syntactic frame types or
number of syntactic positions.).

The probability for the entire set of frames F) is the product of each individual frame token’s
probability. We can use each individual frame’s frequency F}; to calculate this, assuming 6, cap-
tures the complete distribution for property ¢:

Fji
Dy, = pr;c]v ®)

for all ¢ frames in verb v;.
The joint probability of all M multinomial properties is the product of p,, for all multinomial
properties 1):

M
pmultinomialcj - prcj (9)
P=1

E.5 Complete sampling equation for new verb class for verb

Let A\ be the set of hyperparameters needed for this calculation, including the hyperparameters
for category selection, binary properties, and multinomial properties. The complete equation for
selecting a new verb class is:

De; = P(cjle—j, ve, Fojy A) =

pcatj * pbinm‘ycj * pmultinomialcj
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Adjust these probabilities with an annealing temperature if desired (see section on anneal-
ing below), and then roll a C+1 sided die weighted according to the calculated probabilities. Then,
select the category label that comes up.

E.6 Hyperparameter sampling

We follow the approach in Goldwater and Griffiths (2007) to sample hyperparameters. In par-
ticular, there are priors over each of the hyperparameters (we can assume an improper uniform
prior), and use a single Metropolis-Hastings update (Gilks, Richardson, & Spiegelhalter, |1996)) to
resample the value of each hyperparameter after each iteration of the Gibbs sampler through all
individual verbs.

To update the value of hyper parameter x, we can sample a proposed new value ' from a
normal distribution with ¢ = k and o = .1x. Then, we calculate the probability of the data (all
verbs), given k vs. given k'

E.6.1 Verb category hyperparameter -,

Let V be the the total number of observed verb types with their collection of observed frames,
C be the current verb classes, and A_ be the set of hyperparameters except for .. The current
hyperparameter value is 7. while the proposed one would be 7/. However, for purposes of the
calculation (which we’ll have to do for both), we can represent both of them below as ~.

p(V|C, A_y,7) xp(Cly)
P(V,A_y,7)
o p(V|C, Ay, 7) * p(Cly)

p(cﬂ/v >‘—’Ya’7) =

We can disregard the denominator since we’re just comparing these two values for . and +/,
and they’ll have the same denominator.
Let’s look at each term in turn.

1%
p(V|C> )\—"/7 ’Y) = H pbinarycj * pmultinomialcj

j=1
Note that none of these terms depend on v — so these will be the same for both ~ calculations.
(Effectively, this term is a constant, and all the action happens in p(C/|7).)

C

p(Ch/) = Hpcati

i=1
_ H Ne B
V+Cxry
where n., is the number of verbs in class ¢ and V is the total number of verbs.
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E.6.2 Binomial property hyperparameters (3, , 3,

Let V be the the total number of observed verb types with their collection of observed frames, C
be the current verb classes, and A_3 be the set of hyperparameters except for the one 3 value being
sampled. The current hyperparameter value is 34, while the proposed one would be 3}, . However,
for purposes of the calculation (which we’ll have to do for both), we can represent both of them
below as f3.

p(VIC, As, 8) xp(C|v)
P(V’ /\—,37 5)

x p(VIC, A_p, B) * p(Clv)

p(C’V, )‘—ﬂ> B) =

(We can disregard the denominator since we’re just comparing these two values for 3, and
;. and they’ll have the same denominator.)
Let’s look at each term in turn.

1%
p(V’07 >‘—,3a B) = H pbinarycj * pmultinomialcj

Jj=1

Since Prmultinomial., doesn’t depend on f3, it’s a constant for both 3 calculations. For Pbinary.,
only the calculation for binary property ¢ will be affected by this 5 calculation — all the other
binary properties will have different S4s that will remain constant for this 5 calculation. So, the
calculation for Poi., is the one we pay attention to, calculating that for each verb in V and taking
the product:

1%
p(V|C, )‘—,37 6) = Hp¢i,cj

J

_anicg

j=11i=1

where F} is the number of frame types in verb v;, F}; is the frequency of the frame type 7
displaying a value of the desired property in class ¢;, and py, ., is the distribution over the two
options (so that the appropriate probability is used depending on which value the frame displays):

et
pd)i’cj B F + B + 6other

where Ng,, is the number of frames in class c; that have the appropriate property value for the 3
being calculated F is the total number of frames in class c;, and S,pe, is the 3 not being sampled.
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Oh/ H Pcat;

Note that p.,;, doesn’t depend on 3 — so these will be the same for both 3 calculations. (Effec-
tively, this term is a constant, and all the action happens above in p(V'|C, A\_g, 3).)

E.6.3 Multinomial property hyperparameters o,

This process is going to be very similar to the binary hyperparameter sampling above.

Let V be the the total number of observed verb types with their collection of observed frames,
C be the current verb classes, and \_,, be the set of hyperparameters except for the o value being
sampled. The current hyperparameter value is o, while the proposed one would be a;,. However,
for purposes of the calculation (which we’ll have to do for both), we can represent both of them
below as a.

p(V|C, A_q, @) x p(Cly)
P(V7 A—OH Oé)
x p(V|C, A_q, @) * p(C|7)

p(CIV, e, a) =

(We can disregard the denominator since we’re just comparing these two values for av, and oy,
and they’ll have the same denominator.)
Let’s look at each term in turn.

v
p(V|O7 >‘—Oé’ Oé) = H pbinarycj * pmultinomialc‘j
j=1

Since Pinary., doesn’t depend on ¢, it’s a constant for both « calculations. For p,,uitinomial. . »
only the calculation for multinomial property ) will be affected by this « calculation — all the other
multinomial properties will have different o, s that will remain constant for this « calculation. So,
the calculation for P is the one we pay attention to, calculating that for each verb in V and
taking the product:

1%
p(V|C, )‘—Om a) = pri,cj
=1

v Fj
=[111I».
- p"/)zycg

j=11i=1

where F} is the number of frame types in verb v;, Fj; is the frequency of the frame type 7
displaying a value of the desired property in class ¢;, and py, ., is the distribution over the various
options (so that the appropriate probability is used depending on which value the frame displays):
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Ny, +
_ J
Piie; = F+0xa

where Ny, is the number of frames in class c; that have the appropriate property value for the
a being calculated F is the total number of frames in class c;, and O is the number of multinomial
options there are for this property.

Oh/ H Pcat;

As with the binary properties, p.. doesn’t depend on o — so these will be the same for
both « calculations. (Effectively, this term is a constant, and all the action happens above in
p(VI|C, Aq, @).)

E.6.4 Metropolis-Hastings update

We can now do the Metropolis-Hastings update: the probability of accepting the new value de-
pends on the ratio between p(C | V, A_,, k) and p(C | V, A\_,, /), with a term correcting for the
asymmetric proposal distribution.

1. Calculate aq:

p(CIV, A, k)
pr— 1
U OV ) (10
2. Calculate ay:
a = p(“,’“) (11)
p(K'|K)

where p(k|k’) is the probability of drawing x from a normal distribution with x = ' and o
=.1x’, while p(x'|k) is the probability of drawing <’ from a normal distribution with ;1 = K
and o = .1k.

3. Calculate a = ajas.
If a > 1, accept «/.

Otherwise, flip a weighted coin (and we can anneal with temperature T if desired). With

probability ﬁ, choose ’. With probability %, keep the original . If no
annealing (or T=1 for that iteration), this defaults to probability a and 1 — a for the two
options.
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E.7 Annealing

To help the Gibbs sampler converge faster, a simulated annealing regime is typically used (e.g.,
in Goldwater & Griffiths 2007) to force more exploration early on by flattening the probabilities
and less exploration later on by sharpening the probabilities. The way this is done is by raising the
calculated probability to a power (which is the temperature T').

annealed probability = probability” (12)

As the Gibbs sampler does more iterations, the temperature 7" lowers so the calculated proba-
bilities are sharpened. (Basically, the sampler is more confident about its calculated probabilities
later on in learning.) We follow |Goldwater and Gritfiths| (2007) and use a range of 7' = 2 lowered
down to 0.8 over the course of all iterations.

F Filtered verb classes

Tables|1 1{16|show the filtered verb classifications for each strategy implemented by a computational-
level Bayesian learner. Each modeled learner ran 10 times for each dataset (<3yrs, <4yrs, <5yrs),
and these ten verb clusterings were aggregated into an aggregate verb clustering for each learner.
Any verb pair together in more than % of the learner runs (>7 out of 10) was put together in the
aggregate verb clustering. Similarly, any verb that was in a class of its own (a singleton) for more
than % of the learner runs was put as a singleton in the aggregate verb clustering.
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Table 11: <3yrs dataset: Aggregate inferred classes over 10 runs, given 4 strategies that in-
volve the use of surface morphology (+surface-morphology), an intermediate representation (ab-
solute/relative), and an expectation of a mapping between the intermediate representation and ob-

servable syntactic positions (+/-expect-mapping).

+surface-morphology

absolute

+expect-mapping

-expect-mapping

relative

+expect-mapping

-expect:

singletons: begin, confuse, dress, figure, fill,
fold, give, happen, knock, lean, mix, name,
pick, plug, rain, roll, seem, send, teach, tell,
tip, wait, wake, wonder

1: answer, beat, bet, bite, blow, bother, break,
bring, brush, build, burn, buy, carry, catch,
change, chase, check, chew, chop, clean,
close, color, count, cover, crack, cut, decide,
do, draw, drink, dry, dump, eat, feel, find, fin-
ish, fix, forget, guess, have, hear, help, hit,
hold, hook, hope, hurt, keep, kick, kiss, know,
leave, lose, love, make, match, mean, meet,
melt, mind, miss, move, mow, need, open,
paint, pass, pinch, poke, pour, pretend, pull,
push, put, reach, read, recognize, record, re-
member, save, say, scare, scratch, see, shake,
share, shave, shoot, shut, sing, smack, snap,
spell, spill, spray, squeeze, squish, start, stir,
stop, study, swing, take, tape, tear, think,
throw, tickle, tie, touch, turn, understand, un-
tie, use, wash, watch, wear, wipe, wish

2: get, smell, suppose, test

3: rock, taste, tease

4: belong, bob, bounce, care, cook, crawl,
cry, dance, drive, fit, fly, grow, hammer, hang,
hide, hop, jump, laugh, lay, listen, live, look,
peek, play, ride, ring, row, run, sit, sleep, slip,
sound, squeak, stand, stay, step, swim, talk,
visit, walk, wind, work, write

5: fall, hurry

6: bump, call, drop, serve

7: dig, juggle

8: entertain, excuse, thank
9: freeze, smile

10: learn, worry

11: like, want

12: bless, pet, press

13: cool, set

14: chirp, climb, come, go, let, lie, peepee,
point, pop, speak, try, whisper
15: feed, show

16: lick, peel

singletons: begin, confuse, dress, figure, fill,
hurry, rain, seem, tip, wait, wonder

1: answer, beat, bite, blow, bother, bring,
brush, build, bump, buy, catch, change, chase,
check, clean, close, color, cool, count, crack,
cut, decide, do, draw, drink, drop, dry, eat,
feel, find, finish, fix, forget, get, have, hear,
help, hold, hurt, keep, kick, know, leave, lose,
love, make, mean, mind, miss, move, open,
paint, pinch, pour, pull, push, reach, read,
recognize, record, remember, rock, roll, save,
say, scare, see, shake, share, shave, shut, sing,
snap, spell, spill, spray, squeeze, stick, stir,
stop, study, suppose, swing, tape, tease, test,
tickle, touch, understand, use, watch, wear,
wipe

2: bang, belong, bob, bounce, care, chirp,
climb, come, cook, crawl, cry, dance, drive,
fall, fit, fly, go, grow, hammer, hang, hide,
hop, jump, laugh, lay, let, lie, listen, live,
look, peek, peepee, play, point, pop, ride,
ring, row, run, sit, sleep, slip, sound, speak,
squeak, stand, stay, step, swim, talk, try,
walk, whisper, work, write

3: bet, guess, hope, think, wish

4: break, burn, meet, scratch, squish, untie

5: call, serve

6: carry, chew, chop, cover, dump, hit, hook,
match, mow, pass, poke, put, shoot, take, tear,
throw, tie, turn, wash

7: dig, juggle

8: drip, smile

9: entertain, excuse, thank

10: freeze, melt

11: learn, worry

12: like, want

13: pet, press

14: set, start

15: smell, taste

singletons: begin, confuse, dress, figure, fill,
fold, knock, lean, mix, name, pick, plug, rain,
seem, send, teach, tell, tip, wait, wake, won-
der

1: answer, beat, bet, bite, blow, bother, break,
bring, brush, build, burn, buy, carry, catch,
change, chase, chop, clean, close, color,
count, cover, crack, cut, decide, do, draw,
drink, dry, dump, eat, find, finish, fix, for-
get, guess, have, hear, help, hit, hold, hook,
hope, hurt, keep, kick, kiss, know, leave, lose,
love, make, match, mean, meet, mind, miss,
move, mow, need, open, paint, pass, pinch,
pour, pretend, pull, push, put, reach, read,
recognize, record, remember, save, say, scare,
scratch, see, shake, share, shave, shoot, shut,
sing, smack, snap, spell, spill, spray, squeeze,
squish, start, stir, stop, study, swing, take,
tape, tear, think, throw, tickle, tie, touch, turn,
understand, untie, use, wash, watch, wear,
wipe, wish

2: get, suppose, test

3: rock, taste

4: bang, belong, bob, bounce, care, cook, cry,
dance, drive, fit, fly, grow, hammer, hang,
hop, jump, laugh, lay, lie, listen, live, look,
peek, play, point, ride, ring, row, run, set,
sit, sleep, slip, sound, stand, stay, step, swim,
talk, tease, visit, walk, wind, work, write

v

: come, peepee, pop, speak

=)

: bump, call, drop, feel, serve

>

dig, juggle

: entertain, excuse, thank
: freeze, smile

o

10: like, want
11: bless, pet, press

12: chirp, climb

13: go, let, try, whisper
14: feed, show

15: lick, peel

singletons: begin, confuse, dress, figure, fill,
knock, plug, rain, seem, tip, wait, wonder

1: answer, beat, bite, blow, bother, break,
bring, brush, build, bump, burn, buy, carry,
catch, change, chase, check, chew, chop,
clean, close, color, cool, count, cover, crack,
cut, do, draw, drink, drop, dry, dump, eat,
feel, find, finish, fix, forget, get, have, hear,
help, hit, hold, hook, hurt, keep, kick, leave,
lose, make, match, meet, mind, miss, move,
mow, need, open, paint, pass, pinch, poke,
pour, pull, push, put, reach, read, recognize,
record, save, say, scare, scratch, see, set,
shake, share, shave, shoot, shut, sing, smack,
smell, snap, spell, spill, spray, squeeze,
squish, start, stick, stir, stop, study, suppose,
swing, take, tape, tear, test, throw, tickle, tie,
touch, turn, untie, use, wash, watch, wear,
wipe

2: decide, know, love, mean, remember, un-
derstand

3: rock, tease

4: bang, belong, bounce, care, cook, crawl,
drive, fit, fly, grow, hammer, hang, hide, hop,
jump, laugh, listen, live, look, peek, play,
ride, ring, run, sit, sleep, slip, sound, squeak,
stay, step, swim, talk, walk, work, write

v

: climb, lay, lie, peepee, point, stand

=)

: bet, guess, hope, pretend, think, wish

=

: call, serve

=3

: dig, juggle

©

: entertain, excuse, thank

10: like, want
11: pet, press

12: bob, cry, row
13: chirp, come, dance, go, let, pop, speak,
try, whisper

14: feed, give, offer, show

15: lick, peel
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Table 12: <3yrs dataset: Aggregate inferred classes over 10 runs, given 4 strategies that don’t
involve the use of surface morphology (-surface-morphology), an intermediate representation (ab-
solute/relative), and an expectation of a mapping between the intermediate representation and ob-
servable syntactic positions (+/-expect-mapping).

-surface-morphology

absolute

+expect-mapping

-expect-mapping

relative

+expect-mapping

-expect:

singletons: begin, figure, hurry, seem, tip

1: answer, ask, bite, bother, bring, brush,
build, bump, burn, buy, call, carry, catch,
change, chase, check, chop, close, color,
count, cover, crack, cut, dig, do, draw, drink,
drop, dry, dump, eat, feed, find, finish, fix,
fold, get, give, have, hear, hit, hold, hook,
juggle, keep, kick, kiss, knock, leave, lose,
make, match, miss, mix, move, mow, name,
need, offer, open, pass, peel, pet, pick, pinch,
plug, poke, pour, press, pull, push, put, reach,
read, recognize, record, rock, roll, save, say,
scare, scratch, send, serve, shake, share,
shoot, show, shut, sign, sing, smack, spell,
spill, spray, stir, stop, study, swing, take,
taste, teach, tear, tell, test, throw, tickle, tie,
touch, turn, untie, visit, wash, watch, wear,
wind, wipe

2: beat, lick

3: bang, belong, climb, come, cook, crawl,
feel, fill, grow, hammer, hang, lay, lean, lie,
listen, look, peek, play, point, ride, run, set,
sit, slide, smell, sound, stand, step, stick, talk,
wake, worry, write

4: bet, confuse, guess, hope, pretend, think,
wish

5: bless, entertain, excuse, thank

6: blow, chew, clean

7: bob, bounce, care, chirp, cool, cry, dance,
dress, drip, drive, fall, fit, fly, happen, hide,
jump, laugh, live, melt, peepee, pop, ring,
sleep, slip, speak, squeak, stay, swim, walk,
work

8: break, mind, paint, snap, squeeze, squish

9: decide, know, mean, remember, tease, un-
derstand, wonder

10: forget, go, help, let, like, start, suppose,
try, use, want

11: hurt, meet, see, tape
12: manage, smile

13: row, wait

14: freeze, rain

singletons: begin, figure, seem, tip

1: answer, ask, bite, blow, bother, break,
bring, brush, build, bump, burn, buy, call,
carry, catch, change, chase, check, chop,
clean, close, color, count, cover, crack, cut,
dig, do, draw, drink, drop, dry, dump, eat,
find, finish, fix, fold, get, have, hear, hit, hold,
hook, hurt, juggle, keep, kick, kiss, knock,
leave, lose, love, make, match, meet, mind,
miss, mix, move, mow, need, open, paint,
pass, peel, pet, pick, pinch, plug, poke, pour,
press, pull, push, put, reach, read, recognize,
record, rock, roll, save, say, scare, scratch,
see, send, shake, share, shoot, shut, sign,
sing, smack, snap, spell, spill, spray, squeeze,
squish, stir, stop, study, swing, take, tape,
taste, tear, test, throw, tickle, tie, touch, turn,
untie, visit, wash, watch, wear, wind, wipe

2: bang, cook, cool, hammer, listen, play,
ride, set, write

3: beat, lick

4: belong, climb, crawl, dress, fall, feel, fill,
grow, hang, jump, lay, lie, look, peek, peepee,
point, pop, run, sit, sleep, slip, smell, sound,
speak, stand, stay, step, stick, swim, talk,
wake, worry

5: bet, confuse, guess, hope, pretend, think,
wish
6: bless, entertain, excuse, thank

7: bob, bounce, care, chirp, cry, dance, drip,
drive, fit, fly, happen, hide, laugh, live, melt,
ring, smile, squeak, walk, work

8: come, learn

9: decide, know, mean, remember, under-
stand, wonder

10: feed, give, name, offer, serve, show,
teach, tell

11: forget, like, suppose, use, want

12: go, let, start, try

13: manage, shave
14: row, wait

singletons: begin, figure, seem, tip

1: answer, bite, bother, build, bump, burn,
buy, call, carry, catch, change, chase, close,
color, count, crack, cut, dig, do, draw, drink,
drop, dry, dump, eat, find, finish, fix, get,
have, hear, hit, hold, juggle, keep, kick, kiss,
leave, lose, make, miss, move, mow, need,
open, peel, pet, pinch, poke, press, push,
reach, read, recognize, record, rock, say,
scare, scratch, send, shake, share, shut, sign,
sing, spell, spill, spray, stir, stop, swing, taste,
test, tickle, touch, untie, watch, wear, wipe

2: ask, beat, blow, bring, check, chew, chop,
clean, cover, fold, hook, knock, lick, match,
mix, pass, pick, plug, pour, pull, put, roll,
save, shoot, slide, smack, take, tear, throw,
tie, turn, wash, wind

3: bang, belong, bounce, climb, cook, cool,
crawl, dress, drive, fall, feel, fill, fit, fly, grow,
hammer, hang, jump, lay, lean, lie, listen,
look, peek, peepee, play, point, pop, ride, run,
set, sit, sleep, slip, smell, sound, speak, stand,
stay, step, stick, swim, talk, wake, worry,
write

4: bet, confuse, guess, hope, pretend, think,
wish

5: bless, entertain, excuse, thank

6: bob, care, chirp, cry, dance, drip, happen,
laugh, live, melt, ring, squeak, walk, work

7: break, brush, hurt, meet, mind, see, snap,
squeeze, squish, study, tape

8: decide, know, mean, remember, under-
stand, wonder

9: feed, give, name, offer, serve, show, teach,
tell

10: forget, go, learn, let, like, start, suppose,
try, use, want

12: manage, shave
13: row, wait
14: freeze, rain

singletons: begin, figure, seem, tip

1: answer, bite, bring, build, bump, burn, buy,
call, carry, catch, change, chase, close, count,
crack, cut, dig, do, draw, drink, drop, dry,
dump, eat, find, fix, get, have, hear, hit, jug-
gle, kick, kiss, leave, lose, love, make, miss,
move, mow, need, open, peel, pet, pinch,
poke, pour, press, put, reach, read, recog-
nize, record, save, say, scare, scratch, send,
shake, share, shoot, shut, sign, sing, spell,
spill, spray, squeeze, stir, swing, take, taste,
test, throw, tickle, touch, untie, wash, watch,
wear, wipe, 1: ask, feed, give, name, offer,
serve, show, smack, teach, tell

2: bother, keep, stop

3: bang, cook

4: beat, knock

5: belong, bounce, climb, cool, crawl, dress,
fall, feel, fill, fit, fly, grow, hammer, hang,
hop, jump, lay, lean, lie, listen, look, peek,
peepee, play, point, pop, ride, run, set, sit,
sleep, slip, smell, sound, speak, stand, stay,
step, stick, swim, talk, wake, worry, write

6: bet, confuse, guess, hope, pretend, think,
wish

7: bless, entertain, excuse, thank

8: blow, check, chew, chop, clean, color,
cover, fold, hold, hook, lick, match, mix,
pass, pick, plug, pull, push, roll, tear, tie, turn,
wind

9: bob, care, chirp, cry, dance, drip, happen,
laugh, live, melt, ring, squeak, walk, work

10: break, brush, drive, finish, hide, meet,
paint, rock, snap, squish, visit

11: decide, hurt, know, mean, mind, remem-

ber, see, study, tape, understand, wonder

12: forget, go, help, learn, let, like, start, sup-
pose, try, use, want

13: row, wait
14: freeze, rain
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Table 13: <4yrs dataset: Aggregate inferred classes over 10 runs, given 4 strategies that in-
volve the use of surface morphology (+surface-morphology), an intermediate representation (ab-
solute/relative), and an expectation of a mapping between the intermediate representation and ob-

servable syntactic positions (+/-expect-mapping).

+surface-morphology

absolute

+expect-mapping

-expect-mapping

relative

+expect-mapping

-expect-

singletons:  begin, confuse, dress, figure,
land, rain, seem, wonder

1: answer, attach, back, bear, believe, bend,
bite, blow, bother, break, bring, build, bump,
burn, buy, carry, catch, change, chase, check,
chew, chop, clean, close, color, count, cover,
crack, cross, cut, decide, do, draw, drink,
drop, dry, dump, eat, examine, feel, find, fin-
ish, fix, fold, forget, get, hang, have, hear,
help, hit, hold, hook, hurt, keep, kick, kiss,
know, leave, lose, make, match, mean, meet,
mind, miss, move, mow, open, paint, park,
pinch, poke, pour, press, pretend, pull, push,
put, reach, read, recognize, record, remem-
ber, roll, save, say, scare, scratch, screw, see,
sell, send, set, shake, share, shoot, shut, sing,
smell, snap, spell, spill, squish, stick, stir,
study, surprise, swing, take, tape, tear, test,
throw, tickle, tie, touch, trade, turn, under-
stand, untie, use, visit, wash, watch, wear,
win, wind, wipe

2: ask, smack, spray, thank

3: bang, belong, bob, bounce, care, climb,
cook, crash, crawl, cry, dance, dream, drip,
drive, fall, fight, fit, fly, grow, hammer, hide,
hop, jump, laugh, lay, lean, lie, listen, live,
look, manage, march, melt, peek, peepee,
play, point, pop, ride, ring, row, run, sit, sleep,
slip, smile, sound, speak, squeak, stand, stay,
step, swim, talk, tease, wake, walk, work,
write

4: beat, knock, pass, punch

5: bet, guess, hope, think

6: bless, excuse

7: call, name, serve

8: chirp, disappear

9: come, go, let, shop, try, whisper

10: give, offer, show

11: like, want
12: love, need
13: peel, pet

14: start, stop
15: suppose, wish

singletons:  begin, confuse, dress, figure,
land, rain, seem, wonder

1: answer, back, beat, bend, bite, blow,
bother, break, bring, build, bump, burn, buy,
carry, catch, change, chase, check, chew,
chop, clean, close, color, count, cover, crack,
cross, cut, do, draw, drink, drop, dump, eat,
fix, hang, hit, hold, hook, kick, kiss, knock,
leave, lose, match, miss, move, mow, open,
paint, park, pass, pinch, poke, pour, press,
pull, punch, push, put, reach, read, record,
roll, scare, scratch, screw, sell, set, shake,
share, shave, shoot, shut, sing, smack, spell,
spill, squish, stir, study, swing, take, tape,
tear, thank, throw, tickle, tie, touch, trade,
turn, untie, use, visit, wash, wear, wind, wipe

2: attach, believe, decide, dry, examine, feel,
find, finish, forget, get, have, hear, help, hurt,
keep, know, make, mean, meet, mind, pre-
tend, recognize, remember, save, say, see,
smell, snap, suppose, surprise, test, under-
stand, watch, win

3: ask, spray

4: bang, belong, bob, bounce, care, climb,
cook, crash, crawl, cry, dance, dream, drive,
fall, fight, fit, fly, grow, hammer, hide, hop,
jump, laugh, lay, lie, listen, live, look, march,
peek, peepee, play, point, pop, ride, ring,
row, run, sit, sleep, slip, smile, sound, speak,
squeak, stand, stay, step, swim, talk, taste,
wake, walk, work, write

: bet, guess, hope, think, wish

: bless, excuse

: call, serve

: chirp, disappear

: come, go, let, melt, shop, try, whisper

© 0w

10: freeze, ski

1

: feed, show

12: like, want
13: love, need

14: rock, tease

15: start, stop

singletons:  begin, confuse, dress, figure,
hurry, land, rain, seem, tip, wait, wonder

1: answer, attach, bear, believe, bite, bother,
break, bring, build, bump, burn, buy, call,
catch, change, chase, check, chop, clean,
close, count, crack, cross, decide, do, draw,
drink, drop, dry, eat, examine, feel, find, fin-
ish, fix, forget, get, have, hear, help, hit, hold,
hurt, keep, kill, kiss, know, leave, lose, make,
mean, meet, mind, miss, move, name, open,
paint, park, peel, pinch, pretend, reach, read,
recognize, record, remember, save, say, scare,
scratch, see, sell, shake, share, shoot, shut,
sing, smell, snap, spell, spill, spray, squish,
stick, stir, study, suppose, surprise, tape, test,
tickle, touch, trade, understand, untie, use,
visit, watch, wear, win

2: back, bend, blow, carry, chew, color, cover,
cut, dump, fold, hang, hook, kick, knock,
match, mow, pass, poke, pour, press, pull,
punch, push, put, roll, screw, send, set, swing,
take, tear, throw, tie, turn, wash, wind, wipe
3: ask, smack

4: bang, belong, bob, bounce, care, climb,
cook, cool, crash, crawl, cry, dance, dream,
drip, drive, fall, fight, fit, fly, grow, hammer,
hide, hop, jump, laugh, lay, lean, lie, listen,
live, look, march, peek, peepee, play, point,
pop, ride, ring, row, run, sit, sleep, slip, smile,
sound, speak, squeak, stand, stay, step, swim,
talk, taste, tease, wake, walk, work, write

5: bet, guess, hope
6: bless, excuse

7: chirp, come, go, let, melt, shop, try, whis-
per

8: frighten, measure
9: feed, give, offer, show, tell

10: like, want
11: love, need

12: rock, shave
12: sign, squeeze
14: start, stop

singletons: begin, confuse, dress, figure,
hurry, land, plug, rain, seem, tip, wait, won-
der

1: answer, ask, attach, back, bear, believe,
bend, bite, blow, bother, break, bring, build,
bump, burn, buy, carry, catch, change, chase,
check, chew, chop, clean, close, color, count,
cover, crack, cross, cut, decide, do, draw,
drink, drop, dry, dump, eat, examine, feed,
feel, find, finish, fix, fold, forget, get, give,
hang, have, hear, help, hit, hold, hook, hurt,
keep, kick, kill, kiss, knock, know, leave,
lick, lose, love, make, match, mean, meet,
mind, miss, move, mow, need, offer, open,
paint, park, pass, peel, pinch, poke, pour,
press, pretend, pull, punch, push, put, reach,
read, recognize, record, remember, roll, save,
say, scare, scratch, screw, see, sell, send, set,
shake, share, shave, shoot, show, shut, sing,
smack, smell, snap, spell, spill, spray, squish,
stick, stir, study, suppose, surprise, swing,
take, tape, tear, test, throw, tickle, tie, touch,
trade, turn, understand, untie, use, visit, wash,
watch, wear, win, wind, wipe, wish

2: bang, belong, bob, bounce, care, climb,
cook, cool, crash, crawl, cry, dance, dream,
drive, fall, fight, fit, fly, grow, hammer, hide,
hop, jump, laugh, lay, lean, lie, listen, live,
look, march, peek, play, point, pop, ride, ring,
rock, row, run, sit, sleep, slide, slip, smile,
sound, speak, squeak, stand, stay, step, swim,
talk, taste, tease, wake, walk, work, write

3: bet, guess, hope, think
4: bless, excuse
5: call, name, serve

6: chirp, come, go, let, peepee, shop, try,
whisper
7: disappear, happen, manage, melt

8: frighten, measure

9: learn, worry
10: like, want

11: start, stop
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Table 14: <4yrs dataset: Aggregate inferred classes over 10 runs, given 4 strategies that don’t
involve the use of surface morphology (-surface-morphology), an intermediate representation (ab-
solute/relative), and an expectation of a mapping between the intermediate representation and ob-
servable syntactic positions (+/-expect-mapping).

-surface-morphology

absolute

+expect-mapping

-expect-mapping

relative

+expect-mapping

-expect-mapping

singletons: begin, figure, row, seem, wait

1: answer, bite, bother, build, bump, catch,
chase, check, close, dig, drink, dry, eat,
frighten, kill, lose, measure, meet, move,
mow, open, peel, reach, read, scare, scratch,
shake, shut, sing, spell, spray, squeeze, tickle,
touch, trade, visit

2: ask, bake, break, bring, brush, buy, call,
carry, change, cook, crack, do, draw, drop,
find, fix, get, have, hear, hit, keep, love, make,
mean, mind, name, need, paint, park, recog-
nize, say, see, share, shoot, smack, spill, stir,
stop, study, tape, test, use, watch, wear, win
3: attach, beat, bend, blow, burn, chop, clean,
color, count, cover, cut, dump, fold, hang,
hold, hook, kick, knock, leave, lick, match,
mix, pass, pick, plug, poke, pour, press, pull,
punch, push, put, record, roll, save, screw,
slide, spank, swing, take, tear, throw, tie, turn,
wash, wind, wipe

4: back, hurry

5: bang, bounce, climb, cool, crash, crawl,
dance, dress, fall, feel, fight, fit, fly, grow,
hammer, hop, jump, lay, lean, lie, listen, look,
peek, peepee, play, point, pop, ride, run, set,
shave, sit, sleep, slip, smell, sound, speak,
stand, stay, step, stick, swim, talk, taste,
wake, walk, worry, write

6: believe, decide, know, remember, surprise,
understand, wonder

7: bet, guess, hope, think

8: bless, entertain, excuse, pay, thank,

9: bob, chirp, ski

10: care, cry, disappear, dream, drip, laugh,
march, melt, smile, work

11: chew, fill

12: come, shop

13: cross, examine, kiss, pet, pinch, sell, sign,
snap, squish

14: feed, give, offer, send, serve, show, teach,
tell

15: finish, hide, hurt, miss

16: forget, help, like

17: freeze, rain

18: go, land, learn, let, start, suppose, try,
want

19: happen, squeak

20: juggle, tease, untie
21: pretend, wish

singletons: begin, figure, row, seem, wait

1: answer, bake, bother, break, brush, build,
bump, buy, call, catch, change, chase, check,
close, cook, crack, cross, dig, do, draw, drop,
dry, eat, examine, find, finish, fix, frighten,
get, have, hear, hide, keep, kill, kiss, lose,
love, make, mean, measure, meet, miss,
move, mow, name, need, open, paint, peel,
pet, pinch, reach, read, recognize, say, scare,
scratch, sell, shake, share, sign, sing, snap,
spell, spill, spray, squeeze, stir, stop, study,
test, tickle, touch, trade, untie, use, visit,
watch, wear, win

2: attach, beat, bend, bring, cover, cut, fill,
hold, hook, knock, lick, mix, pass, pick, plug,
pour, press, pull, punch, push, put, save,
spank, take, throw, turn, wash, wind

3: bite, carry, color, count, dump, hit, kick,
leave, park, poke, screw, shoot, swing, wipe
4: blow, burn, chew, chop, clean, drink, drive,
fold, hang, match, record, rock, roll, shut,
slide, tear, tie

5: back, hurry

6: bang, fight, grow, hammer, play, ride, set,
shave, taste, write

7: bounce, climb, cool, crash, crawl, dance,
fall, feel, fit, fly, hop, jump, lay, lean, lie, lis-
ten, look, peek, peepee, point, pop, run, sit,
sleep, slip, smell, sound, speak, stand, stay,
step, stick, swim, talk, wake, walk, worry

8: believe, decide, hurt, know, mind, remem-
ber, see, surprise, tape, understand, wonder

9: bet, guess, hope, think

10: bless, entertain, excuse, pay, thank

11: bob, chirp, ski

12: care, cry, disappear, dream, drip, laugh,
manage, march, melt, ring, smile, work

13: ask, feed, give, offer, send, serve, show,
smack, teach, tell

14: forget, like
15: freeze, rain
16: come, go, land, learn, let, shop, start, sup-
pose, try, want

17: happen, squeak

18: juggle, squish, tease
19: pretend, wish

singletons: begin, figure, seem, tip, wait

1: answer, bake, bite, bother, break, brush,
build, bump, burn, buy, call, carry, catch,
change, chase, check, close, color, cook,
count, crack, cut, dig, do, draw, drink,
drop, dry, dump, eat, find, finish, fix, for-
get, frighten, get, have, hear, help, hit, hold,
keep, kick, kill, leave, lose, love, make, mean,
measure, meet, move, mow, name, need,
open, park, peel, poke, reach, read, recog-
nize, record, say, scare, scratch, screw, sell,
shake, share, shoot, shut, sing, spell, spill,
spray, stir, stop, study, swing, test, tickle, tie,
touch, trade, use, watch, wear, wipe

2: attach, beat, bend, hook, knock, lick, mix,
pass, pick, pour, press, punch, push, put, save,
take, tear, throw, wash, wind

3: blow, chew, chop, clean, cover, drive, fold,
hang, match, paint, pull, rock, roll, slide, turn

4: bear, live

5: bang, bounce, climb, cool, crash, crawl,
dance, fall, feel, fight, fit, fly, grow, hammer,
happen, hop, hurry, jump, laugh, lay, lean,
lie, listen, look, peek, play, point, pop, ride,
run, set, shave, sit, sleep, slip, smell, sound,
speak, squeak, stand, stay, step, stick, swim,
talk, taste, wake, walk, worry, write

6: believe, decide, hurt, know, mind, miss, re-
member, see, squeeze, surprise, tape, under-
stand, win, wonder

7: bet, confuse, guess, hope, think

8: bless, entertain, excuse, thank

9: bob, chirp, ski

10: care, cry, disappear, dream, drip, manage,
march, melt, ring, smile, work

11: cross, examine, kiss, pet, pinch, untie

12: snap, squish
13: ask, bring, feed, give, offer, send, serve,
show, smack, spank, teach, tell

14: freeze, rain

14: come, go, land, learn, let, peepee, shop,
start, try

15: suppose, want

16: hide, whisper
17: juggle, tease
18: pretend, wish

singletons: begin, figure, row, seem, tip, wait
1: answer, bake, bite, bother, break, brush,
build, bump, burn, buy, call, carry, catch,
change, chase, check, close, color, cook,
count, crack, cut, dig, do, draw, drink, drop,
dry, dump, eat, find, finish, fix, frighten, get,
have, hear, help, hit, hold, keep, kick, kill,
leave, lose, love, make, mean, measure, meet,
move, mow, open, park, peel, plug, poke,
reach, read, recognize, record, say, scare,
scratch, screw, sell, shake, share, shoot, shut,
sign, sing, spell, spill, spray, squeeze, stir,
stop, study, swing, test, tickle, touch, trade,
use, watch, wear, wipe

2: attach, beat, bend, bring, hook, knock,
lick, mix, pass, pick, pour, press, punch,
push, put, save, spank, take, throw, wash,
wind

3: blow, chew, chop, clean, cover, fill, fold,
hang, match, pull, roll, slide, tear, tie, turn

4: bear, live

5: bang, bounce, climb, cool, crash, crawl,
dance, fall, feel, fight, fit, fly, grow, hammer,
happen, hop, jump, lay, lean, lie, listen, look,
peek, play, point, pop, ride, rock, run, set,
shave, sit, sleep, slip, smell, sound, speak,
squeak, stand, stay, step, stick, swim, talk,
taste, visit, wake, walk, worry, write

6: believe, decide, hurt, know, mind, miss, re-
member, see, surprise, tape, understand, won-
der

7: bet, confuse, guess, hope, think

8: bless, entertain, excuse, thank

9: bob, chirp, ski

10: care, cry, disappear, dream, drip, manage,
march, melt, ring, smile, work

11: cross, examine, kiss, pet, pinch, untie

12: ask, feed, give, name, offer, send, serve,
show, smack, teach, tell

13: forget, like, need

15: come, go, land, learn, let, shop, start, try
16: suppose, want

17: juggle, tease
18: pretend, wish
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Table 15: <Syrs dataset: Aggregate inferred classes over 10 runs, given 4 strategies that in-
volve the use of surface morphology (+surface-morphology), an intermediate representation (ab-
solute/relative), and an expectation of a mapping between the intermediate representation and ob-
servable syntactic positions (+/-expect-mapping).

+surface-morphology

absolute

+expect-mapping

-expect-mapping

relative

+expect-mapping

-expect:

singletons: begin, bob, confuse, dig, dress,
figure, hurry, land, rain, rinse, seem, tip, wait,
wonder

1: answer, attach, bear, beat, bend, bite, blow,
bother, break, bring, build, burn, buy, carry,
catch, change, chase, check, chew, chop,
clean, close, color, count, cover, crack, cross,
cut, do, draw, drill, drink, drive, dump, eat,
find, finish, fix, fold, follow, frighten, grind,
hang, hit, hold, hook, hurt, keep, kick, kill,
kiss, knock, leave, lick, lose, match, measure,
miss, move, mow, open, paint, park, pass,
peel, pinch, plug, poke, pour, press, pull,
punch, push, put, reach, read, record, rewind,
rock, roll, scare, scratch, screw, sell, set,
shake, share, shave, shoot, shut, sing, slide,
smack, spell, spill, squeeze, squish, stick, stir,
straighten, stretch, swallow, sweep, swing,
take, tape, tear, throw, tickle, tie, touch, trade,
turn, twist, untie, visit, wash, wear, wind,
wipe, wrap

2: back, belong, bounce, care, climb, come,
cook, crash, crawl, cry, dance, dream, end,
fall, fight, fit, fly, go, grow, hammer, hide,
hop, jump, laugh, lay, lean, let, lie, lis-
ten, live, look, march, melt, peek, peepee,
play, point, pop, rest, ride, ring, run, shop,
sit, sleep, slip, smile, sneeze, sound, speak,
squeak, stand, start, stay, step, stop, swim,
talk, taste, try, wake, walk, whisper, work,
worry, write

3: believe, decide, drop, forget, have, hear,
help, know, love, make, mean, mind, need,
pretend, recognize, remember, say, see, snap,
surprise, understand, use, win, wish

4: bet, guess, hope, think

5: bless, excuse, thank
6: bump, examine, sign, spray

7: drip, row

8: dry, feel, watch

9: feed, show

10: freeze, ski

11: get, meet, send, smell, test
12: learn, study, tease

13: like, want

singletons:  begin, confuse, dress, figure,
hurry, land, rain, rinse, seem, tip, wonder

1: answer, attach, bear, believe, bite, bother,
break, bring, build, bump, burn, buy, catch,
change, check, close, cook, count, cover,
crack, cross, decide, do, draw, drink, drop,
dry, dump, eat, examine, find, finish, fix,
follow, forget, get, have, hear, help, hit,
hold, hurt, keep, kill, kiss, know, leave,
lose, make, match, mean, meet, mind, miss,
move, open, paint, peel, pinch, poke, pre-
tend, reach, read, recognize, record, remem-
ber, rewind, save, say, scare, scratch, see, sell,
send, shake, share, sharpen, shave, shoot,
sign, sing, smack, smell, snap, spell, spill,
spray, squeeze, squish, stick, stir, straighten,
suppose, surprise, swallow, swing, tape, test,
tickle, touch, trade, twist, understand, untie,
use, visit, watch, wear, win

2: beat, chew, knock, pass, plug, sweep

3: bend, blow, brush, carry, chase, clean,
color, cut, drill, fold, grind, hang, hook, kick,
lick, measure, mow, park, pour, press, pull,
punch, push, put, roll, screw, set, shut, slide,
stretch, take, tear, throw, tie, turn, wash,
wind, wipe, wrap

4: drive, rock

S: frighten, pet

6: back, climb, come, cool, crash, end, fall,
go, grow, lay, let, lie, peepee, point, pop, run,
shop, stand, try, wake, whisper

7: bang, belong, bounce, crawl, fight, fit, fly,
hammer, hop, jump, lean, listen, look, peek,
play, rest, ride, ring, sit, slip, sound, speak,
squeak, stay, step, swim, talk, taste, walk,
worry, write

8: bob, cry, disappear, laugh, manage, march,
sneeze
9: care, dream, live, sleep, trip, work

10: dance, hide, start, stop
11: happen, melt

12: love, need

13: bet, guess, hope, think, wish
14: bless, excuse, thank

15: call, name, serve

16: feed, show

17: learn, tease
18: like, want

singletons: begin, confuse, dress, figure, rain,
seem, wonder

1: answer, attach, bear, bend, bite, blow,
bother, break, bring, brush, build, bump,
burn, buy, carry, catch, change, chase, check,
chop, clean, close, color, count, cover, crack,
cross, cut, do, draw, drill, drink, drop, dump,
eat, examine, find, finish, fix, fold, follow,
frighten, get, hang, hear, hit, hold, hook, hurt,
keep, kick, kill, kiss, leave, lick, lose, make,
match, measure, meet, miss, move, Mmow,
open, paint, park, peel, pet, pinch, poke,
pour, press, pull, punch, push, put, reach,
read, record, rewind, rock, roll, scare, scratch,
screw, sell, send, set, shake, share, shoot,
shut, sign, sing, slide, smell, spell, spill,
spray, squeeze, squish, stick, stir, straighten,
stretch, study, suppose, swallow, swing, take,
tape, tear, test, throw, tickle, tie, touch, trade,
turn, twist, untie, use, visit, wash, watch,
wear, wind, wipe, wrap

2: ask, smack, spank
3: beat, chew, fill, grind, knock, mix, pass,
pick, plug

4: back, bang, belong, bounce, care, chirp,
climb, cook, cool, crash, crawl, cry, dance,
disappear, dream, end, fall, fight, fit, fly,
grow, hammer, happen, hide, hop, jump,
laugh, lay, lean, lie, listen, live, look, man-
age, march, melt, peek, peepee, play, point,
pop, rest, ride, ring, run, sit, sleep, slip, smile,
sneeze, sound, speak, squeak, stand, stay,
step, swim, talk, taste, trip, wake, walk, work,
worry, write

5: come, go, let, shop, try, whisper

6: start, stop

7: believe, decide, forget, have, know, mean,
mind, pretend, recognize, remember, say, see,
sharpen, snap, surprise, understand, win

8: bet, think
9: guess, hope
10: bless, excuse, thank

11: call, name, serve

12: drip, row, ski

13: drive, dry, feel, shave

14: feed, give, offer, pay, save, show, tell

15: like, love, need, want

singletons: begin, confuse, dress, figure, rain,
seem, wonder

1: answer, attach, bear, believe, bite, blow,
bother, break, build, bump, burn, buy, carry,
catch, change, chase, check, chop, clean,
close, color, count, cover, crack, cross, cut,
decide, do, draw, drink, drive, drop, dry,
dump, eat, examine, feel, find, finish, fix, fol-
low, forget, frighten, get, have, hear, help, hit,
hold, hurt, keep, kill, kiss, know, leave, lose,
make, match, mean, meet, mind, miss, move,
open, paint, peel, pinch, poke, pretend, pull,
reach, read, recognize, record, remember,
rewind, roll, say, scare, scratch, screw, see,
sell, shake, share, sharpen, shave, shoot, shut,
sign, sing, smell, snap, spell, spill, spray,
squeeze, squish, stick, stir, straighten, stretch,
suppose, surprise, swallow, swing, tape, test,
tickle, tie, touch, trade, turn, twist, under-
stand, untie, use, visit, watch, wear, win, wipe

2: bake, pet

3: beat, bend, bring, chew, drill, fold, grind,
hang, hook, kick, knock, lick, measure, mow,
park, pass, plug, pour, press, punch, push,
put, send, set, slide, smack, take, tear, throw,
wash, wind, wrap

4: rock, sweep
5: back, chirp, climb, crash, end, fall, grow,

lay, lie, melt, point, pop, run, slip, stand,
wake

6: bang, belong, bounce, care, cook, crawl,
cry, dance, dream, drip, fight, fit, fly, hammer,
hide, hop, jump, laugh, lean, listen, live, look,
march, peek, peepee, play, rest, ride, ring, sit,
sleep, smile, sneeze, sound, speak, squeak,
stay, step, swim, talk, taste, trip, walk, work,
worry, write

7: come, go, let, shop, try, whisper

8: disappear, happen
9: start, stop

10: bet, guess, hope, wish
11: bless, excuse, thank

12: call, serve

13: feed, give, offer, save

14: like, want
15: love, need
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Table 16: <Syrs dataset: Aggregate inferred classes over 10 runs, given 4 strategies that don’t
involve the use of surface morphology (-surface-morphology), an intermediate representation (ab-
solute/relative), and an expectation of a mapping between the intermediate representation and ob-
servable syntactic positions (+/-expect-mapping).

-surface-morphology

absolute

+expect-mapping

singletons: bear, begin, figure, row, seem, tip,
wait

1: answer, bite, brush, build, bump, burn,
catch, change, chase, check, close, count,
cover, dig, draw, drink, drive, eat, fix,
frighten, kill, match, move, mow, open, peel,
pull, reach, read, record, rewind, scratch,
screw, set, shake, shoot, shut, sign, spray, stir,
swallow, swing, tie, touch, trade, visit

2: ask, feed, give, offer, pay, send, serve,
show, smack, teach, tell

3: attach, beat, bend, bring, chew, chop,
clean, color, cut, drill, dump, fill, fold, hang,
hold, hook, kick, knock, leave, lick, lift, mix,
park, pass, pick, plug, poke, pour, press,
punch, push, put, rinse, roll, save, slide,
spank, take, tear, throw, turn, wash, wind,
wipe, wrap

4: back, bang, bounce, climb, cool, crash,
crawl, dance, end, fall, feel, fight, fit, fly,
grow, hammer, hop, jump, lay, lie, listen,
look, peek, play, point, pop, rest, ride, run,
shave, sit, slip, smell, sound, speak, stand,
stay, step, stick, swim, talk, taste, wake, walk,
worry, write,

5: bake, bother, buy, call, carry, crack, do,
drop, find, follow, get, have, hear, help, hit,
keep, lose, love, make, measure, name, need,
recognize, sell, share, spell, spill, tape, test,
use, watch, wear

6: believe, decide, finish, hurt, know, mean,
mind, miss, pretend, remember, say, see,
study, surprise, understand, wish, wonder

7: belong, trip

8: bet, guess, hope, think

9: bless, entertain, excuse, thank
10: blow, rock, sweep

11: bob, chirp, ski, sneeze

12: break, cook, dry, hide, meet, paint, scare,
sing, squeeze, tickle, untie

13: care, cry, dream, drip, happen, laugh,
live, march, melt, ring, sleep, smile, work

14: come, dress, go, land, lean, learn, let,
peepee, shop, start, stop, try

15: cross, examine, kiss, pet, pinch, sharpen,
snap, squish, stretch, twist

17: grind, straighten

18: juggle, tease

19: suppose, want

-expect-mapping
singletons: begin, figure, row, seem

1: answer, bake, bother, break, build, bump,
buy, carry, catch, change, chase, check, close,
cook, count, crack, dig, do, draw, drink,
drive, drop, dry, eat, find, finish, fix, fol-
low, forget, frighten, get, have, hear, help,
hide, hit, keep, kick, kill, learn, like, lose,
love, make, mean, measure, meet, move,
mow, need, open, paint, peel, read, recognize,
rewind, say, scare, scratch, sell, share, shoot,
sing, spell, spill, stir, swallow, swing, tape,
test, tickle, touch, trade, untie, use, watch,
wear

2: ask, call, feed, give, offer, pay, send, serve,
show, smack, teach, tell

3: attach, bend, bite, bring, burn, chop, clean,
color, cover, cut, drill, dump, fold, hold,
hook, knock, leave, lick, mix, park, pick,
plug, poke, pour, press, pull, punch, push,
put, reach, record, rinse, roll, save, screw, set,
shake, shut, sign, slide, spank, spray, squeeze,
take, tear, throw, tie, turn, visit, wash, wind,
wipe, wrap

4: chew, hang

5: back, fall, fit, grow, hammer, hop, hurry,
lay, lie, listen, peek, play, point, pop, rest,
ride, run, shave, sit, slip, smell, stand, stay,
step, stick, talk, taste, wake, write

6: bang, fight, fly, worry
7: bounce, climb, cool, crash, crawl, dance,
end, jump, speak, squeak, swim, walk

8: believe, decide, hurt, know, mind, miss,
pretend, remember, see, study, surprise, un-
derstand, wish, wonder

9: belong, trip

10: bet, confuse, guess, hope, think
11: bless, entertain, excuse, thank
12: blow, match, rock, sweep

13: bob, chirp, ski, sneeze

14: care, cry, dream, drip, happen, laugh,
live, march, melt, ring, sleep, smile, work
15: come, go, land, lean, let, peepee, start,
try, whisper

16: cross, examine, kiss, pinch, snap, squish,
stretch, twist

17: dress, feel, look, shop, sound

18: grind, straighten

19: juggle, tease

20: pet, sharpen
21: suppose, want

relative

+expect-mapping
singletons: figure

1: answer, bake, bite, bother, bring, build,
bump, burn, buy, carry, catch, change, chase,
check, close, color, count, crack, do, draw,
drink, drive, drop, eat, find, fix, follow,
frighten, get, have, hear, hold, keep, kick, kill,
leave, lose, love, make, measure, move, mow,
need, open, peel, read, recognize, record,
scare, scratch, screw, sell, share, shoot, shut,
sign, spank, spell, spill, squeeze, stir, swal-
low, swing, tape, test, tie, touch, trade, untie,
use, visit, watch, wear

2: forget, like

3: meet, miss

4: ask, call, feed, give, hit, name, offer, pay,
send, serve, show, smack, teach, tell

5: attach, beat, bend, brush, chew, chop,
clean, cover, cut, drill, dump, fill, fold, hang,
hook, knock, lick, lift, mix, park, pass, pick,
plug, poke, pour, press, pull, punch, push,
put, rinse, roll, save, set, slide, take, tear,
throw, turn, wash, wind, wipe, wrap

6: back, bounce, climb, come, cool, crash,
crawl, dance, dress, end, fall, feel, fit, fly,
grow, hop, hurry, jump, lay, lean, lie, lis-
ten, look, peek, peepee, play, point, pop, rest,
ride, run, shave, shop, sit, slip, smell, sound,
speak, stand, stay, step, stick, swim, talk,
taste, wake, walk, worry, write

7: bang, fight, hammer

8: believe, decide, hurt, know, mean, mind,
pretend, remember, say, see, study, surprise,
understand, wish, wonder

9: belong, trip

10: bet, guess, hope, think

11: bless, entertain, excuse, thank

12: blow, match, rock, sweep

13: bob, chirp, freeze, rain, ski, sneeze

14: break, cook, finish, paint, reach, rewind,
shake, sing, spray, stop, win

15: care, cry, disappear, dream, drip, happen,
laugh, live, march, melt, ring, sleep, smile,
squeak, work

16: go, land, learn, let, try, whisper

17: cross, examine, kiss, pet, pinch, sharpen,
stretch, twist

18: grind, straighten
19: juggle, snap, squish, tease

20: suppose, want

-expect-mapping
singletons: figure

1: answer, bake, bite, bother, build, bump,
burn, buy, call, carry, catch, change, chase,
check, close, color, count, cover, crack, cut,
dig, do, draw, drink, drive, drop, eat, find,
fix, follow, frighten, get, have, hear, hit, hold,
keep, kick, kill, leave, lose, love, make, mea-
sure, move, mow, name, need, open, peel,
reach, read, recognize, record, scratch, screw,
sell, set, share, shoot, shut, sign, spell, spill,
spray, stir, swallow, swing, test, tie, touch,
trade, use, visit, watch, wear

2: cook, paint, untie
3: forget, like

4: ask, feed, give, offer, pay, send, serve,
show, smack, teach, tell

5: attach, beat, bend, bring, brush, chop,
clean, drill, dump, fold, hook, knock, lick,
mix, park, pass, pick, plug, poke, pour, press,
pull, punch, push, put, rinse, roll, save, spank,
take, tear, throw, turn, wash, wind, wipe

6: chew, fill, hang, slide, wrap

7: back, bang, blow, bounce, climb, cool,
crash, crawl, dance, end, fall, feel, fight, fit,
fly, grow, hammer, hop, hurry, jump, lay, lie,
listen, look, match, peek, play, point, pop,
rest, ride, rock, run, shave, sit, slip, smell,
sound, speak, stand, stay, step, stick, sweep,
swim, talk, taste, wake, walk, worry, write

8: believe, break, decide, dry, finish, hurt,
know, mean, meet, mind, miss, remember,
rewind, say, scare, see, sing, squeeze, stop,
study, surprise, tape, tickle, understand, win,
wonder

9: pretend, wish

10: belong, trip

11: bet, guess, hope, think

12: bless, entertain, excuse, thank

13: bob, chirp, ski, sneeze
14: freeze, rain

15: care, cry, dream, drip, happen, laugh,
live, march, melt, ring, sleep, smile, squeak,
work

16: come, dress, land, lean, peepee, shop

17: cross, examine, pet, pinch, sharpen

18: grind, straighten
19: juggle, kiss, snap, squish, stretch, tease,
twist

20: go, learn, let, start, suppose, try, want
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