
Accounting for the stochastic nature of sound

symbolism using Maximum Entropy model

Abstract

Sound symbolism refers to stochastic and systematic associations between sounds and

meanings. Sound symbolism has not received much serious attention in the generative phonol-

ogy literature, perhaps because most if not all sound symbolic patterns are probabilistic. Build-

ing on the recent proposal to analyze sound symbolic patterns within a formal phonological

framework (Alderete & Kochetov 2017), this paper shows that MaxEnt grammars allow us to

model stochastic sound symbolic patterns in a very natural way. The analyses presented in the

paper show that sound symbolic relationships can be modeled in the same way that we model

phonological patterns. We suggest that there is nothing fundamental that prohibits formal pho-

nologists from analyzing sound symbolic patterns, and that studying sound symbolism using a

formal framework may open up a new, interesting research domain. The current study also re-

ports two hitherto unnoticed cases of sound symbolism, thereby expanding the empirical scope

of sound symbolic patterns in natural languages.

1 Introduction

In recent linguistic theories, it is almost standard to assume that the relationships between sounds

and meanings are arbitrary. This thesis dates back to Hermogenes’s view expressed in Plato’s

Cratylus, and it was very clearly articulated by Saussure (1916) as the first organizing principle of

natural languages. The thesis of arbitrariness was reiterated as one of the design features of human

languages by Hockett (1959). Few modern linguists would disagree to the thesis that language is a

system that is able to associate sounds and meanings in arbitrary ways.
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On the other hand, many studies have revealed certain systematic relationships between

sounds and meanings, an observation which is often referred to as “sound symbolism” (see

Dingemanse et al. 2015; Hinton et al. 2006; Lockwood and Dingemanse 2015; Sidhu and Pexman

2017; Spence 2011 for recent reviews). For example, Sapir (1929) and many subsequent stud-

ies have shown that low vowels tend to be judged to be larger than high vowels, and front

vowels tend to be judged to be smaller than back vowels (Berlin, 2006; Coulter and Coulter,

2010; Jakobson, 1978; Jespersen, 1922; Newman, 1933; Ohala, 1994; Shinohara and Kawahara,

2016; Ultan, 1978). In both English and Japanese, there are stochastic tendencies for sono-

rants to be associated with female names and for obstruents to be associated with male names

(Shinohara and Kawahara, 2013; Uemura, 1965; Wright and Hay, 2002; Wright et al., 2005). It is

probably safe to conclude based on these studies that there are tendencies in natural languages that

certain sounds are associated with certain meanings.

These sound symbolic patterns are, crucially, stochastic or probabilistic. On the one hand,

speakers of many language feel that [a] is larger than [i] or [I] (Shinohara and Kawahara, 2016),

and this association is reported to hold in the lexicon of many languages (Ultan, 1978). For in-

stance, diminutive affixes, including English “-y,” often contain a high front vowel in a number

of languages (Ultan, 1978). However, in no way is this association exception-less. For example

the English word big contains the “small vowel”, [I] (see also Diffloth 1994). There is a sense in

which [a] is felt to be bigger than [i], but few would argue that languages cannot use [a] to repre-

sent something small or cannot use [i] to represent something big. Similarly, although sonorants

are often associated with female names, there are male names that contain sonorants and female

names that contain obstruents. If sound symbolic relationships were deterministic, then as Locke

(1689) and Saussure (1916) noted, all languages should use the same sound sequences to represent

the same objects (or concepts).1

While studies of sound symbolism are flourishing both in psychology and pho-

1However, we also need to take into consideration the fact that different languages use different sets of sounds,
and they have different phonotactic restrictions (see Shih et al. 2018 and Styles and Gawne 2017 for the implication
of these cross-linguistic differences on sound symbolism). The set of real world attributions being referred to (or more
simply, the set of semantic denotations) may differ across languages as well (Shih et al., 2018).
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netics (Dingemanse et al., 2015; Hinton et al., 2006; Lockwood and Dingemanse, 2015;

Sidhu and Pexman, 2017; Spence, 2011), sound symbolism has not received serious atten-

tion in the generative phonology literature. One clear exception is Alderete and Kochetov

(2017), who developed a formal theory of sound symbolism, using a set of Optimality Theoretic

constraints (Prince and Smolensky, 1993/2004), EXPRESS(X). This set of constraints require

certain phonological feature X to be realized to signal certain semantic features (see also

Kochetov and Alderete 2011). EXPRESS(X) is suited to account for non-probabilistic patterns

driven by sound-symbolic principles such as palatalization in baby talk in Japanese and other

languages. However, most if not all sound symbolic relationships are probabilistic, as discussed

above. To this end, this paper expands on Alderete and Kochetov’s proposal and shows that using

Maximum Entropy model (MaxEnt: Goldwater and Johnson 2003) successfully accounts for

stochastic aspects of sound symbolic patterns. The current proposal is illustrated with four case

studies.2 In addition to this theoretical contribution, two of our case studies report new empirical

data, thereby expanding our knowledge of sound symbolism.

2 Names of Takarazuka Revue actresses

The first case study is based on a new set of empirical data, which comes from the names of

Japanese Takarazuka Revue actresses. All Takarazuka actresses are female, but some actresses play

a male role, while some others play a female role. Importantly, the actresses’ gender in Takarazuka

context is fixed; i.e. one actress cannot act both as male and female during her Takarazuka career.

In this study, we first explored the effects of sound symbolic relationships between female names

and sonorants on the one hand, and male names and obstruents on the other, sound symbolic re-

lationships which have been shown to hold in Japanese (Shinohara and Kawahara, 2013; Uemura,

1965) as well as in English (Wright and Hay, 2002; Wright et al., 2005).

2A similar MaxEnt analysis of sound symbolism was also developed to model recent experimental results by
Authors (to appear).
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2.1 Method

All of the 361 names of Takarazuka actresses, who were active as of July 2017, were analyzed.

For each name, we coded the number of sonorants and obstruents, as well as whether that name is

used for a male role or a female role. Each name contained at most three consonants.

2.2 Result
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Figure 1: The effects of sonorants and obstruents on the gender choice in Takarazuka names. The
error bars are standard errors.

The results appear in Figure 1, in which the y-axes represent the probability of the names being

used for female actresses. The left panel shows that the more sonorants a name contains, the more

likely it is used as a female name: the right panel shows that although the tendency is less clear,

the more obstruents a name contains, the less likely it is used as a female name. These patterns

accord well with the sound symbolic effects previously noted for Japanese and English.

A multiple logistic regression analysis was run with gender as the dependent variable and the

number of sonorants and the number of obstruents as independent variables. The result shows

that sonorants significantly increase the likelihood of the name being used for a female name

(β1 = 0.822, z = 4.19, p < .001), while obstruents do not have significant impacts on the gender

choice (β2 = 0.05, z = 0.36, n.s.).

This analysis thus suggests that there is a stochastic tendency in such a way that sonorants
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are associated with female roles. Crucially, though, the effects are not deterministic; it is not

the case that the presence of a single sonorant makes the whole name a female name 100% of

the time; instead, the presence of a sonorant increases the probability of that name being used

as a female name. This sort of stochastic pattern is common-place—in fact, usually the norm—

in sound-symbolic patterns in natural languages.3 While the proposal by Alderete and Kochetov

(2017) successfully accounts for deterministic sound symbolic patterns, it does not account for this

sort of stochastic nature of sound symbolic patterns; we thus expand on their proposal to account

for the gradient nature of sound symbolism, using MaxEnt grammar model.

2.3 MaxEnt analysis

Generative phonology is a function that maps one representation (e.g. underlying representation)

to another representation (e.g. surface representation) (McCarthy, 2010); this is true, regardless of

whether it is ruled-based or constraint-based, or whether it involves serial derivation or not. The

model proposed in this paper is the same: for the case analyzed in this section, our grammar is a

function that takes names as inputs and maps them to probability distributions of two candidates,

male names or female names. For example, it takes a name like Yurino, and calculates the proba-

bility of that name being used for a female name and the probability of the name being used for a

male name.

The current model uses MaxEnt grammar, as it is suited to account for gradient mapping

from one dimension to another (e.g. Goldwater and Johnson 2003; Hayes 2017; Hayes and Wilson

3This stochasticity may be one of the reasons why sound symbolism did not receive serious attention in the gen-
erative phonology literature. In generative phonology (Chomsky and Halle, 1968), it was standard to assume that ele-
ments and structures that are completely predictable are derived in the phonological component of grammar, although
in practice some exceptions are usually tolerated; on the other hand, those that are not completely predictable—whose
predictability was lower than 1.00—were assumed to be stored in the lexicon (see Shaw and Kawahara 2018 for a
historical overview). This means that phonological patterns should be exception-less, at least at some level of rep-
resentation or analysis (see Shattuck-Hufnagel 1986 for relevant discussion). This assumption may have precluded
generative phonologists from analyzing sound symbolic patterns (although there are likely to be other reasons, like the
influence of Saussure 1916).

Zuraw (2000) has shown, however, that those patterns that are not completely predictable can be still system-
atic (“patterned exceptions”), and subsequent work (Ernestus and Baayen, 2003; Hall, 2009; Hayes and Londe, 2006;
Hayes and Wilson, 2008; Hayes et al., 2009; Kumagai and Kawahara, 2018; Pierrehumbert, 2001) has demonstrated
that phonological knowledge can be deeply stochastic. There are phonological patterns that are only probabilistically
predictable but yet productive.
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2008; Wilson 2006; Zuraw and Hayes 2017).4 One particular attractiveness of this model in the

current context is the fact that MaxEnt is able to predict probability distributions of output can-

didates, which can be compared with the observed probabilities. To capture the sound symbolic

effect of sonorants in Figure 1, we posit the following constraint in (1):

(1) *SON→MALE: For each sonorant contained in name x, assign a violation mark if x is

mapped to male names.5

This constraint reflects the tendency that is observed in the left panel of Figure 1: sonorants are

preferentially associated with female names. This constraint alone, however, cannot account for

the fact that even if all the consonants in the name are sonorants, they can be male names 26%

of the time (the rightmost bar of Figure 1, left). In order to account for this fact, we posit a

*FEMALENAME constraint, a constraint that is akin to *STRUC constraints (see Daland 2015 for

the role of *STRUC in MaxEnt grammars). This constraint simply restates the fact that there can

be male names.

MaxEnt grammar is similar to Optimality Theory (Prince and Smolensky, 1993/2004) in that

a set of candidates is evaluated against a set of constraints. Unlike Optimality Theory, however,

constraints are weighted rather than ranked, as in Harmonic Grammar (Legendre et al., 1990a,b;

Pater, 2009, 2016). Based on the constraint violation profiles, for each candidate x, its Harmony

Score (H-Score(x)) is calculated as follows:

H-score(x) =
N∑
i

wiCi(x) (1)

4In addition to phonological input-output mapping, MaxEnt has been used to account for text-setting patterns
(Hayes et al., 2012), and even career decisions (Hayes, 2016). Since MaxEnt is a function that maps any sort of
input to probability distributions of output candidates, there is no a priori reason to limit MaxEnt to phonological
input-output mapping (see Zuraw and Hayes 2017 for actual examples and references).

5This constraint is formalized in such a way that it dictates a mapping between sounds and output names.
We can alternatively focus on output structures alone (like standard markedness constraints in Optimality Theory:
Prince and Smolensky 1993/2004) and posit a constraint that prohibits sonorants in male names. We find that the
former formalization captures the sound symbolic relationships more directly, as we are essentially talking about map-
ping from one modality (sound) to another (meaning) (see also Zuraw 2013). With that said, the latter output-oriented
formalization works just as well.
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where wi is the weight of the i-th constraint, and Ci(x) is the number of times candidate x violates

the i-th constraint.

The H-scores are negatively exponentiated (eHarmony, e−H : Wilson 2014), which corresponds

to the probability of each candidate. Intuitively, the more constraint violation a candidate incurs,

the higher the H-score, and hence the lower the eHarmony (e−H) is. The eHarmony values are

relativized against the sum of all the eHarmony values, which we call Z:

Z =
N∑
j

(e−H)j (2)

The probability of each candidate xi, p(xi), is eHarmony(xi)
Z

.

To implement the analysis of Takarazuka actress names, we used the MaxEnt Grammar tool

made available by Bruce Hayes,6 which calculates the best weights for each constraint given the ob-

served frequencies of each candidate, as well as the predicted probabilities based on these weights.

The MaxEnt analysis tableau is shown in (2). The model takes each name as its input and calcu-

lates the probability of the name being used for a male name and the probability of the name being

used for a female name. The analysis focuses on the number of sonorants that each name contains,

as the number of sonorants was the significant factor in the analysis presented in section 2.2.

(2) The MaxEnt analysis of Takarazuka names

6http://linguistics.ucla.edu/people/hayes/MaxentGrammarTool/
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As shown, the MaxEnt tool yielded the weights of the two constraints (0.74 and 1.11), which pro-

duce expected percentages that are very close to the observed percentages (the right two columns).

3 Nicknames of Japanese AKB idols

The sound symbolic association between sonorants and femaleness which we observed in the pre-

vious section manifests itself in another pattern in Japanese. Japanese idols often use nicknames

that involve reduplication; those instances usually show reduplication of syllables with sonorant

onsets (e.g. mayu-yu, kayo-yo-n, miru-ru-n), and reduplication of syllables with obstruent onsets is

rare. This asymmetry can be understood as an instance of the sound symbolic association between

sonorants and femaleness.

3.1 Method

To qualitatively assess this hypothesis, the nicknames of all of the AKB idol group members

(AKB48, SKE48, NMB48, HKT48, NGT48, STU48, SDN48) were coded based on the wikipedia

website specifically devoted to these idol groups (https://48pedia.org/, accessed Septem-

ber 2017). The numbers of obstruents and sonorants that were targeted by reduplication were

coded. As a baseline, all obstruents and sonorants that appear in their names were also coded. The
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current study focused on onset consonants and did not count coda consonants (Japanese coda con-

sonants are limited to so-called “coda nasals”). There were no geminates in the names analyzed in

the current study.

3.2 Result and analysis

Table 1: The numbers of sonorants and obstruents targeted by reduplication in AKB idol nick-

names.

Sonorants Obstruents

Reduplicated 45 (5%) 7 (1%)

Total 900 643

Table 1 shows the results. In total, there were 900 sonorants in the corpus of AKB idol names, and

45 of them were targeted by reduplication (5%). On the other hand, only 7 out of 643 obstruents

(1%) were targeted by reduplication. This difference between sonorants and obstruents is statisti-

cally significant (χ2(1) = 16.44, p < .001). Viewed from a different perspective, only 58% of the

consonants in the whole AKB names are sonorants, but 87% of the reduplicated consonants are

sonorants. We can conclude there that there is a clear bias to target sonorants in reduplication.

Accounting for these reduplication patterns requires only two constraints, one of which is very

similar to (1):

(3) a. *OBS→FEMALE: For each obstruent contained in name x, assign a violation mark if

x is a female name.

b. *REDUP: Assign a violation mark for each syllable that is reduplicated.

The first constraint militates against reduplicating syllables with obstruent onsets, which accounts

for the very low probability of obstruents being reduplicated in the current dataset. The second

constraint is necessary, because not all sonorants are reduplicated (this constraint is formalized as
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INTEGRITY “no breaking” by McCarthy and Prince 1995). The MaxEnt analysis of AKB nick-

names using these constraints are provided in (4). In this tableau, constraint violations of the

first syllables are not shown, as they are shared by all the candidates considered (i.e. cancellation

lemma: Prince and Smolensky 1993/2004).

(4) The MaxEnt analysis of reduplicative patterns in AKB idol names

Formalizing stochastic sound symbolic patterns:  
A MaxEnt analysis of Takarazuka actress names 

 
increases the probability of that name being used as a sonorant name. This sort of stochastic 
pattern is common place in sound-symbolic patterns in natural languages. However, the 
proposal by Alderete & Kochetov (2017) does not account for this stochastic nature; we thus 
expand on their proposal to account for gradient nature of sound symbolism, using MaxEnt.  
 
MAXENT ANALYSIS: Our model is a function that takes names as inputs and yields 
probabilities of whether these names are used as male or female. To capture the sound symbolic 
effect of sonorants, we posit the following constraint in (1): 
 
(1) *SON → MALE: Assign a violation mark for each sonorant used in a male name.  
 
This constraint alone, however, cannot account for the fact that even if all consonants are 
sonorants, names can be male names 25% of the time (the rightmost bar of Figure 1, left). We 
thus posit a *FEMALENAME constraint, a constraint that is akin to *STRUC constraints (see 
Daland for the role of *STRUC in MaxEnt grammar). To implement the analysis with these two 
constraints, we used the MaxEnt Grammar tool made available by Bruce Hayes. The MaxEnt 
analysis tableau is shown in (2). As shown, the tool yielded the weights of the two constraints, 
which produce expected percentages that are very close to the observed percentages.  
 
(2) The MaxEnt analysis of the sound symbolic pattern 
 

Name Gender *SON→MALE 
W = 0.74 

*FEMALENAME 
W = 1.11 

H-
score 

e-H Observed Expected 
 

0 son Male   0 1 74% 75% 
 Female  1 1.11 0.33 26% 25% 
        
1 son Male 1  0.74 0.47 62% 59% 
 Female  1 1.11 0.33 28% 41% 
        
2 son Male 2  1.48 0.22 39% 41% 
 Female  1 1.11 0.33 61% 59% 
        
3 son Male 3  2.22 0.11 25% 25% 
 Female  1 1.11 0.33 75% 75% 
  

Name Nickname *REDUP 
W = 2.94 

*OBS→FEMALE 
W =1.65 

H-score e-H Observed Expected 
 

moka moka  1 1.65 0.19 99% 99% 
 mokaka 1 2 6.24 0.002 1% 1% 
        
mayu mayu   0 1 95% 95% 
 mayuyu 1  2.94 0.05 5% 5% 

 
 
 
 
   

Name Evol 
level 

*VOIOBS→ 
NONEVOL 
W = 0.40 

*EVOLNAME 
W = 0.99 

H-
score 

e-H Observed Expected 
 

As observed, the sound-symbolic constraint *OBS→FEMALE, together with a constraint that mil-

itates against reduplication, accounts for the difference between sonorants and obstruents in a very

straightforward manner. One notable aspect of this analysis is that even when a candidate violates

no constraints (i.e. [mayu]), it is not the case that it is assigned the probability of 1.00. This is

because MaxEnt calculates the probability distribution over all candidates considered; less than

optimum candidates are assigned some probabilities, and hence even the perfect candidate does

not get “all the share.”

4 Voiced obstruents and evolution levels in Pokémon names

As another case study, this section examines the role of voiced obstruents in determining the evo-

lution levels of Pokémon characters. In the Pokémon game series, Pokémon characters undergo

evolution, at most twice, and when they do so, they are called by a different name. Kawahara et al.

(2018), based on all the Pokémon character names available as of October 2016, show that there

is a positive correlation between the numbers of voiced obstruents contained in the names and the
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evolution levels of the Pokémon characters.7 Based on the results of Kawahara et al. (2018), the

crucial aspect of their data is reproduced in Table 2. The probabilities of the names being used for

non-evolved characters (Evol level 0) decrease as the names contain more voiced obstruents (the

leftmost column). The probabilities of names being used for the most-evolved characters (Evol

level 2) increase as the names contain more voiced obstruents (the rightmost column).

Table 2: The effects of voiced obstruents on the evolution levels in Pokémon names.

Evol level 0 Evol level 1 Evol level 2
0 voiced obs 63% 30% 7%
1 voiced obs 50% 39% 11%
2 voiced obs 33% 26% 21%

To account for these distributional skews, we posit two constraints in (5):

(5) a. *VOIOBS→NONEVOL: For each voiced obstruent contained in name x, assign a

violation mark if x is mapped to Evol level 1 names; assign two violation marks if x

is mapped to Evol level 0 names.

b. *EVOLNAME: Assign two violation marks to Evol level 2 names; assign one violation

mark to Evol level 1 names.

The first constraint is formalization of the sound symbolic correspondence between voiced obstru-

ents and evolved characters—ideally, names with voiced obstruents are mapped onto names for

the most evolved characters. In other words, it prohibits names with voiced obstruents from be-

ing used for non-evolved characters. *EVOLNAME is akin to *STRUC constraint (Daland, 2015),

which represents the fact that evolved characters are less frequent than non-evolved characters. The

MaxEnt analysis of Pokémon names using these two constraints appears in (6). As was the case for

the two cases analyzed above, the model takes names as input and yields probability distributions

7In Japanese, voiced obstruents are associated with various types of images such as largeness, heaviness and
strength parameters (Hamano, 1986; Kawahara, 2017; Kubozono, 1999; Suzuki, 1962). The sound symbolic patterns
in Pokémon names are most likely rooted in this sound symbolic association that is present in the phonology and
lexicon of Japanese. The “Pokémon corpus” allows us to quantitatively assess this sound symbolic association.
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of each candidate; for this analysis, each candidate corresponds to each evolution level.

(6) The MaxEnt analysis of Pokémon names

We observe that there is a close correlation between the observed probabilities of each name type

and their predicted values.

5 Associations between sounds and shapes

The last three case studies were based on corpus data. However, sound symbolic patterns are not

only observed in existing names, but also in experimental settings. This section models the results

of a naming experiment reported in Kawahara and Shinohara (2012). This experiment examined

the association between sonorants and round figures on the one hand, and the association between

obstruents (in this experiment, oral stops) and angular shapes on the other. These associations were

first noted by the influential work of Köhler (1947), who showed that a nonce word like takete is

more likely to be associated with an angular object, whereas a nonce word like maluma is more

likely to be associated with a round object.8 In the experiment, 20 disyllabic stimuli containing

stop onsets (e.g. [bak@]) and 20 disyllabic stimuli containing sonorant onsets (e.g. [wej@]) were

8This effect is also known as the bouba-kiki effect (Ramachandran and Hubbard, 2001), and is extensively studied
in psychology and phonetics (D’Onofrio, 2014; Fort et al., 2015; Maurer et al., 2006).

12



presented together with various pairs of an angular shape and a round shape. Within each trial,

the participants were presented with an auditory stimulus together with a pair of an angular and

a round object, and were asked to choose which object would be a better match for the auditory

prompt. The participants were 17 native speaker of English. The results show that nonce names

with sonorant onsets were associated with round shapes about 70% of the time, whereas nonce

names with obstruents were associated with angular shapes 68% of the time (their Figure 6).

To account for these results, we posit two constraints, each of which directly corresponds to

the observed sound-shape association:

(7) a. *STOP→ROUND: For each oral stop contained in name x, assign a violation mark if

x is used for a name of a round shape.

b. *SONORANT→ANGULAR: For each sonorant contained in name x, assign a violation

mark if x is used for a name of an angular shape.

The MaxEnt analysis appears in (8). In fact, this analysis achieves a perfect match between ob-

served and predicted values. This is because the structure of violation profiles are simple: each

constraint takes care of one mapping (either from oral stops to angular shapes, or from sonorants

to round shapes), and the number of candidates within each mapping is limited to two.

(8) The MaxEnt analysis of sound-shape mapping
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6 Conclusion

This paper has shown that the MaxEnt grammars can model sound symbolic patterns, especially

with regard to its gradient aspects. The way we analyzed the sound symbolic patterns is not dif-

ferent from how phonologists analyze phonological patterns using MaxEnt. We believe that this

is an important success, because sound symbolism has not been extensively studied in the theo-

retical literature (modulo Alderete and Kochetov 2017), and one of the reasons may be that sound

symbolic patterns are almost always gradient. A formal tool like MaxEnt can naturally account

for the gradient nature of sound symbolic association patterns. To the extent that MaxEnt offers

a natural way to account for probabilistic generalizations in phonology (Hayes and Wilson, 2008;

Zuraw and Hayes, 2017), formal phonologists can analyze sound symbolic patterns in a way that

may provide a new, interesting general domain for future phonological research.
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