
Accounting for the stochastic nature of sound
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Abstract

Sound symbolism refers to stochastic and systematic associations between sounds

and meanings. Sound symbolism has not received much attention in the generative

phonology literature, perhaps because most if not all sound symbolic patterns are prob-

abilistic. Building on the recent proposal by Alderete and Kochetov (2017), which

attempts to integrate sound symbolic patterns with core phonological grammar, this

paper shows that MaxEnt grammars allow us to model stochastic sound symbolic pat-

terns in a very natural way. The analyses presented in the paper show that sound

symbolic relationships can be modeled in the same way that we model phonological

patterns. We suggest that there is nothing fundamental that prohibits formal phonol-

ogists from analyzing sound symbolic patterns, and that studying sound symbolism

using a formal framework may open up a new, interesting research domain.

1 Introduction

In recent linguistic theories, it is almost standard to assume that the relationships between

sounds and meanings are arbitrary. This thesis dates back to Hermogenes’s view expressed

in Plato’s Cratylus, and it was very clearly articulated by Saussure (1916) as the first orga-

nizing principle of natural languages. The thesis of arbitrariness was reiterated as one of

the design features of human languages by Hockett (1959). Few linguists would disagree
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to the thesis that language is a system that is able to associate sounds and meanings in

arbitrary ways.

On the other hand, many studies have revealed certain systematic relationships be-

tween sounds and meanings, an observation which is often referred to as “sound symbol-

ism” (see Dingemanse et al. 2015; Lockwood and Dingemanse 2015; Sidhu and Pexman

2017; Spence 2011 for recent reviews). For example, Sapir (1929) and many subse-

quent studies have shown that low vowels tend to be judged to be larger than high vow-

els, and front vowels tend to be judged to be smaller than back vowels (Berlin, 2006;

Coulter and Coulter, 2010; Jakobson, 1978; Jespersen, 1922; Newman, 1933; Ohala, 1994;

Shinohara and Kawahara, 2016; Ultan, 1978). In both English and Japanese, there are

stochastic tendencies for sonorants to be associated with female names and for obstruents

to be associated with male names (Shinohara and Kawahara, 2013; Wright and Hay, 2002;

Wright et al., 2005). It is probably safe to conclude based on these studies that there are

tendencies in natural languages that certain sounds are associated with certain meanings.

These sound symbolic patterns are, crucially, stochastic or probabilistic. On the one

hand, speakers of many language feel that [a] is larger than [i/I] (Shinohara and Kawahara,

2016), and this association is reported to hold in the lexicon of many languages (Ultan,

1978). But the English word big, for example, contains the “small vowel”, [I] (see also

Diffloth 1994). Similarly, although sonorants are often associated with female names, there

are male names that contain sonorants and female names that contain obstruents. There

is a sense in which [a] is felt to be bigger than [i], but few would argue that languages

cannot use [a] to represent something small or cannot use [i] to represent something big. If

sound symbolic relationships were deterministic, then as Locke (1689) and Saussure (1916)

noted, all languages should use the same sound sequences to represent the same objects (or

concepts).1

1Although we also need to take into consideration the fact that different languages use different sets of
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While studies of sound symbolism are flourishing both in psychology and pho-

netics (Dingemanse et al., 2015; Hinton et al., 2006; Lockwood and Dingemanse, 2015;

Sidhu and Pexman, 2017; Spence, 2011), sound symbolism has not received serious atten-

tion in the generative phonology literature. One clear exception is Alderete and Kochetov

(2017), who developed a formal theory of sound symbolism, using a set of Optimality

Theoretic constraints (Prince and Smolensky, 1993/2004), EXPRESS(X). This set of con-

straints require certain phonological feature X to be realized to signal certain semantic

features (see also Kochetov and Alderete 2011). EXPRESS(X) is suited to account for

non-probabilistic patterns driven by sound-symbolic principles such as palatalization in

baby talk in Japanese and other languages. However, most if not all sound symbolic

relationships are probabilistic, as discussed above. To this end, this paper expands on

Alderete and Kochetov’s proposal and shows that using Maximum Entropy model (Max-

Ent: Goldwater and Johnson 2003) successfully accounts for stochastic aspects of sound

symbolic patterns. The current proposal is illustrated with three case studies.2

2 Names of Takarazuka Revue actresses

The first case study is based on a new set of empirical data, which comes from the names

of Japanese Takarazuka Revue actresses. All Takarazuka actresses are female, but some

actresses play a male role, while some others play a female role. Importantly, the actresses’

gender in Takarazuka context is fixed; i.e. one actress cannot act both as male and female

during her Takarazuka career. In this study, we first explored the effects of sound symbolic

relationships between female names and sonorants on the one hand, and male names and

obstruents on the other, sound symbolic relationships which have been shown to hold in

sounds, and they have different phonotactic restrictions (see Styles and Gawne 2017 for the implication of
these cross-linguistic differences on sound symbolism). The set of objects being referred to may differ across
languages as well (Shih et al., 2018).

2A similar MaxEnt analysis of sound symbolism was also developed to model recent experimental results
by Authors (to appear).
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Japanese (Shinohara and Kawahara, 2013) as well as in English (Wright and Hay, 2002;

Wright et al., 2005).

2.1 Method

All of the 361 names of Takarazuka actresses, who were active as of July 2017, were

analyzed. For each name, we coded the number of sonorants and obstruents, as well as

whether that name is used for a male role or a female role. Each name contained at most

three consonants.

2.2 Result

0.00

0.25

0.50

0.75

1.00

0 1 2 3
Number of sonorants in the name

P
ro

ba
bl

ity
 o

f b
ei

ng
 u

se
d 

fo
r f

em
al

e 
ro

le
s

0.00

0.25

0.50

0.75

1.00

0 1 2 3
Number of obstruents in the name

P
ro

ba
bl

ity
 o

f b
ei

ng
 u

se
d 

fo
r f

em
al

e 
ro

le
s

Figure 1: The effects of sonorants and obstruents on the gender choice in Takarazuka
names. The error bars are standard errors.

The results appear in Figure 1, in which the y-axes represent the probability of the

names being used for female actresses. The left panel shows that the more sonorants a

name contains, the more likely it is used as a female name: the right panel shows that

although the tendency is less clear, the more obstruents a name contains, the less likely

it is used as a female name. These patterns accord well with the sound symbolic effects

previously noted for Japanese and English.
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A logistic regression analysis was run with gender as the dependent variable and the

number of sonorants and the number of obstruents as independent variables. The result

shows that sonorants significantly increase the likelihood of the name being used for a

female name (β1 = 0.822, z = 4.19, p < .001), while obstruents do not have significant

impacts on the gender choice (β2 = 0.05, z = 0.36, n.s.).

This analysis thus suggests that there is a stochastic tendency in such a way that sono-

rants are associated with female roles. Crucially, though, the effects are not deterministic; it

is not the case that the presence of a single sonorant makes the whole name a female name

100% of the time; instead, the presence of a sonorant increases the probability of that name

being used as a sonorant name. This sort of stochastic pattern is common-place—in fact,

usually the norm—in sound-symbolic patterns in natural languages.3 While the proposal

by Alderete and Kochetov (2017) successfully accounts for deterministic sound symbolic

patterns, it does not account for this sort of stochastic nature of sound symbolic patterns;

we thus expand on their proposal to account for the gradient nature of sound symbolism,

using MaxEnt grammar model.

3This stochasticity may be one of the reasons why sound symbolism did not receive serious attention in
the generative phonology literature. In generative phonology (Chomsky and Halle, 1968), it was standard to
assume that elements and structures that are completely predictable are derived in the phonological compo-
nent of grammar, although in practice some exceptions are usually tolerated; on the other hand, those that
are not predictable—whose predictability was lower than 1.00—were assumed to be stored in the lexicon
(see Shaw and Kawahara 2018 for a historical overview). This means that phonological patterns should be
exception-less, at least at some level of representation (see Shattuck-Hufnagel 1986 for relevant discussion).
This assumption may have precluded generative phonologists from analyzing sound symbolic patterns (al-
though there are likely to be other reasons).

Zuraw (2000) has shown, however, that those patterns that are not completely predictable can be still
systematic (“patterned exceptions”), and subsequent work (Ernestus and Baayen, 2003; Hayes and Londe,
2006; Hayes and Wilson, 2008; Hayes et al., 2009; Pierrehumbert, 2001) has demonstrated that phonolog-
ical knowledge can be deeply stochastic. There are phonological patterns that are only probabilistically
predictable.
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2.3 MaxEnt analysis

Generative phonology is a function that maps one representation (e.g. underlying repre-

sentation) to another representation (e.g. surface representation) (McCarthy, 2010). The

model proposed in this paper is the same: it is a function that takes names as inputs and

maps them to probability distributions of two candidates, male names or female names. For

example, it takes a name like rino, and calculates the probability of that name being used

for a female name and the probability of the name being used for a male name.

The current model uses MaxEnt grammar, as it is suited to account for gradient map-

ping from one dimension to another (e.g. Goldwater and Johnson 2003; Hayes 2017;

Hayes and Wilson 2008; Wilson 2006; Zuraw and Hayes 2017).4 One particular attractive-

ness of this model in the current context is the fact that MaxEnt is able to predict probability

distributions of output candidates, which can be compared with the observed probabilities.

To capture the sound symbolic effect of sonorants in Figure 1, we posit the following con-

straint in (1):

(1) *SON→MALE: For each sonorant contained in name x, assign a violation mark if

x is mapped to male names.5

This constraint reflects the tendency that is observed in the left panel of Figure 1: sonorants

are preferentially associated with female names. This constraint alone, however, cannot

account for the fact that even if all the consonants in the name are sonorants, they can be
4In addition to phonological input-output mapping, MaxEnt has been used to account for text-setting pat-

terns (Hayes et al., 2012). Since MaxEnt is a function that maps any sort of input to probability distributions
of output candidates, there is no a priori reason to limit MaxEnt to phonological input-output mapping (see
Zuraw and Hayes 2017 for actual examples and references).

5This constraint is formalized in such a way that it dictates a mapping between sounds and output names.
We can alternatively focus on output structures alone (like standard markedness constraints in Optimality
Theory: Prince and Smolensky 1993/2004) and posit a constraint that prohibits sonorants in male names.
We find that the former formalization captures the sound symbolic relationships more directly, as we are
essentially talking about mapping from one modality (sound) to another (meaning) (see also Zuraw 2013),
but the latter formalization works just as well.
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male names 26% of the time (the rightmost bar of Figure 1, left). In order to account for this

fact, we posit a *FEMALENAME constraint, a constraint that is akin to *STRUC constraints

(cf. Daland 2015). This constraint simply restates the fact that there can be male names.

MaxEnt grammar is similar to Optimality Theory (Prince and Smolensky, 1993/2004)

in that a set of candidates is evaluated against a set of constraints. Unlike Optimality

Theory, however, constraints are weighted rather than ranked, as in Harmonic Grammar

(Legendre et al., 1990a,b; Pater, 2009, 2016). Based on the constraint violation profiles,

for each candidate x, its Harmony Score (H-Score(x)) is calculated as follows:

H-score(x) =
N∑
i

wiCi(x) (1)

where wi is the weight of the i-th constraint, and Ci(x) is the number of times candidate x

violates the i-th constraint.

The H-scores are negatively exponentiated (eHarmony, e−H : Wilson 2014), which cor-

responds to the probability of each candidate. Intuitively, the more constraint violation a

candidate incurs, the higher the H-score, and hence the lower the eHarmony (e−H) is. The

eHarmony values are relativized against the sum of all the eHarmony values (Z):

Z =
N∑
j

(e−H)j (2)

The probability of each candidate xi, p(xi) is eHarmony(xi)
Z

.

To implement the analysis of Takarazuka actress names, we used the MaxEnt Grammar

tool made available by Bruce Hayes,6 which calculates the best weights for each constraint

given the observed frequencies of each candidate, as well as the predicted probabilities

based on these weights. The MaxEnt analysis tableau is shown in (2). The model takes

each name as its input and calculates the probability of the name being used for a male

6http://linguistics.ucla.edu/people/hayes/MaxentGrammarTool/
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name and the probability of the name being used for a female name. The analysis focuses

on the number of sonorants that each name contains, as the number of sonorants was the

significant factor in the analysis presented in section 2.2.

(2) The MaxEnt analysis of Takarazuka names

As shown, the MaxEnt tool yielded the weights of the two constraints (0.74 and 1.11),

which produce expected percentages that are very close to the observed percentages (the

right two columns).

3 Voiced obstruents and evolution levels in Pokémon names

As another case study, this section examines the role of voiced obstruents in determining

the evolution levels of Pokémon characters. In the Pokémon game series, Pokémon char-

acters undergo evolution, at most twice, and when they do so, they are called by a different

name. Kawahara et al. (2018), based on all the Pokémon character names available as of

October 2016, show that there is a positive correlation between the numbers of voiced ob-

struents contained in the names and the evolution levels of the Pokémon characters.7 Based

7In Japanese, voiced obstruents are associated with various types of images such as largeness, heaviness
and strength parameters (Hamano, 1986; Kawahara, 2017; Kubozono, 1999). The sound symbolic patterns
in Pokémon names are most likely rooted in this sound symbolic association that is present in the phonology
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on the results of Kawahara et al. (2018), the crucial aspect of their data is reproduced in Ta-

ble 1. The probabilities of the names being used for non-evolved characters (Evol level 0)

decrease as the names contain more voiced obstruents (the leftmost column). The proba-

bilities of names being used for the most-evolved characters (Evol level 2) increase as the

names contain more voiced obstruents (the rightmost column).

Table 1: The effects of voiced obstruents on the evolution levels in Pokémon names.

Evol level 0 Evol level 1 Evol level 2
0 voiced obs 63% 30% 7%
1 voiced obs 50% 39% 11%
2 voiced obs 33% 26% 21%

To account for these distributional skews, we posit two constraints:

(3) a. *VOIOBS→NONEVOL: For each voiced obstruent contained in name x, as-

sign a violation mark if x is mapped to Evol level 1 names; assign two violation

marks if x is mapped to Evol level 0 names.

b. *EVOLNAME: Assign two violation marks to Evol level 2 names; assign one

violation mark to Evol level 1 names.

The first constraint is formalization of the sound symbolic correspondence between voiced

obstruents and evolved characters—ideally, names with voiced obstruents are mapped onto

names for the most evolved characters. In other words, it prohibits names with voiced

obstruents from being used for non-evolved characters. *EVOLNAME is akin to *STRUC

constraint, which represents the fact that evolved characters are less frequent than non-

evolved characters. The MaxEnt analysis of Pokémon names using these two constraints

and lexicon of Japanese. The “Pokémon corpus” allows us to quantitatively assess this sound symbolic
association.
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appears in (4). As was the case for the Takarazuka name analysis, the model takes names as

input and yields probability distributions of each candidate; for this analysis, each candidate

corresponds to each evolution level.

(4) The MaxEnt analysis of Pokémon names

We observe that there is a close correlation between the observed probabilities of each

name type and their predicted values. One notable aspect of this analysis is that even when

a candidate violates no constraints, it is not the case that it is assigned the probability of

1.00. This is because MaxEnt calculates the probability distribution over all candidates

considered; less than optimum candidates are assigned some probabilities, and hence even

the perfect candidate does not get “all the share”.

4 Associations between sounds and shapes

The last two case studies were based on corpus data. However, sound symbolic patterns

are not only observed in existing names, but also in experimental settings. This section

models the results of a naming experiment reported in Kawahara and Shinohara (2012).

This experiment examined the association between sonorants and round figures on the one

hand, and the association between obstruents (in this experiment, oral stops) and angular
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shapes on the other. These associations were first noted by the influential work of Köhler

(1947), who showed that a nonce word like takete is more likely to be associated with an

angular object, whereas a nonce word like maluma is more likely to be associated with a

round object.8 In the experiment, 20 disyllabic stimuli containing stop onsets (e.g. [bak@])

and 20 disyllabic stimuli containing sonorant onsets (e.g. [wej@]) were presented together

with various pairs of an angular shape and a round shape. Within each trial, the participants

were presented with an auditory stimulus together with a pair of an angular and a round

object, and were asked to choose which object would be a better match for the auditory

prompt. The participants were 17 native speaker of English. The results show that nonce

names with sonorant onsets were associated with round shapes about 70% of the time,

whereas nonce names with obstruents were associated with angular shapes 68% of the time

(their Figure 6).

To account for these results, we posit two constraints, each of which directly corre-

sponds to the observed sound-shape association:

(5) a. *STOP→ROUND: For each oral stop contained in name x, assign a violation

mark if x is used for a name of a round shape.

b. *SONORANT→ANGULAR: For each sonorant contained in name x, assign a

violation mark if x is used for a name of an angular shape.

The MaxEnt analysis appears in (6). In fact, this analysis achieves a perfect match between

observed and predicted values. This is because the structure of violation profiles are simple:

each constraint takes care of one mapping (either from oral stops to angular shapes, or from

sonorants to round shapes), and the number of candidates within each mapping is limited

to two.

8This effect is also known as the bouba-kiki effect (Ramachandran and Hubbard, 2001), and is extensively
studied in psychology and phonetics (D’Onofrio, 2014; Fort et al., 2015; Maurer et al., 2006).
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(6) The MaxEnt analysis of sound-shape mapping

5 Conclusion

This paper has shown that the MaxEnt grammars can model sound symbolic patterns, espe-

cially with regard to its gradient aspects.. The way we analyzed the sound symbolic patterns

are not different from how phonologists analyze phonological patterns using MaxEnt. We

believe that this is an important success, because sound symbolism has not been extensively

studied in the theoretical literature (modulo Alderete and Kochetov 2017), and one of the

reasons may be that sound symbolic patterns are almost always gradient. A formal tool like

MaxEnt can naturally account for gradient nature of sound symbolic association patterns.

To the extent that MaxEnt offers a natural way to account for probabilistic generalizations

in phonology (Hayes and Wilson, 2008; Zuraw and Hayes, 2017), formal phonologists can

analyze sound symbolic patterns in a way that may provide a new, interesting general do-

main for future phonological research.
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