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Abstract

Theories of Laryngeal Realism argue for a tight correspondence between a seg-
ment’s phonetic cues and the (laryngeal) phonological features that represent it.
As such, the ‘p’/b’ contrast in French, expressed phonetically by vocal fold
vibration during the stop closure, is represented by a [voice] feature while the
‘p’/‘b’ contrast in English, expressed phonetically by contrasting long and short
lag VOT, is represented by a [spread] feature. Laryngeal realist literature focuses
on whether a given segment is best represented by [voice] or [spread], and pro-
poses a set of criteria and tests by which to diagnose the representation. In this
study we push laryngeal realist theory in a new direction — to segments proposed
to be specified for both [voice] and [spread] features — a combination which poses
challenges to the current diagnostics. To do so, we analyze acoustic data from
Nepali, an Indo-Aryan language with a single class of stops described as both
voiced and aspirated. We apply the same criteria and diagnostics used in laryn-
geal realism. We find support for the proposed representation, with a caveat that
the [voice] feature appears ‘stronger’ than [spread].

1. Introduction

A large body of literature debates the relationship between phonological fea-
ture representation and phonetic realization. It is generally agreed upon that there
is some link between the two (e.g. Jakobson et al., 1952; Clements, 1985; Flem-
ming, 2005; Mielke, 2008), but it is debated how direct this link should be. This
relationship pertains to features of all kinds, though the domain of laryngeal fea-
tures ([voice], [spread glottis], [constricted glottis]) and the contrasts they induce
provide a particularly good test case: languages with equivalently complex laryn-
geal contrasts realize those contrasts in phonetically distinct ways, raising the
question of whether features should reflect the particular realizations in the lan-
guage, or just the complexity of the contrast. Within the domain of laryngeal con-
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trasts (which includes voicing, aspiration, glottalization, etc.), the literature has
focused primarily on ‘voicing’, and the [voice] and [spread] features; in particu-
lar, on whether a single voicing contrast in a given language should be represented
with a [voice] or a [spread] feature. The literature focuses on questions such as
whether the English /b, d, g/ stop category is specified for [+voice] or [-spread],
and proposes diagnostics with which to answer these questions based on phonetic
data and phonological behavior. In this study we examine how well these criteria
extend to a language with a single segment arguably specified for both [voice] and
[spread].

This study examines Nepali, an Indo-Aryan language with a four-way laryn-
geal contrast proposed to utilize only [voice] and [spread] features, including a
stop class proposed to be specified with both [voice] and [spread] in the ‘laryngeal
realism’ literature (described below). That Nepali uses the same two features that
are central to the laryngeal realism literature makes it a particularly relevant lan-
guage to study: we can apply the same diagnostics used for languages with fewer
contrasts, and reflect back on the theory using data that are more complex than
previously considered in this literature. Based on our analysis of acoustic data,
our findings largely support the postulation of [voice] and [spread] for Nepali, but
with caveats that there is an asymmetry between the voice and spread features.

1.1. Two approaches to representing laryngeal contrast

Many languages have two-way contrasts, traditionally called ‘voicing’, between
two categories of obstruents which we transcribe as p, t, k and b, d, g. It is well
established that different languages realize this ‘voicing’ contrast with different
phonetic cues (e.g. Lisker & Abramson, 1964; Abramson & Whalen, 2017). Since
even within a single language the contrast can be realized with different phonetic
cues depending on a segment’s position in a word, utterance, or syllable, atten-
tion has focused on initial position, as this is the position where cues are max-
imally contrastive. Some languages do employ phonetic voicing (i.e. vocal cord
vibration) in initial position and contrast a negative VOT' (lead time) with a pos-
itive VOT (e.g. French). Other languages (like English and German) do not show
voicing in either of the stop series, but instead contrast a short positive VOT (short

'In initial position, VOT (Voice Onset Time) is defined as the duration before the onset of
voicing of the following vowel. For prevoiced segments in which voicing begins during the stop
closure, the duration of voicing before the release of the stop is measured as negative VOT. In
segments without prevoicing, VOT is the aspiration duration: the positive measure of how long it
takes for voicing to begin after the release of the stop.



lag) with a long positive VOT (long lag). A large body of research has discussed
this issue’s bearing on the link between phonological representation and phon-
etic realization by asking whether this two-way contrast should be represented
the same way in both English and French, or whether it should be represented
differently, reflecting the different phonetic realizations. Honeybone (2005) sum-
marizes work in each of these camps.

In the first approach, [voice] is used to capture the contrast between b, d, g
and p, ¢, k in both types of languages (Chomsky & Halle, 1968; Keating, 1984;
Rubach, 1990; Lombardi, 1991; Wiese, 1996; Lombardi, 1999), capturing the
observation that on the phonological level there is a two-way laryngeal contrast
between these stop classes.

The phonological representation of the contrast is an abstraction from the
phonetic realization of the classes, such that any two-way contrast on the VOT
spectrum will be marked with the same feature no matter where on the spectrum
each class falls. Thus the same phonological primitive could be phonetically real-
ized with prevoicing as in French, or with a short-lag VOT as in English and
German. We will refer to this as the ‘abstract’ approach.?

The abstract approach contrasts with theories of ‘laryngeal realism’ (e.g. Har-
ris, 1994; Iverson & Salmons, 1995; Avery & Idsardi, 2001; Jessen & Ringen,
2002; Iverson & Salmons, 2003; Honeybone, 2005; Vaux & Samuels, 2005; Beck-
man et al., 2013; Brown, 2016) which propose that the difference in phonetic
realization across these types of languages should be underlyingly represented by
different phonological features. Languages like French (henceforth ‘voicing lan-
guages’) have a [voice] feature corresponding to the voicing cue that distinguishes
the two classes, while languages like English (henceforth ‘aspirating languages’)
have a [spread glottis] or [spread] feature corresponding to the aspiration duration
that distinguishes the two classes.

2This corresponds to what Honeybone (2005) refers to as the ‘traditional” approach.



Table 1: Abstract and realist representations of voicing and aspirating languages

Abstract English French
E’ Slf [voice] contrast l;’ glf [voice] contrast
Realist English French
E: S’kg [spread] contrast E: S’ kg [voice] contrast

In addition to whether the features should be represented as abstract [voice], or
realist [voice] and [spread], there is further debate over specification—whether the
features are binary or privative. In a binary system, the stop classes are specified
as [+voice] and [-voice] in a voicing language and [+spread] and [-spread] in an
aspirating language, with each class being specified for opposing values of that
feature®. In a privative system, the presence of a feature on one class (represented
with [voice] or [spread]) contrasts with the lack of specification in another class
(sometimes represented in this paper with empty brackets [ ]). Asymmetry in
feature specification predicts asymmetric phonological behavior of the segments.
The crucial difference between binary and privative representations is that with
privative features, lack of specification and the asymmetry that it entails is always
in one direction.

The representations proposed by laryngeal realism are both realist and privat-
ive. Table 2 shows the laryngeal realist representations for a voicing language
(French), an aspirating language (English), and a language with both voicing and
aspirating contrasts (Thai). By using privative features, laryngeal realism predicts
asymmetries between stop classes in speaker intentionality behind phonetic real-
ization, in variability in realization, and in phonological processes, as discussed
in the next sections.

3This does not preclude the possibility that only one value of a feature is specified underlyingly
and throughout early parts of the derivation, as in, for example, the theory of Radical Underspe-
cification (e.g. Archangeli, 1988). However, if features are inherently bivalent, then there should
exist languages where, for any given feature, one value is specified underlyingly in some languages
while the other value is specified underlyingly in others. This does not hold for privative systems,
as discussed below in the text.



Table 2: Two- and three-way contrasting languages and their laryngeal realist representations

[b.d,g] [p.t.k]l [p" " K"]
French [voice] []
English [] [spread]
Thai [voice] [] [spread]

1.2. Types of evidence used by laryngeal realism

Laryngeal realist theories use three main lines of evidence to motivate the fea-
ture representation of a language’s laryngeal contrast: phonetic realization of the
segments, diagnostics of ‘control’, and phonological behavior. Phonetic realiza-
tion, which has already been discussed, is the notion that whichever phonetic cues
distinguish stop classes in initial position should directly correlate to their feature
representation. If presence of vocal fold vibration distinguishes the stops, [voice]
is specified. If duration of the burst distinguishes them, [spread] is specified.

The second line of evidence hinges on the connection between feature rep-
resentation and the status of phonetic cues as either intentionally controlled by
the speaker, or a physiologically inevitable result of the articulation of a segment.
Beckman et al. (2011, 2013) implement this connection in laryngeal-realist phon-
ological theory as a pair of feature diagnostics, but the idea is very similar to the
notions of ‘automatic’ and ‘controlled’ (a.k.a. ‘mechanical’) aspects of speech
from the phonetic literature (reviewed by Solé, 2007). Solé (2007) reports that
controlled and mechanical gestures can be distinguished by their distinct behavior
under several conditions, including their durations at slower speech rates. If the
articulatory goal of a specified feature is available in the input to speech produc-
tion, and if the segment-internal timing is specified at the same level, then the
segment-internal proportional durations should remain consistent across different
speech rates. In testing this, Solé finds that durations of controlled cues increase at
slower speech rates (i.e. the segment-internal durations increase as the total dur-
ation of the segment increases), while durations of automatic cues remain fairly
constant across speech rates, suggesting that their corresponding feature was not
specified on the phonological level.

Beckman et al. (2011, 2013) turn similar ideas into a pair of feature specifica-
tion diagnostics. Beckman et al. (2011) review literature on the effects of speech
rate on word-initial VOT durations in voicing and aspirating languages (e.g. Pind,
1995; Kessinger & Blumstein, 1997; Magloire & Green, 1999), while providing
new data on Swedish. In aspirating languages, the long-lag VOT of p, ¢, k is longer



at slower speech rates, while the short-lag VOT of b, d, g is constant across speech
rates. In voicing languages, the negative VOT of b, d, g is longer at slower speech
rates, while the short-lag VOT of p, ¢, k remains constant. For Beckman et al. (and
laryngeal realism more broadly), long-lag aspiration is the phonetic manifestation
of a [spread] feature and prevoicing is the phonetic manifestation of a [voice] fea-
ture. Or, in Solé’s terminology, they are phonologically specified controlled cues.
The English b, d, g stops and French p, ¢, k stops remained constant across speech
rates, behaving like a mechanical cue. Beckman et al. argue that this is because
these classes are not phonologically specified for any laryngeal features. If the
asymmetric speech rate results show that one stop class acts as if it is specified
for a feature and the other class acts as if it is not, this supports the privative,
realist feature representation in Table 1. Duration across speech rates is thus the
first diagnostic of control: if a (durational) cue is enhanced at slower speech rates
for a given class of sounds, it supports that class being specified for the feature
corresponding to that cue.

Beckman et al. (2013) propose that the amount of voicing in an intervocalic
stop closure provides a second diagnostic of control, and by extension feature
representation. They examine what proportion of the closures of b, d, g stops in
voicing vs. aspirating languages are voiced. In Russian, a voicing language, 97%
of b, d, g stops have fully voiced closures. In German, an aspirating language, 62%
of b, d, g stops have fully voiced closures. They propose that voicing continues
all the way through the stop closure of b, d, g in Russian because voicing is active
and controlled by speakers, suggesting a [voice] feature. The inconsistent voicing
in German is a passive or automatic unintended consequence of voicing in the
preceding vowel, suggesting that German b, d, g stops are not specified for a
[voice] feature, nor for any laryngeal feature (Beckman et al., 2013, 259; Jessen
& Ringen, 2002; Jansen, 2004).

The third line of evidence looks to phonological patterning for indication of
feature representations. Arguments include grouping segments together in natural
classes with a shared feature based on shared phonological behavior (e.g. Galla-
gher, 2015), or taking the output of neturalization processes to be the segment
that lacks feature specification (e.g. Lombardi, 1991; Iverson & Salmons, 2011).
This study will focus on the first two types of evidence: phonetic realization and
diagnostics of control. We leave evidence from phonological processes to future
work.



1.3. Challenges in extending the theory: motivation for the current study

The predictions of phonetic realization, diagnostics of control, and phonolo-
gical patterning hold up as expected—using privative, realist representations—
in languages with two-way contrasts that are argued to employ either [voice] or
[spread]. They even extend without issue to a language like Thai, which uses both
laryngeal features in its three-way contrast between [b], [p], and [p"], represen-
ted as [voice], [ ], and [spread] respectively (Kessinger & Blumstein, 1997; Pind,
1995; Beckman et al., 2011), as shown in Table 2. These tests have also been
used to argue that Swedish has a two-way contrast between a [voice]-specified
class and a [spread]-specified class, despite the lack of economy (Beckman et al.,
2011).

However, the same predictions pose potential conflicts for a language that in-
cludes segments specified for multiple laryngeal cues on the same segment, i.e.
voicing and aspiration—a language such as Nepali, which contrasts four stop
series traditionally described as voiceless, voiced, voiceless aspirated, and voiced
aspirated. This four-way contrast is typical of Indo-Aryan languages, for which
Iverson & Salmons (1995) propose the feature representation in Table 3. This
representation uses the same [voice] and [spread] features as English, French, and
Thai, but exploits every logical combination of them.

Table 3: Feature representation of an Indo-Aryan style four-way contrast, as proposed by Iverson
and Salmons (1995)

[p, t. kI: | [p" ", K"]: [ [b,d, g]: | [b", d", g"]:
[] [spread] [voice] [spread], [voice]

This study analyzes Nepali’s four-way stop contrast with the same types of
evidence used to motivate the laryngeal realist representations for two- and three-
way contrast languages. It aims to evaluate Iverson and Salmon’s (1995) pro-
posed feature representation and laryngeal realism more generally, by examining
whether the phonetic realization (and to some degree phonological patterning) of
Nepali’s stop contrast is as predicted by laryngeal realism. Each type of evidence
speaks to a research question that frames this study.

1. How is the four-way stop contrast realized in Nepali in initial position,
in terms of acoustic cues? Addressing this question serves two goals of the study.
First, it provides basic empirical data on the realization of Nepali stops, which is
underdescribed in the literature. Second, it allows us to diagnose feature repres-
entation in terms of phonetic realization in word-initial position — the position



used as the starting point for determining features in previous studies. We test
the hypothesis predicted by laryngeal realism, that the voiced aspirates’ feature
specification with both [voice] and [spread] is appropriate if the segments display
both prevoicing (like the [b, d, g] segments specified for [voice]) and long-lag
VOT (like the [p", t", k"] segments specified for [spread]). By examining cues
in word-initial position we find support for employing [voice] and [spread] prim-
itives in the representation, provided that the phonetic diagnostic for [spread] is
generalized somewhat.

2. How well do speech rate and intervocalic voicing effects support the
proposed feature specification of laryngeal classes in Nepali? Beckman et al.
(2011, 2013) propose speech rate in initial position and voicing in intervocalic po-
sition as two ways to diagnose feature specification. We apply these diagnostics
and test whether they support Iverson and Salmon’s (1995) feature representa-
tion in Table 3. Nepali’s voiced aspirated stops pose a challenge for Beckman et
al.’s (2013) intervocalic voicing diagnostic. Stops specified for [voice] are sup-
posed to be voiced through the entire stop closure. Stops specified for [spread]
are supposed to block voicing during the stop closure. Our findings from the
first research question suggest that Nepali’s voiced aspirated stops are specified
for [voice] and [spread]. We find that voiced aspirated stops pattern as expected
for a [voice]-specified stop rather than a [spread]-specified stop, suggesting an
asymmetry between the [voice] and [spread] features, where the [voice] feature is
‘stronger’ than the [spread] feature.

The remainder of this paper is organized as follows. Section 2 provides back-
ground on Nepali and on phonetic cues relevant to four-way contrasts. Section 3
explains the methods of data collection and analysis. Sections 4-6 present the
results of the study and their implications for feature representation. Section 4
addresses research question 1, examining the phonetic realization of stops in ini-
tial position. Section 5 addresses research question 2, applying the diagnostics of
control. Section 6 concludes.

2. Background

2.1. Background on Nepali

Nepali is an Indo-Aryan language spoken primarily in Nepal and northern
India. The focus of this study is its four-way laryngeal contrast between voiceless,
voiced, voiceless aspirated, and voiced aspirated stops. While this contrast exists
in both stops and affricates, this study considers only stops to enable comparison
to work on laryngeal contrasts in other languages (see Clements & Khatiwada,
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2007 for an acoustic study of Nepali affricates). The stop inventory is shown in
Table 4.

Table 4: Nepali stop inventory

bilabial | alveolar | retroflex | velar
p pt |t & [t " [k KV
b b |[d d" q qh g gh

Throughout this paper we will label the [p, t, {, k] series ‘voiceless’ or “T’, the
[p", ", ", k"] series ‘voiceless aspirated” or ‘Th’, the [b, d, d, g] series ‘voiced’ or
‘D’, and the [b", d", d", g"] series ‘voiced aspirated’ or ‘Dh’.

2.2. Phonetic cues previously found to distinguish four-way contrast in Indo-
Aryan stops

The contrast between the different stop classes in Indo-Aryan languages with
a four-way contrast like Nepali’s is said to be achieved by both durational cues
(e.g. voicing duration, closure duration, or aspiration duration) and f0 and spectral
cues of the following vowel (e.g. breathy voice quality measures) (Dutta, 2007;
Davis, 1994; Mikuteit & Reetz, 2007; Clements & Khatiwada, 2007; Berkson,
2012a). This section summarizes the different durational cues that have been used
previously and how to measure them, providing the basis for the annotation and
measurement criteria used in this study. We draw from previous work on Nepali
(Clements & Khatiwada, 2007; Poon & Mateer, 1985) as well as on related lan-
guages including Hindi (Dutta, 2007; Lisker & Abramson, 1964; Davis, 1994),
Marathi (Berkson, 2012b), and Bengali (Mikuteit & Reetz, 2007).

Phonetic realization of stops varies by position in a word, and thus the strength
or availability of a given cue may differ depending on the position, so some cues
have to be defined slightly differently for initial versus intervocalic position. For
both positions, this study examines only durational measures and leaves spectral
measures to future work.

2.2.1. Voice Onset Time

The classic durational measure used to distinguish stop classes from each other
is voice onset time (VOT) (Lisker & Abramson, 1964). It is defined as the duration
prior to the onset of voicing of the following vowel. For word-initial segments in
which voicing begins during the stop closure, the duration of voicing before the
release of the stop is measured as negative VOT. We refer to this as ‘prevoicing



duration’. In segments without prevoicing, VOT is the positive measure of how
long it takes for voicing to begin after the release of the stop, or ‘lag time’. VOT
values distinguish stop classes in a two-way contrast language like either French
or German, and a three-way contrast language like Thai. The four stop classes
of an Indo-Aryan language, however, cannot be distinguished from each other by
VOT alone; that is, they do not have four discrete VOT ranges along a continuous
VOT scale. Rather, the VOT of Dh in Hindi, Marathi, and Nepali overlaps with
that of all the other stop classes, both negative and positive (Lisker & Abramson,
1964; Poon & Mateer, 1985), as schematized in Table 5.

Table 5: Schematized VOT durations for stop classes in 2, 3, 4-way contrasting languages

Negative VOT | Short positive VOT | long positive VOT
French b p
German p \ p |
Thai | b P \ p" |
Hindi b p \ p
bh

Moreover, because VOT is negative if any prevoicing exists, a continuous VOT
scale can only capture either voicing or aspiration on any given segment. This
does not pose a problem for French, German, or Thai because in languages with a
two- or three-way contrast these two cues rarely coexist on the same segment, but
it masks the fact that Indo-Aryan voiced aspirated stops often have both. Thus, in
order to adequately capture both voicing lead and voicing lag on the same segment
we need to divide VOT into two distinct measures—lead time (voicing duration)
and lag time (post-release duration)—and consider these cues separately.

2.2.2. Voicing duration

‘Voicing duration’ is defined as vocal cord vibration during stop closure. In
initial position we call this ‘prevoicing’, and it corresponds to negative VOT. Pre-
voicing is measured from the beginning of voicing to the release of closure (Fig-
ure 1). Predictably, this measure has been found to distinguish voiced classes
from voiceless classes in Indo-Aryan languages. The prevoicing duration of D
has been found to be slightly longer than the prevoicing duration of Dh in Hindi

10



Figure 1: Example of prevoicing/negative VOT, for the Nepali word [dal] ‘lentils’.
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Figure 2: Example of post-release/positive VOT, for the Nepali word [t"al] “plate’.
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(Dutta, 2007; Lisker & Abramson, 1964; Davis, 1994), but not different enough
to distinguish the two voiced stop classes from each other based on this cue alone.
Voicing duration is measured differently in word-medial (intervocalic) stops, as
the percentage of the closure duration that has voicing (Iverson & Salmons, 1995;
Beckman et al., 2013), as will be discussed further in Section 5.2.

2.2.3. Post-release Duration

Post-release duration is the combined burst and aspiration durations, from the
release of closure to the beginning of the following vowel, and provides a way to
distinguish the aspirated classes (both voiced and voiceless) from the unaspirated
classes. In a voiceless aspirated stop, post-release duration begins at the release of
the burst and ends at the onset of voicing, marked by periodicity in the waveform
and voicing bar in the spectrogram (Figure 2).

In voiced aspirates there is often no clear point of voicing onset after the
burst since voicing may continue directly from the prevoicing during the closure
through the burst, and into the voicing of the following vowel (Berkson, 2012a).
This makes the end point of post-release duration more challenging to measure,
and various studies have proposed slightly different guidelines, illustrated in Fig-
ure 3.

Davis (1994) uses Noise Offset Time (NOT) for Hindi, measured from the
beginning of the release burst to the onset of F2 in the following vowel. Later
studies found NOT difficult to replicate because F2 onset is often unclear, and
propose revised measures (Mikuteit & Reetz, 2007; Berkson, 2012a).
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Figure 3: Example of post-release on a voiced aspirated stop, with various annotation schemes
marked, for the Nepali word [d"an] ‘rice paddy’.

Mikuteit & Reetz (2007) divide the post-release interval into two distinct
types. After Closure Time (ACT) is the aperiodic stretch from burst release to
the first glottal pulse, and Superimposed Aspiration (SA) extends from the first
glottal pulse to the end of high frequency frication noise, visible on the waveform
as jaggedness on the vowel. This may correspond to breathy phonation of the
vowel, but is measured as a duration and not as a spectral value. They find that
the post-release duration of Th is generally ACT, while Dh is either entirely SA
or a period of ACT followed by SA. Clements & Khatiwada (2007) use the same
measurement scheme (ACT & SA) for Nepali affricates and find similar results.

The difference between ACT and SA can be very difficult to distinguish visu-
ally, so Berkson (2012a) proposes a third measure: the Pre-Vocalic Interval (PVI).
PVIis a single measurement similar to the concatenation of ACT and SA. It begins
at the release of the burst, and ends at the end of breathiness on the vowel, marked
by the clear onset of a dark F2 in the spectrogram, or an increase in amplitude
in the waveform. PVI is essentially the Indo-Aryan equivalent of positive VOT,
generalized to apply to the voiced aspirated series as well as to the other three
stop series. When applied to Marathi data, PVI was found to make a three-way
distinction between T/D, Th, and Dh. In the present study, we follow Berkson and
use the PVI measure.

3. Methods

To address our research questions on realization of laryngeal contrasts, effects
of speech rate, and intervocalic voicing, we collected production data that control
for place of articulation and position of the segment in the word.

3.1. Subjects

The data for this study was collected from 17 speakers (10 male, 7 female),
all graduate students in the Nepali department of Sikkim University in Gangtok,
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Sikkim (the Nepali-speaking region of northeast India). All participants were
from Sikkim and had lived in the region their entires lives, grew up speaking
Nepali at home, attended school in Nepali, and used Nepali as their main language
for daily interactions. They were also all bilingual in Hindi (nearly all Sikkim
residents are), all spoke some amount of English, and some additionally spoke a
local language of their ethnic group.

3.2. Stimuli

The stimuli consist of 32 Nepali words, corresponding to each of the 16 stops
in Table 4, in word-initial and intervocalic word-medial position. These two posi-
tions are necessary to address our first and second research questions. The stimuli
were all real words and, as much as possible, were controlled for the quality of the
following vowel (a preference for [a]) and stress (a preference for word-initial seg-
ments to be onsets of stressed syllables and word-medial segments to be onsets of
unstressed syllables) in order to optimize contrast in initial position and reduce it
in intervocalic position.* Each word was written in Nepali’s syllabic orthography
(Devnagari script) on a separate cue card. The participants were shown each tar-
get word in an order randomized for place of articulation and position in word.
They produced the word in the carrier sentence in (1), which is nearly identical to
the carrier sentence used by Clements & Khatiwada (2007). The results presented
here are from the X; and X3 positions of all 17 speakers, because each of these po-
sitions is preceded and followed by a pause, giving roughly comparable prosodic
contexts. This yielded a total of 559 tokens with the segment in initial position.’
After excluding 15 word-medial stops realized as approximants, we analyzed 418
tokens with the segment in intervocalic medial position, for a combined total of
977 tokens across both positions.

(1) X, (pause). ma aba X, b"ants"u: (pause) X

“We expect prosody to affect stop realization, but the factors governing word-level
stress/prominence in Nepali are not very clear (Clements & Khatiwada, 2007; Acharya, 1991).
Moreover, we found that stress was highly subject to sentence prosody, which placed strong prom-
inence on the ultimate syllable of the sentence. Thus, the disyllabic words which had prominence
on the first syllable in position X; (see (1) below in text), often had prominence on the final syl-
lable in position X3. One might expect that the medial stops would therefore have different profiles
depending on whether they were in X; or X3 position, but the intervocalic voicing effects to be
reported in Section 5 do not seem to differ based on position in the carrier phrase.

317 speakers x 16 words x 2 tokens each = 544. There were a few additional words with
word-initial stops, which are responsible for the 15 extra initial stop tokens.
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Figure 4: Examples of annotation. Top left: [tara] ‘star’. No prevoicing, end of stop closure
marked by a burst with very short interval of aperiodic aspiration before voicing begins. Top
right: [thal] ‘plate’. No prevoicing, ACT is much longer than for [tara], but still marked by aperi-
odic high frequency aspiration noise. Bottom left: [dal] ‘lentils’. Prevoicing interval is marked
by periodicity in the waveform and voicing bar in the spectrogram. Bottom right: [d"an] ‘rice
(paddy)’. Cues to prevoicing identical to [dal]. PVI begins at burst and ends at jump in amplitude
and smoother waves; PVI is visibly different from [t"al].

‘X1 (pause) now I say X,: (pause) X3.

3.3. Acoustic analysis

The recordings were imported into Praat (Boersma & Weenink, 2015), where
they were hand-annotated for voicing, closure, and post-release duration measure-
ments, as pictured in Figure 4. For word-initial segments, voicing duration was
measured from the beginning of voicing (marked by the onset of periodicity in the
waveform and voicing bar in the spectrogram) to the release of the stop (marked
by a clear increase in amplitude and (often) the beginning of aperiodic noise in the
waveform). For word-medial segments, voicing duration was measured from the
beginning of closure (marked by a sharp decrease in amplitude in the waveform
signalling the end of the preceding vowel) to the end of visible periodicity in the
waveform. Closure duration (annotated for word-medial segments only) ended at
the release burst if present, or at the sharp increase of amplitude in the waveform
signifying the beginning of the following vowel. Post-release duration was meas-
ured using Berkson’s (2012a) PVI guidelines, from burst release to onset of a dark
F2/increase in amplitude.
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4. Realization of stops in word-initial position

This section addresses the first of our research questions: how is the four-way
stop contrast realized in Nepali, in terms of acoustic cues? We first present our
empirical data on the acoustic realization of stops in word-initial position, to add
to the literature on the phonetics of Nepali stops, then discuss the implications for
feature representation. Statistical models reported below (Section 5) confirm the
(non-)significance of patterns discussed in the empirical data here.

4.1. Results: Acoustic data

Recall that previous studies found that unlike two- and three-way laryngeal
contrasts, four-way contrasts cannot be distinguished along a single VOT axis
(Lisker & Abramson, 1964; Poon & Mateer, 1985). In Figure 5 we see that the
new Nepali data analyzed here shows the same result: the VOT durations of T,
Th, and D have three non-overlapping distributions, while the VOT of Dh over-
laps with that of the other classes. Considering prevoicing and PVI duration cues
separately, however, we can capture a four-way distinction as four (nearly) distinct
distributions. Table 6 summarizes the means and standards of deviation of these
measures for each class.

Class
T

60 MTh
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Dh

N
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Number of tokens

20

o i 1 1
) ||||H“|I ||H 1
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VOT duration (s)

Figure 5: Distribution of VOT durations in initial position, for each stop class.
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Table 6: Summary of prevoicing (VD) and post-vocalic interval (PVI) durations for each stop class
(in seconds).

VD PVI
Class n mean sd mean sd
Voiceless (T) 120 0.00 0.00 0.016 0.010
Voiceless asp. (Th) 102 0.00 0.00 0.082 0.028
Voiced (D) 118 0.093 0.027 0.012 0.011

Voiced asp. (Dh) 104 0.063 0.033 0.056 0.042

Figure 6 (left) shows that (as expected) prevoicing duration yields a two way
distinction between the voiced and voiceless classes. The voiceless classes never
exhibit prevoicing while the D and Dh classes have voicing duration means of
93ms and 64ms respectively. The shorter mean duration of Dh is consistent with
what Dutta (2007) found for Hindi voiced aspirates.

Figure 6 (right) shows that PVI duration, the post-release-pre-vocalic interval
used here as equivalent to positive VOT, can achieve a two-way contrast between
the aspirated and unaspirated classes. The mean PVI of Dh segments is shorter
than that of Th segments and the range is much larger, but the difference in PVI
duration between the aspirated and unaspirated segments proved significant in a
linear mixed effects model reported in Section 5.

Thus, voicing duration and PVI, corresponding to different parts of the tradi-
tional VOT measure, each differentiate two of the stop classes from the other two.
Figure 7 shows that together, they separate the four classes fairly well. There is
still overlap, especially between the D and Dh classes. It may be that the voiced as-
pirated stops with short burst durations are not perceptibly distinct from the plain
voiced stops that surround them in the figure, in which case their overlapping
cues show neutralization. It could alternatively be the case that they are percept-
ibly distinguishable, and that the difference comes from cues besides those which
are considered here. Either way, the result is closer to a four-way distinction than
was accomplished by a single VOT dimension alone in Figure 5.

4.2. Discussion: Implications for feature representation

One of the key principles of laryngeal realist representations is that the cues
that distinguish stop classes from each other in word-initial position should correl-
ate with the features that distinguish them in the representation. A [voice] feature
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is appropriate for segments that are consistently realized with phonetic prevoicing
(Honeybone, 2005). Nepali’s D and Dh classes are both consistently realized with
prevoicing, and should therefore be specified with a [voice] feature.

Representation of a contrast with a [spread] feature depends on the length
of the positive VOT duration (Honeybone, 2005). When segments with long-lag
VOT contrast with segments with short-lag VOT, the long-lag segments are spe-
cified with [spread]. The generally-accepted threshold for long-lag VOT is a dur-
ation longer than 30ms (Lisker & Abramson, 1964). Since the PVI duration (the
Indo-Aryan correlate of positive VOT) of Th and Dh are each significantly longer
than the PVI durations of T and D (confirmed in the statistical model below), and
both have medians longer than 30ms (Figure 6), both Th and Dh are justified in
being specified with a [spread] feature while T and D are not.

There has, however, been debate about whether both Th and Dh should be
specified with the same [spread] feature, or whether Dh should instead be specified
with its own feature, e.g. a [breathy] feature, given that the phonetic realization
of the PVI of a Dh stop is often acoustically different from the realization of PVI
in Th stops. The difference can be seen in Figure 4, comparing [t"al] to [d"an].
While the Th stop’s PVI is aperiodic and clearly shows no voicing until the onset
of the following vowel, the Dh stop’s PVI has some periodicity throughout. In the
annotation scheme of Mikuteit & Reetz (2007) these are classified as two different
cues—ACT and SA, respectively. We offer three phonetically-based arguments
that the [spread] feature is still appropriate for both.

First, one could argue that lacking a perfect one-to-one correlation between
cues and features is precedented, and in fact never claimed as necessary by laryn-
geal realism. In English, for example, ‘voicing’ is signalled by long-lag vs. short-
lag VOT word initially, but is primarily cued by vowel duration word finally. If
the same feature is signalled by different cues in different positions, parallel lo-
gic could maintain that the same feature is signalled by slightly different cues in
different stop classes.

A second argument maintains the cue-to-feature correspondence by arguing
that the PVI of Th and Dh are not actually distinct cues. Berkson’s (2012a) PVI
annotation intentionally ignores the difference between ACT and SA, considering
them to be a single cue since in practice, they are too hard to distinguish reli-
ably. Ridouane et al. (2011) offers other support, arguing that [spread] refers to
a combination of articulatory gestures and acoustic measures that encompass the
gestures and measures of PVI on both Th and Dh segments.

Asikin-Garmager (2017) offers additional arguments that Dh is specified for
[spread], not [breathy voice]. He points to the variability in the realization of
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Dh segments, finding that in Hindi, the PVI is sometimes periodic, sometimes re-
sembles the aperiodic PVI of Th segments, and sometimes includes both aperiodic
and periodic intervals. We found the same variability in Nepali. Were these stops
specified for a [breathy] feature, he argues, the target articulation would be peri-
odic PVI, and it would be more reliably articulated thus. The variable realization
is a product of the phonetic overlap of the [voice] and [spread] target articulations.
We have thus established the distinguishing phonetic cues of each stop class:
Voiceless stops have short prevoicing duration and short PVI; voiceless aspirated
stops have a short prevoicing duration but long PVI; voiced stops have a short PVI
but long prevoicing duration; voiced aspirated sounds are the most variable, but
may have both long prevoicing duration and long PVI. In Table 7, we see that by
directly correlating these cues with features and proposing that prevoicing corres-
ponds to a [voice] feature and PVI longer than 30ms corresponds to a [spread]
feature, we arrive at the features in Iverson & Salmons’s (1995) representation.

Table 7: Feature representations and their corresponding phonetic cue values.

voiceless | voiceless aspirated | voiced | voiced aspirated
Representation [] [spread] [voice] | [spread], [voice]
Voicing duration | short short long long
Burst duration short long short long

We arrived at these feature representations using the same criterion used in
previous laryngeal realist studies: consistent use of a phonetic cue corresponding
to a feature. However, this criterion may need revising due to the nature of a
four-way contrast in which each feature is used twice. Both D and Dh show
consistent prevoicing, which is the criterion for a [voice] feature. But recall that
the prevoicing duration of D is significantly longer than that of Dh. None of the
languages studied thus far include two different classes specified for [voice], so
previous laryngeal realist literature has not had to deal with this. In the spirit of
cue-to-feature correspondence, perhaps this difference in prevoicing length should
be captured in the representation as well. The same issue arises with the [spread]
feature. Both Th and Dh usually have PVI of at least 30 msec. However, the PVI
of Th is significantly longer than that of Dh (see mixed effect model in section
5), so again, laryngeal realist logic would suggest differences in phonological
representation. The formal machinery would need to be extended to capture these
differences. Suggesting the representational tools to address this is beyond the
scope of this paper, but we will return to the issue in Section 5 and Schwarz
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(2017) proposes a solution.

5. Diagnostics of control

Having established that the cues that distinguish the stops in initial position are
(at least in part) a combination of voicing duration and PVI duration and that this
supports a representation using both [voice] and [spread], we now turn to examine
whether these features are privative or binary. We do so by addressing our second
research question: What are the speech rate and intervocalic voicing effects as a
function of laryngeal class in Nepali? Beckman et al. (2011, 2013) propose that
speech rate effects and intervocalic voicing may each be used as diagnostics of
laryngeal realist feature specification. We apply each diagnostic in turn, reporting
the results and concluding that we find support for privative representation.

5.1. Speech rate effects in initial position

Recall that Beckman et al.’s (2011) speech rate diagnostic proposes that phon-
etic cues corresponding to specified features increase in duration as speech rate
slows, while cues that do not correspond to specified features remain fairly con-
stant across speech rates. The theoretical basis of this claim is that specified
features are realized physically by speakers as laryngeal gestures (Davis, 1994;
Beckman et al., 2011): [voice] is manifested as prevoicing, [spread] gives rise to
long-lag VOT. Specified features represent articulatory goals of the speaker, and
at slower speech rates the speaker is able to achieve these goals more fully (Beck-
man et al., 2011). If, for example, the short-lag VOT of English b, d, g and French
D, t, k is merely an unintended mechanical consequence of transitioning from stop
closure to vowel, there is no reason for it to increase at slower speech rates (Solé,
2007). Supporting evidence for this view comes from studies showing that the
long-lag VOT of [spread]-specified p”, ", k" stops of aspirating languages (Eng-
lish, Thai, German, Icelandic) increases at slower speech rates, while the short-lag
VOT of laryngeally-unspecified b, d, g stops does not. The prevoicing duration
of [voice]-specified b, d, g of voicing languages (French, Thai, Spanish) also in-
creases at slower speech rates while the short-lag VOT of p, ¢, k stops do not (Pind,
1995; Kessinger & Blumstein, 1997; Magloire & Green, 1999).

We now test the predictions of this diagnostic against Iverson & Salmons’s
(1995) feature representation of Nepali’s four-way contrast. The diagnostic pre-
dicts that at slower speech rates prevoicing duration will increase on the [voice]-
specified D stops, PVI duration will increase on the [spread]-specified Th stops,
both prevoicing and PVI durations will increase on the [voice, spread]-specified
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Figure 8: Effect of speech rate on prevoicing duration (left) and PVI duration (right) for stops in
initial position.

Dh stops, while the PVI of unspecified T stops will not increase significantly.
Figure 8 suggests that all of these predictions are borne out. Speech rate was cal-
culated by dividing the duration of the carrier phrase by the number of syllables
in the carrier phrase.® Figure 8 (left) plots prevoicing durations across speech
rates and shows negatively-sloped trend lines for the voiced and voiced aspirated
classes, suggesting longer prevoicing durations at slower speech rates. Figure 8
(right) plots PVI duration across speech rates, showing that the trend lines of the
aspirated classes appear to be more negatively sloped than those of the unaspirated
classes.

Two linear mixed effects models (reported below in sections 5.1.1 and 5.1.2)
were fitted in order to test the patterns observed in these empirical plots. The
first model considers prevoicing duration, and the second considers PVI dura-
tion. These two dependent variables were log-transformed due to their highly
right-skewed distributions, and to prevent the models from predicting negative
durations. The models aim to determine whether speech rate affects the duration
of cues that correspond to specified features significantly more than those that do
not. Models were fitted using the 1me4 package in R (Bates et al., 2015). Fixed-

®Four points where speech rate was <1 syllable/second were discarded due to annotation er-
rors. Note that speech rate was not explicitly controlled during the data collection; the participants
were not instructed to speak more slowly or more quickly. The speech rate variation that emerged
is based on unprompted fluctuation in speaking rate by the participants.
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Table 8: Linear mixed-effect model of log-transformed prevoicing duration (sec.) for D and Dh
stops which showed prevoicing (n = 212).

Estimate Std. Error tvalue Pr(>ltl)

(Intercept) -2.666 0.0474 -56.276 < 0.001
Class (D) 0.172 0.032 5.334 < 0.001
Speech rate -0.388 0.084 -4.619 <0.001
POA (velar vs. bilabial) -0.096 0.028 -3.430 <0.01
POA (alveolar vs. bilabial/velar) -0.037 0.016 2.303 0.031
POA (retroflex vs. bilabial/velar/alveolar) 0.017 0.013 1.343 0.187
Class:Speech rate (Dh) 0.049 0.075 0.653 0.530

effect coefficients are shown with associated standard errors, test statistic (7), and
significances, calculated with 1merTest (Kuznetsova et al., 2015) using the Sat-
terthwaite approximation. Random-effect terms are not shown. In both models,
the continuous speech rate measure was standardized by centering and dividing
by two standard deviations. In addition the coding system used for the predictors
in each model means that the main effect coefficients may be interpreted at an
average value of other predictors, for an average speaker and word.

5.1.1. Prevoicing duration

The only stop classes that ever display prevoicing are the voiced and voiced
aspirated classes (see Figures 6 (left) and 8 (left)). The prevoicing duration model
therefore checks for an effect of speech rate on both the voiced and voiced aspir-
ated classes. To do so, the model was run on a subset of the data that included only
the voiced classes, after excluding observations (n = 9: 3.6% of total) without
prevoicing. The model includes as predictors class, speech rate, the interaction
of class and speech rate, and place of articulation (POA). The four-level POA
factor is coded using Helmert contrasts designed to capture the bilabial versus
velar distinction, since exploratory plots suggested this contrast would have the
largest effect on prevoicing duration. The two-level class variable is coded using
sum contrasts (-1 = Dh, 1 = D). All possible by-word and by-speaker random ef-
fects for terms of interest (speech rate and class) were included (Barr et al., 2013),
with correlations between random effects excluded to avoid an overparametrized
model. The model’s fixed effects are summarized in Table 8.

The significant main effect of Speech rate (p < 0.001), with a negative coeffi-
cient, establishes that VD increases at slower speech rates, as expected (averaging
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across stop classes and places of articulation). The effect of Class is also sig-
nificant (p < 0.001): voiced stops have longer prevoicing than voiced aspirated
stops, on average, as observed in Figure 6. The effect of speech rate on VD
does not, however, interact significantly with class: voiced aspirated stops have
a slightly steeper speech rate effect than plain voiced stops, but the difference is
not significant (Class:Speech rate: p = 0.53). Lastly, velar stops have signific-
antly shorter prevoicing durations than bilabial stops (p < 0.01), consistent with
the difficulty of maintaining voicing for less anterior constrictions (Ohala, 1983).
Alveolar stops also have a slightly shorter prevoicing duration than (the mean of)
bilabial and velar stops (p = 0.03), but retroflex stops do not differ significantly
from non-retroflex stops (p = 0.19).

5.1.2. PVI duration

Based on Figure 8, the PVI durations of both aspirated stop classes appear to
increase at slower speech rates at least slightly more than the burst durations of the
other two classes. Since even the unaspirated classes do have some positive VOT,
the model of PVI duration seeks to establish whether the effect of speech rate on
PVI duration is greater for the Th/Dh stop classes than the T/D classes. The four-
way Class factor was therefore coded with a contrast that compares the aspirated
to the unaspirated classes, as well as two contrasts coding the difference between
the two unaspirated classes and between the two aspirated classes. Before run-
ning the model, observations without a burst (PVI=0) were excluded (n = 13,
3.0% of total). The model included fixed-effect terms for Class, Speech rate, and
the interaction between the two, as well as Place of articulation (POA). The four-
level POA factor is coded using Helmert contrasts comparing less-anterior with
more-anterior places (alveolar vs. bilabial, retroflex vs. alveolar/bilabial, etc.).
The model’s random-effect structure was as ‘maximal’ as feasible (Barr et al.,
2013).” The model’s fixed effects are summarized in Table 9.

The model confirms the hypothesis of primary interest: PVI duration increases
as a function of speech rate significantly more for the aspirated (Th and Dh)
classes than the unaspirated classes (T and D) (Class: Speech Rate (Th/Dh vs.
T/D): p = 0.028), while the speech rate effect does not significantly differ between

"The model included by-speaker and by-word random intercepts as well as random slopes for
Speech rate (by-speaker, by-word), Class (by-speaker), and for the Speech rate-by-Class interac-
tion for the key Class contrast, capturing the difference between Th/Dh and T/D. Adding in the
remaining two Speech rate-by-Class interaction terms led to an overparametrized model which did
not converge. We also did not include correlations between random effects for the same reason.
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Table 9: Linear mixed-effects model of log-transformed PVI duration, for stops with PVI
duration>0 (n = 426).

Estimate Std. Error tvalue Pr(>ltl)

(Intercept) -3.698 0.095 -38.588 < 0.001
Class (Th/Dh vs. T/D) 1.405 0.168 8.375 < 0.001
Class (T vs. D) 0.399 0.188 2.130 0.048
Class (Th vs. Dh) 0.825 0.256 3.223 0.0038
Speech Rate -0.211 0.111 -1.885  0.061
POA ( alveolar vs. bilabial) 0.120 0.098 1.227 0.24
POA (retroflex vs. bilabial/alveolar) 0.068 0.056 1.21 0.24
POA (velar vs. bilabial/alveolar/retroflex) 0.135 0.038 3.626 0.0025
Class: Speech Rate (Th/Dh vs. T/D) -0.459 0.207 2214 0.028
Class: Speech Rate (T vs. D) 0.194 0.207 0.934 0.351
Class: Speech Rate (Th vs. Dh) 0.541 0.310 1.745 0.083

the voiced and voiceless aspirated classes (p = 0.083). The model also confirms
the observation in section 4.1 that the PVI duration of Th/Dh is significantly longer
than that of the T/D classes (p < 0.001), and that the PVI duration of Th is sig-
nificantly longer than that of Dh (p = 0.0038). The PVI of T and D also differ
significantly (p = 0.048), though the effect size is smaller and the p-value less
significant than the other contrasts (Th/Dh vs. T/D, Th vs. DH). POA is also a
significant predictor of PVI, with velar segments having a significantly longer PVI
duration than the other places of articulation, consistent with VOT being greater
for more posterior articulations (Lisker & Abramson, 1964). (Recall that PVI is
closely related to positive VOT.)

5.1.3. Summary

The speech rate diagnostic provides evidence for the Iverson & Salmons (1995)
representation of Nepali stops. Prevoicing duration of the D and Dh stops in-
creases as speech rate slows, supporting the representation of those two classes
with specified [voice] features. Burst duration of the aspirated stops also increases
at slower speech rates, significantly more than the burst duration of the unaspir-
ated stops, supporting the representation of Th and Dh with a [spread] feature and
T and D without one.
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5.2. Passive vs. active voicing in medial position

5.2.1. The intervocalic voicing diagnostic

Recall that Beckman et al. (2013) proposed examining voicing during the
closure of intervocalic stops as another link between control and privative feature
representation. They find that in voicing languages like Russian, b, d, g stops are
voiced throughout the entire closure (operationalized as 90% of the closure) an
average 97% of the time, with velar stops fully voiced the least often at 91%. In
German, an aspirating language, the b, d, g series is voiced throughout the closure
an average of only 62% of the time, with velar stops fully voiced least often at
only 25%. In the remaining 38% of German b, d, g stops, voicing continues only
partway into the closure. Beckman et al. propose that Russian’s high percentage
of fully-voiced stops requires that speakers actively maintain voicing during the
closure just as they actively prevoice during the closure of word-initial stops. Act-
ively maintaining voicing in intervocalic position is an action controlled by the
speaker, a result of the stop being phonologically specified for [voice]. The low
proportion of voicing during closure in German stops reveals a different type of
voicing: passive voicing, an effect of the voicing of the preceding vowel bleeding
into the closure of the stop (Stevens, 1998). Passive voicing is not controlled or
intentional by speakers—it is an automatic phonetic consequence of being pre-
ceded by a voiced vowel—and thus follows from German’s b, d, g stops being
unspecified for voicing.

In addition to active and passive voicing, some stop classes actively block
voicing during the closure. While Beckman et al. (2013) do not discuss data for
this beyond an example of one instance of the word papa in Russian, they state
that German’s [spread]-specified p, f, k stops and Russian’s laryngeally unspe-
cified p, t, k stops both actively block voicing, a phonological status phonetically
manifested as voicing approximately 20% of the closure. Mobius (2004) reports
similar results for German p, ¢, k, finding that most have lost voicing 30% of the
way into the closure. The various voicing profiles are summarized in Table 10.

5.2.2. Applying the diagnostic to Nepali

The link between intervocalic voicing and feature specification runs into two
conflicts when extended to a language like Nepali, which exploits both a [spread]
and a [voice] contrast. Under the assumption of laryngeal realist features taken
here, Nepali’s plain voiceless stops are unspecified for both [spread] and [voice].
If these stops pattern like the unspecified class in a [voice] language, they would
actively block voicing, like Russian. If, however, they pattern like the unspecified
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Table 10: Intervocalic voicing in Russian and German based on Beckman et al. (2013) data.

Language Representation Segments Voicing during closure

Type of voicing
Russian [voice] b,d, g 97% of stops are >90% voiced  Active voicing
[1] p,tk mean voicing ~20% of closure Blocking voicing
German [] b,d, g 62% of stops are >90% voiced Passive voicing
[spread] p,t k mean voicing ~20% of closure Blocking voicing
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Figure 9: Distribution of the voicing fraction for stops in medial (intervocalic) position, for each
stop class.

class in a [spread] language, we expect them to permit passive voicing, like Ger-
man.

The voiced aspirated stops present a second conflict, since they are specified
for both [voice] and [spread]. If they pattern like stops specified for [spread], we
expect them to actively block voicing during closure. If they pattern like stops spe-
cified for [voice], however, we expect them to actively maintain voicing through-
out the closure. The voicing proportions of intervocalic stops are shown in Figure
9, and summarized in Table 11.

The voiced class has full voicing (again operationalized at 90% voicing) 88%
of the time. The voiced aspirated stops have full voicing 89% of the time, as is
expected of [voice]-specified stops rather than [spread]-specified stops. We inter-
pret the D and Dh class results as Russian-like active voicing and characteristic
of stops specified for [voice], though voicing is not quite as consistent as the 92%
found in the Russian study. At the same time, the mean proportion of voicing
during closure in Th stops is 9%, which is on par with active blocking of voicing.
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Table 11: Intervocalic voicing in Nepali

Language Representation Segments Voicing during closure  Type of voicing
mean (%) median (%)

[voice] b,d, g 88 100 Active voicing
Nepali [spread] p", th, kP 9 0 Blocking voicing

[] p,t, k 10 0 Blocking voicing

[voice, spread] b", d", g" 89 100 Active voicing

The T stops have a similarly low voicing proportion (10%), displaying the active
blocking characteristic of an unspecified stop in a [voice] language rather than
a [spread] language. Figure 9 shows the voicing fraction distribution for each
class, and displaying that the voiced aspirated stops have as much full voicing as
plain voiced stops, and plain voiceless stops have a similar degree of voicing to
voiceless aspirated stops.

To confirm these observations, ideally we would run a statistical model evalu-
ating the effect of stop class (i.e., voicing and aspiration specification) on voicing
proportion (VP). The structure of the voicing proportion data—which contains
many 0’s and 1’s (no or full closure voicing) in addition to values between 0
and 1—makes familiar methods such as linear or logistic regression inappropri-
ate. The dataset is not large enough (n = 339) to fit more complex models, such
as zero-one inflated binomial regression, which respect its structure. Instead, we
simply perform non-parametric hypothesis tests to establish the basic pattern in
Figure 9. Wilcoxson rank-sum tests show that D and Dh classes have significantly
larger voicing proportions than the T and Th classes (IW = 1347, p < 0.0001), and
that the T and Th classes do not significantly differ in VP (W = 4625, p = 0.53),
nor do the D and Dh classes (W = 2818, p = 0.92). Although this method does
not control for other factors affecting voicing proportion (such as place of artic-
ulation) or differences between speakers and words, the basic pattern in Figure 9
is clear: belonging to a class specified for [voice] is the main predictor of voicing
proportion.?

Based on these results, we may conclude that both of Nepali’s stop classes

8We experimented with more complex statistical models, including mixed-effects linear regres-
sion and mixed-effects zero-one-inflated binomial models, using models as complex as possible
given small sample size. All models came to the same qualitative conclusion: D/Dh shows more
closure voicing than T/Th, while other stop classes do not reliably differ.
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that pose conflicting demands in intervocalic position prove to pattern like stops
in a [voice] language rather than like stops in a [spread] language, suggesting that
[voice] is the ‘stronger’ feature of the two. An explanation for this asymmetry is
beyond the scope of this paper, but in closing we present two possible directions.
Voicing could be stronger in intervocalic contexts due to its position between two
(voiced) vowels. Alternatively, just as Beckman et al. (2013) propose a phonolo-
gical, i.e. representational, explanation for the intervocalic voicing of German vs.
Russian stops, we could propose a phonological, i.e. representational reason for
the ‘strength’ of one feature over the other. Schwarz (2017) presents an explan-
ation of the latter type, in which the [voice] and [spread] features are temporally
ordered within a single stop.

6. Conclusions

In this study we have examined the laryngeal contrasts of Nepali because they,
like other Indo-Aryan languages, pose potential challenges for the types of evid-
ence used and predictions made by laryngeal realist theories. The challenges stem
largely from the existence of voiced aspirated stops, which were proposed to be
specified for two seemingly oppositional features of [voice] and [spread]. At the
beginning of the paper, we set out to extend the theory of laryngeal realism to an
area to which it has not yet been examined by asking the following question: do
the types of evidence used to motivate feature representations in languages with
two- and three-way contrasts without classes that are specified for two features
work for Nepali, and do they support both the laryngeal realism view and the fea-
ture representation standardly used for this type of system? We set to answering
this question based on two types of evidence: phonetic realization in initial po-
sition, and diagnostics of control in initial and medial position. We found that
many aspects of the theory transfer to doubly-specified segments without issue
(initial realization, speech rate diagnostic), but that intervocalic voicing poses a
challenge.

Acoustic analysis showed that a combination of prevoicing duration and PVI
duration distinguishes the four stop classes from each other in word-initial pos-
ition. These phonetic findings suggest that durational measures are indeed suf-
ficient for distinguishing the Indo-Aryan four-way contrast, as long as negative
VOT and positive VOT are measured as distinct cues. This motivates the specific-
ation of the voiced stops for [voice] and the aspirated stops for [spread]. Speech
rate effects showed that prevoicing duration and long-lag burst duration both ap-
pear to be controlled while short-lag burst duration does not, motivating the spe-
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cification of the features as privative. Intervocalically, T stops and Dh stops each
patterned like the stops in a [voice] contrasting language rather than a [spread]
contrasting language, suggesting the strength of the [voice] feature over [spread].
We mentioned two directions to pursue an account for the asymmetry: attributing
the prominence of voicing to the intervocalic context, or capturing the asymmetry
in the representation, but leave this to future work.
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