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1 Introduction

There is widespread agreement that a network of brain regions surrounding the Sylvian fissure

supports human language comprehension (Stowe et al. 2005, Dronkers et al. 2004, Pallier et al.

2011). Less clear is what the individual anatomical sites of this network actually do. Towards a

more precise functional anatomy of language comprehension, we correlated time-series predictions

from a variety of grammatical predictors with fMRI data from several well-known brain regions.

The results categorize the types of the language-processing these areas carry out. In particular,

they confirm a statistically-significant role for a predictor based on Minimalist Grammars

(Chomsky 1995, Stabler 1997).

We model blood-oxygen-level dependent (BOLD) signals from fMRI that are time-locked to

each spoken word in an audiobook. The case for such naturalistic stimuli in neuroscience has been

made by Hasson and Honey (2012), who argued that findings within a controlled laboratory setup

may not be ecologically valid in real-life contexts. We analyzed the freely-available region of

interest (ROI) timecourses from Brennan et al. (2016) with two additional regressors not

considered before: a memory-based metric ‘structural distance’ and a distributional-semantic

metric indicating ‘conceptual combination’. We found that even with these covariates, the
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predictor based on Minimalist Grammars still significantly improved a regression model of the

BOLD signal in the posterior temporal region, roughly corresponding to Wernicke’s area.

Our methodology follows Brennan et al. (2016), which itself responds to Sprouse and

Hornstein’s (2016) exhortation to collaboratively construct a cognitive neuroscience of syntactic

structure-building: First identifying the structure-building computations word-by-word, then

asking whether there is evidence for those computations in neural signals. This approach allows an

investigator to examine cognitive hypotheses about the role of grammar in processing (for

foundational discussion of this point, see Stabler, 1983).

The remainder of the chapter is organized into four sections: Section 2 lays out some

assumptions about grammar, parsing and processing complexity in our neuro-computational

models; Section 3 reviews known effects of word-to-word associations and lexical-semantic

coherence in human sentence processing; Section 4 details the calculation of the complexity metrics

that are used as predictors of fMRI timecourses in this work. This section presents the data,

statistical models and results. Section 5 discusses the implications of these results for the cognitive

science of language more broadly.

2 Parameters in neuro-computational models of sentence processing

Under Brennan’s (2016) formulation, a neuro-computational model involves an incremental parser

as well as some kind of linking hypothesis that connects the states visited by that parser to

potentially-observable neural signals. Table 1 identifies the particular combinations that we

consider in this work; the fourth column is the linking hypothesis.
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<insert Table 1 here>

Brennan further subdivides the parser into a grammar G, a parsing algorithm A and an oracle O

for resolving the inevitable nondeterminism that attends human language processing. The first and

second columns of Table 1 specify G and A respectively. All grammatical models assume a perfect

oracle O, and the response function is always the default hemodynamic response function provided

by the SPM software package (see e.g., Henson and Friston 2007). The following sections

demonstrate in more detail how the parameters in Table 1 influence the predicted hemodynamic

responses of word-to-word processing difficulty.

2.1 Grammar

Constituency grammars

We compared models based on Minimalist Grammars (MG) to simpler Context-Free Grammars

(CFG). The particular CFGs that we consider lack empty categories and have no explicit

representation of headedness. As Fong and Berwick (2008) point out, CFGs list related

constructions separately. This can obscure linguistically-significant generalizations, for instance

about argument structure. MGs are a more expressive formalism, inspired by Chomsky’s

Minimalist Program (for a review see Stabler 2011). Integrating constituency, dependency and

movement information, MG derivations can be viewed as X-bar structures (see e.g., Haegeman

1999). MGs make it convenient to express a variety of well-known analyses, for instance of

ditransitives (Larson 1988), relative clauses (Kayne 1994), passives (Baker et al. 1989),

head movement, genitives, raising, ECM, control, quantifiers, and Wh-movement (Sportiche et al.

2013).
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Much recent work in computational psycholinguistics has applied CFGs in modeling human

processing difficulty (see e.g. Demberg and Keller 2008, Roark et al. 2009). Yet, as shown in van

Wagenen et al. (2014), the choice of grammar formalism can have a major impact on processing

difficulty predictions. Tree (1) and (2) illustrate this difference. They contrast bottom-up node

counts based on CFG and MG for the same sentence from Alice in Wonderland. At the word by

the prediction would be 1 under a naive CFG analysis, and 18 under a richer MG analysis.
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Dependency grammars

Apart from the constituency-based hypotheses, we also defined a ‘structural distance’ metric that

reflects aspects of both constituency and dependency. This predictor is inspired by earlier work in

which linguistic dependency relations correspond to memory retrieval actions that themselves carry

a processing cost (Wanner and Maratsos 1978, Gibson 1998, Lewis and Vasishth 2005). Diagram

(3) shows dependency relations, as recovered by the Stanford Parser (de Marneffe et al. 2006).

(3)

PRP VBP WRB JJ NNS PRP VBP VBN IN DT NN
I wonder how many miles I ’ve fallen by this time

nsubj

ccomp

advmod amod

dobj

nsubj

aux

nmod

case

det

To fully specify a complexity metric, it is necessary to quantify how difficult the induced
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memory retrievals are. A typical approach is to define some function of the distance between words

that stand in a dependency relation. This distance could be quantified as the number of

intervening discourse referents, the number of intervening words, i.e. ‘linear distance’, or the

number of nodes crossed when traversing the syntactic tree structure from a dependent to a head,

i.e., ‘structural distance’. Structural distance and linear distance make contrasting predictions on

relative clauses in head-final languages, and in fact only structural distance seems to derive the

observed pattern (O’Grady 1997, Yun et al. 2010). Indeed, Baumann (2014) compared the three

distance measures mentioned above and suggested that structural distance is the only significant

predictor of reading times in an eye-tracking corpus.

Compared to node counts based on phrase structure, structural distance based on both

dependency and constituency grammars predicts a distinctive set of word-by-word processing

difficulty. Tree (4) illustrates the structural distance between dependent words in the same

sentence in Tree (1) and (2). We considered only the rightmost word in any dependency relation.

For words in multiple dependency relations, we summed the structural distances. For instance, the

number of non-terminal nodes between fallen and ’ve is 4 (VBP, VP, VP, VBN), between fallen

and I is 6 (PRP, NP, S, VP, VP, VBN), between fallen and I is 6 (PRP, NP, S, VP, VP, VBN),

between fallen and miles is 7 (NNS, WHNP, SBAR, S, VP, VP, VBN), between fallen and wonder

is 7 (VBP, VP, SBAR, S, VP, VP, VBN), so the summed structural distance at fallen is 30. We

can see that under the ‘structural distance’ metric, the words fallen and time, which participate in

multiple dependencies, are predicted to induce the most processing effort. This is very different

from the bottom-up node count metric based on Minimalist Grammar, which predicts how and by

to be the most difficult words to process (see Tree (3)).
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2.2 Parsing strategy

Different parsing strategies lead to different predictions about processing effort on a particular

word. A top-down parser starts from a mother node and makes decisions about phrase structure

before checking them against the input string. A bottom-up parser starts with the first terminal

word and has to check all the evidence before applying a phrase structure rule. A left-corner parser

combines both top-down and bottom-up directions, and it applies a grammatical rule after seeing

the very first symbol on the right-hand side of the rule (see e.g., Hale 2014, Chap.3). Table 2

illustrates the steps of the three parsing strategies for the sentence John loves Mary. The numbers

in red indicate the node count based on the three parsing strategies respectively.

<insert Table 2 here>
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2.3 Complexity metrics

Node count

Node count is the number of parsing steps between successive words under a parsing strategy. This

is related to some forms of Yngve’s (1960) Depth hypothesis (see also Frazier 1985). As shown in

Table 2, even for the simple sentence John loves Mary, the node counts based on the top-down,

bottom-up and left-corner parsing can be different. We calculated the CFG- and MG-based node

counts for first chapter of Alice in Wonderland using the three parsing strategies. The results show

very different counts for each parsing strategy based on CFG grammars, as shown in the

correlation coefficients between cfg.bu, cfg.td and cfg.lc in Figure 2.

Surprisal

The metric ‘surprisal’ is motivated by information theory (see Hale 2016, Armeni et al. 2017, for a

review). It quantifies the transition probability from an initial substring to the next word. High

surprisal simply means that the next word is improbable on some particular language model.

Surprisals from certain probabilistic grammars predict a ‘subject preference’ for Chinese

relative clauses (Jäger et al. 2015). This prediction diverges from an account based on the

Dependency Locality Theory (Hsiao and Gibson 2003). Such controversy makes it more interesting

to compare the regression results of the surprisal predictor and the DLT-like predictor structural

distance against the fMRI data.
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2.4 Summary

We formalized syntactic processing during naturalistic comprehension using several different

neuro-computational models in an effort to discern their neural bases, if any. The CFG models

include both the node count and surprisal metrics. The MG models include only the node count

metrics. Surprisal, though well-defined for MGs (Hale 2003), is not available for the current study.

The structural distance model is based on both the dependency grammar and the CFG; its parsing

strategy is bottom-up, and its complexity metric is the sum of node counts between dependent

words.

3 Other factors influencing sentence processing

Apart from the syntactic factors discussed in Section 2, other factors such as linear, word-to-word

association and semantic information also influence processing complexity. We formalize linear

order expectancy as trigram surprisal, and semantic information as cosine similarity between words

and its previous context using distributional semantic models.

Word-to-word associations

Linear, word-to-word, surface dependencies, as reflected in N-gram models, have been shown to

influence online sentence comprehension at least at some level of processing (but see Everaert et al.

2015). For instance, Ferreira and Patson (2007) report that syntactic structure is largely ignored

when it conflicts with other information; Christiansen and MacDonald (2009) suggest that some

ungrammatical structures can still be processed with ease. Frank and Bod (2011) compare phrase

structure grammar models with sequential-structural models, i.e, Markov models and connectionist
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models in predicting eye-fixation measures, and find better performance for the

sequential-structural models. Similarly, Frank et al. (2015) find sequential-structural models fit the

EEG amplitudes better than does a phrase-structure grammar.

This N-gram predictor, based on linear word-to-word relationships, contrasts with the

‘structural distance’ predictor that is based on hierarchical structural dependency. A number of

behavioral studies have shown that violation of hierarchically-based rules leads to increased reading

times (e.g., Sturt and Lombardo 2005, Yoshida et al. 2012, Kush et al. 2015), and expectations of

word category based on hierarchical grammars predict eye-fixation times (e.g., Boston et al. 2008,

2011). Event-related potential (ERP) studies have also revealed early negativity for structurally

unexpected stimuli (e.g., Xiang et al. 2009). It is therefore interesting to compare the effects of

both the linear and hierarchical structural models in sentence processing.

Lexical-semantic coherence

Apart from grammatical information, word meaning also influences sentence processing. As

suggested by Landauer (2007), very little of this word-order information may actually be used by

human readers, perhaps only 10% to 15%. On the other hand, meaning is obviously involved

otherwise communication would not be possible. In the famous example He spread the warm bread

with socks, although socks is a well-expected grammatical category ‘NP’, it hinders comprehension

and elicits a large N400 effect.

Following Firth (1957)’s distributional hypothesis, semantic coherence could be quantified by

distributional semantic models, which represent words as high-dimensional vectors based on

co-occurrence statistics from a large text corpus (e.g., Baroni et al. 2014, Erk 2012). Similar

vectors are assigned to words that usually occur in similar contexts, hence the cosine similarity
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between two vectors represents the semantic distance between the two words.

Behavioral studies suggest that cosine similarity between word vector and its previous context

vector accounts for a certain amount of variance in eye-fixation times (Pynte et al. 2008) and word

pronunciation duration (Sayeed et al. 2015). More recently, Ettinger et al. (2016) showed that

cosine distance between the critical word and its context simulates the N400 effect from a previous

ERP sentence-reading experiments (Federmeier and Kutas 1999).

4 Correlating fMRI timecourses with various metrics during natural

story listening

4.1 Complexity metrics

CFG node counts

We first obtained the CFG trees using the Stanford Parser (Klein and Manning 2003), then we

counted the number of nodes in the CFG trees that would be visited by a bottom-up, top-down

and left-corner parser respectively.

MG node counts

Analogous to the node count predictors based on CFG trees, we also counted the number of nodes

in the X-bar trees that would be visited by a bottom-up, top-down and left-corner parser

respectively. The X-bar structures were the derived trees generated by Minimalist Grammars in

the sense of Stabler (1997). These structures reflect grammatical analysis by van Wagenen et al.

(2014).

CFG surprisal
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CFG surprisal is a structural notion of expectedness of the next word as described in Section 2.3.

We used the EarleyX implementation of Stolcke’s probabilistic Earley parser to compute surprisal

values (Luong et al. 2013, Stolcke 1995). The probabilities of grammatical rules were estimated

using the entire Alice in Wonderland text, with punctuation removed.

Structural distance

To examine the memory-related complexity metrics sketched earlier in Section 2.3, the dependency

relations for every sentence were also obtained using the Stanford Parser (de Marneffe et al. 2006).

Structural distance is then the number of nodes traversed between the head and the dependent in

the phrase structural tree. We considered only the rightmost word in any dependency relation. For

words in multiple dependency relations, we summed the structural distances.

N-gram surprisal

As a kind of control (see Section 3), we used the freely-available trigram counts from the Google

Books project (see e.g., Michel 2011) and restricted consideration to publication years 1850-1900,

i.e., the year surrounding the publication of Alice in Wonderland. We backed off to lower-order

grams where necessary: coverage was 1725/2045 for trigrams and 1640/1694 for bigrams. We then

used surprisal of the trigram probabilities to link the probability of a word in its left-context to

BOLD signals (see Hale 2001, 2016).

Lexical-semantic coherence

We used latent semantic analysis (LSA; Landauer and Dumais 1997) to build our semantic

coherence metric. The training data comprised Alice in Wonderland in its entirety. We first built

the type-by-document matrix where the rows are all the words in the book and the documents are

all the paragraphs. The input vector space was transformed by singular value decomposition
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(SVD), and truncated to a 100 -dimensional vector space. The context vector was the average of

the previous 10 word vectors. We used negative cosine between the target word vector and the

context vector to represent lexical-semantic coherence: higher negative cosine value indicates less

semantic coherence.

4.2 Data acquisition

We used the freely available ROI timecourses from Brennan et al. (2016). The data come from

twenty-five native English speaker (17 female, 18-24 years old, right-handed) listening to a story

while in the scanner. The story was the first chapter of Alice in Wonderland, lasting for about 12.4

minutes. Participants completed twelve multiple-choice questions after scanning to verify their

comprehension.

Four regions of interest (ROIs) were used to evaluate the syntactic models, including the left

anterior temporal lobe (LATL), the right anterior temporal lobe (RATL), the left inferior frontal

gyrus (LIFG) and the left posterior temporal lobe (LPTL). Figure 1 shows the ROIs from 4

participants (from Brennan et al. 2016).

Both functional and anatomic criteria guided the precise positioning of these ROIs. The

functional criterion derives from an atheoretical word rate regressor (rate), which has value 1 at

the offset of each word in the audio stimulus, and 0 elsewhere. This localizer identified regions

whose BOLD signals were sensitive to word presentation. Each ROI sphere (10 mm radius) was

centered on a peak t-value of at least 2.0 within the anatomical areas.

Imaging was performed using a 3T MRI scanner with a 32-channel head coil at the Cornell

MRI facility; the detailed imaging parameters and preprocessing procedures are described in
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Brennan et al. (2016).

<insert Figure 1 here>

4.3 Data analysis

Estimating hemodynamic response

Following Just and Varma (2007), we convolved each complexity metric’s time series with SPM12’s

canonical hemodynamic response function (HRF) to get the estimate hemodynamic responses for

each language model. This estimated response is what should be observed if a brain region were

processing the information specified in each neuro-computational model. The time series are made

orthogonal to the convolved rate vector, since it is our localizer for defining the ROIs.

Stepwise regression

We tested the unique contribution of each model by conducting stepwise model comparisons

against the ROI timecourses. We used the forward selection approach which starts with no

variables in the model, and tests whether adding one variable would give statistically significant

improvement of the fit. Our null model included fixed effects for head movements (dx, dy, dz,

rx, ry, rz) and rate; We also included fixed effects for word frequency (freq), which were also

convolved with the same HRF. The frequency count was estimated using the SUBTLEXus corpus

(Brysbaert and New 2009), which contains 51 million words from the subtitles of American films

and television series. f0 (f0), and root mean square (RMS) intensity (intensity) of the speech

were also included in our null model. The raw f0 of the 12 minutes speech in the audio were

extracted using the fxrapt function from the Voicebox toolbox for Matlab; each contour was

further processed by removing any f0 values exceeding 4 s.d. from the mean, and filling the gaps by

spline interpolation. The RMS intensity for every 20 ms of the audio was calculated to get the
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intensity vectors. f0 and intensity were also convolved and then sub-sampled to 0.5 Hz to

matching the time resolution (TR) of the fMRI measurements. The random effects included a

random intercept by participant and a random slope for rate:

BOLDnull ∼ dx + dy + dz + rx + ry + rz + rate + f0 + intensity + frequency (1 + rate | subject)

We then added regressors in the following order: surprisal of lexical trigram probability

(trigram), negative cosine similarity between word vector and context vector (lsa10), structural

distance between dependent words based on CFG (struct), surprisal of word-category probability

based on CFG (cfg.surp), node count based on bottom-up parsing on CFG (cfg.bu) and node

count based on bottom-up parsing on MG (mg.bu), namely, trigram > lsa10 > struct >

cfg.surp > cfg.bu > mg.bu. This order reflects a general direction from predictors with least

syntactic information (trigram, lsa10) to predictors with the richest syntactic information

(mg.bu).

Model fit was assessed using chi-square tests on the log-likelihood values to compare different

models. All of the predictors were converted to z-scores before statistical analysis. Statistical

significance was corrected for multiple comparisons across four ROIs with the Bonferroni method

(the adjusted alpha-level is 0.05/4=0.0125).

4.4 Results

Correlations between predictors

As a first step, we checked the correlations between the 14 regressors: rate, f0, intensity, freq,

trigram, lsa10, struct, cfg.surp, cfg.bu, mg.bu, cfg.td, mg.td, cfg.lc and mg.lc. The

correlation matrix is shown in Figure 2. As can be seen, the correlation between rate and
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intensity is relatively high (r = 0.58, p < .001); this is expected because word rate tracks the

occurrence of each word in speech, which leads to higher intensity as compared to silence. freq is

negatively correlated with cfg.surp (r(freq, cfg.surp)=-0.5, p < .001).

Among the CFG node count regressors, cfg.td and cfg.lc are highly correlated (r(cfg.td,

cfg.lc)=0.93, p < .001), while the correlation coefficients between cfg.bu and cfg.td (r(cfg.bu,

cfg.td)=0.93, p < .001) and between cfg.bu and cfg.lc (r(cfg.bu, cfg.lc)=0.59, p < .001)

are much smaller.

The MG node counts based on different parsing algorithms are all highly correlated with each

other (r(mg.bu, mg.td)=0.9, p < .001; r(mg.bu, mg.lc)=0.78, p < .001; r(mg.td, mg.lc)=0.87,

p < .001). To avoid collinearity in hierarchical regression analysis, we include only cfg.bu and

mg.bu for comparison between CFG and MG models.

<insert Figure 2 here>

Model comparison

Complexity metrics based on each of the neuro-computational models are subsequently added to

the four baseline regressions. In the ATLs, an improvement in the goodness of fit is obtained for

lexical-semantic coherence, but structural distance is also significant for the RATL. All the

parameters are significant for the LPTL, roughly corresponding to the traditional ‘Wernicke’s area’.

Trigram and CFG Surprisal significantly improve model fit in all of the ROIs, but no other

regressors are significant in the LIFG except trigram and CFG surprisal. The statistical details for

the model comparisons are shown in Table 3.

<insert Table 3 here>

Figure 3 shows the estimated coefficients and 95% confidence intervals for each of the
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predictors when added to the null model. The signs of the coefficients suggest that: (1) higher

trigram and CFG surprisal are correlated with more activation in all the ROIs; (2) changes in

distributional meaning correlate with more activation in the ATLs and the LPTL; (3) greater

structural distances between heads and dependents are associated with increased activation in the

RATL and LIPL; (4) higher bottom-up node counts based on CFG and MG both correlate with

increased activity in the LPTL.

<insert Figure 3 here>

5 Towards a functional anatomy of sentence comprehension

We found a significant effect for MG and CFG bottom-up node count in the LPTL on top of

trigram probability. Contra suggestions in Frank and Bod (2011) and Frank et al. (2015), this is

evidence for sensitivity to hierarchical structure, at least in the posterior temporal lobe. Node

counts from MG-derived structures are also significant over and above node counts based on CFGs

— suggesting that the LPTL is also involved in the processing of long-distance dependency.

Structural distance is significant in the RATL and the LPTL. This result aligns well with

Baumann’s (2014) finding based on eye-tracking corpus that structural distance predicts

eye-fixation times in reading, supporting a role for ‘integration cost’ in the memory-based models

of sentence processing.

The lexical-semantic coherence metric is a significant predictor in the ATLs. This is consistent

with previous findings implicating the ATLs in conceptual combination (Rogalsky and Hickok 2009,

Wilson et al. 2014, Pylkkänen 2015). However, we also found a significant effect of CFG surprisal
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in the LATL, and a significant effect of structural distance in the RATL. This confirms the idea

that the ATLs are involved in syntactic processing as well (Humphries et al. 2006, Brennan et al.

2012, 2016).

The LPTL activity is highly correlated with all the syntactic and semantic complexity metrics.

As shown in Wehbe et al. (2014), multiple regions spanning the bilateral temporal cortices

represent both syntax and semantics. Our results further confirms their suggestion that syntax and

semantics might be non-dissociable at the level of neurobiology.

No semantic or syntactic metric is significantly correlated with the LIFG except for CFG

surprisal. The failure to find effects of grammar has led to reevaluations of deficit-lesion studies

that have long associated syntactic computation with the ‘Broca’s area’ (e.g., Ben-Shachar et al.

2003, Caplan et al. 2008, Just et al. 1996, Stromswold et al. 1996). However, both this study and

Brennan et al. (2016) found significant effects of n-gram models in the LIFG. It is possible that

with easy-to-understand stimuli this region is not particularly strained.

To sum up, our correlational results from fMRI suggest that the temporal lobes perform a

kind of computation that is both syntactic in the classical sense of phrase structure, and semantic

in the sense of distributional word-embeddings. One set of questions this work leaves open is the

precise relationships between these two predictors — for instance, temporal precedence. Other

methods, such as MEG, may provide further insight here.
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Model Grammar Parsing strategy Complexity metric

cfg.td Context-Free Grammar top-down node count

cfg.bu Context-Free Grammar bottom-up node count

cfg.lc Context-Free Grammar left-corner node count

mg.td Minimalist Grammar top-down node count

mg.bu Minimalist Grammar bottom-up node count

mg.lc Minimalist Grammar left-corner node count

cfg.surp Context-Free Grammar surprisal

struct
Dependency Grammar

Context-Free Grammar
bottom-up nodes between dependencies

Table 1: Parameters in our neuro-computational models.

S

VP

NP

ProperN

Mary

2

4

2

V

loves

2

1

2

NP

ProperN

John

3

2

3

Top-Down:

expand by S → NP VP

expand by NP → ProperN

expand by ProperN → John

scan John

expand by VP → V NP

expand by V → loves

scan loves

expand by NP → ProperN

expand by ProperN → Mary

scan Mary

Bottom-Up:

shift John

reduce by ProperN → John

reduce by NP → ProperN

shift loves

reduce by V → loves

shift Mary

reduce by ProperN → Mary

reduce by NP → ProperN

reduce by VP → V NP

reduce by S → NP VP

Left-Corner:

shift John

project ProperN → John

project NP → ProperN

Project + complete S → NP VP

shift loves

project V → loves

project + complete VP → V NP

shift Mary

project ProperN → Mary

project + complete NP → ProperN

Table 2: Steps of top-down, bottom-up and left-corner parsing for the sentence John loves Mary. The

numbers below the terminal nodes indicate the node count for that word based on the three parsing

strategies respectively.
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(a) LATL

Parameter df LogLik χ2 p

∅ 15 -11659

A trigram 16 -11622 72.9 <.001

B lsa10 17 -11611 22.9 <.001

C struct 18 -11611 0.7 0.41

D cfg.surp 19 -11553 115.6 <.001

E cfg.bu 20 -11553 0.0 0.83

F mg.bu 20 -11551 3.2 0.07

(b) RATL

Parameter df LogLik χ2 p

∅ 15 -11222

A trigram 16 -11210 22.7 <.001

B lsa10 17 -11202 16.3 <.001

C struct 18 -11195 14.1 <.001

D cfg.surp 19 -11176 37.8 <.001

E cfg.bu 20 -11176 0.5 0.48

F mg.bu 21 -11174 3.4 0.07

(c) LIFG

Parameter df LogLik χ2 p

∅ 15 -10653

A trigram 16 -10648 10.0 0.002

B lsa10 17 -10646 3.0 0.086

C struct 18 -10646 0.0 0.832

D cfg.surp 19 -10633 25.9 <.001

E cfg.bu 20 -10632 2.0 0.158

F mg.bu 21 -11630 5.2 0.022

(d) LPTL

Parameter df LogLik χ2 p

∅ 15 -11900

A trigram 16 -11870 60 <.001

B lsa10 17 -11853 33 <.001

C struct 18 -11842 23 <.001

D cfg.surp 19 -11809 65 <.001

E cfg.bu 20 -11804 11 0.001

F mg.bu 21 -11793 22 <.001

Table 3: Step-wise model comparison results for all ROIs.
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Figure 1: ROIs (column) from four participants (rows). From Brennan et al. (2016)
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Figure 2: Pearson’s correlation coefficients r between each predictor.
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Figure 3: Fitted coefficients for all linguistic predictors across six ROIs. Coefficients show the estimated

change in BOLD signal per unit change in the linguistic predictor (x-axis). Error bars show 95% confidence

intervals. Filled points indicate models that made a statistically significant contribution in step-wise

comparison.
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