
Probabilistic compositional semantics, purely

Julian Grove and Jean-Philippe Bernardy

Centre for Linguistic Theory and Studies in Probability
Department of Philosophy, Linguistics and Theory of Science

University of Gothenburg
firstname.lastname@gu.se

Abstract. We provide a general framework for the integration of for-
mal semantics with probabilistic reasoning. This framework is conser-
vative, in the sense that it relies only on typed λ-calculus and is thus
compatible with logical systems already in use. The framework is also
presented modularly, in that it regards probabilistic effects (i.e., sam-
pling and marginalization) as side effects, using continuations. We show
how our framework may be used to build probabilistic programs com-
positionally within higher-order logic and then illustrate its use on two
applications: semantic learning and pragmatic inference within the Ra-
tional Speech Act framework.

1 Introduction

Formal semantics in the tradition of Montague characterizes linguistic meaning
in terms of either a logic or a model, constructed set-theoretically. By exploiting
an antecedently well understood formalism, a logical characterization of meaning
allows one to reason about it in terms of notions like entailment. Indeed, while
the formal description such a characterization provides is necessarily abstract, it
can be assembled compositionally, in terms of rules that combine the meanings
of syntactic constituents. It is this feature of formal semantics that makes it such
an attractive approach to meaning, and one which has persisted throughout the
development of the field.

There has been much effort in the last decade to connect formal semantics
to mathematically explicit models of pragmatic reasoning, with Rational Speech
Act (RSA) models providing a paradigmatic case. RSA models consider utter-
ance interpretation to be a process of updating probability distributions over
logically characterized meanings (Goodman and Stuhlmüller, 2013; Lassiter and
Goodman, 2013; Goodman and Frank, 2016; Lassiter and Goodman, 2017). In
doing so, they aim to capture a central feature of discourse known since the work
of Grice 1975; namely, that it is constrained by principles of appropriate social
behavior, which, through the reasoning of interlocutors, serve to enrich the very
meanings which are communicated.

The present work provides a general approach to the integration of formal
semantics with probabilistic reasoning — one which is both modular and con-
servative. Past efforts to consider linguistic meaning probabilistically (including



2 Julian Grove and Jean-Philippe Bernardy

the seminal work of Goodman and Lassiter) have drastically modified the under-
lying logic to express it, typically in a way that freely mixes a logical semantics
with probabilities. Goodman and Lassiter (2015), for example, encode meanings
using the probabilistic programming language Church (Goodman et al, 2008),
a decision which constitutes a radical departure from formal semantics in the
style of Montague: while the latter uses a pure λ-calculus, Church programs can
invoke probabilistic effects, i.e., by sampling or marginalizing, at any point in a
given program.

In contrast to this and similar approaches to probabilistic semantics, ours
allows for the usual approach to compositional semantics, in terms of a pure
logical language. Moreover, we expect that our approach will be quite general:
it allows for any simply typed language with products and a finite number of
non-logical constants, but it should also be compatible with more expressive
systems, e.g., System F (Girard, 1972) and dependent type theory (we defer
an investigation of its generality, however). Our trick is to treat probabilistic
computation modularly, as a side effect, using continuations. Doing so allows
logical meanings to be viewed as values computed by probabilistic programs.
Even so, as we shall see, our semantics does not overstep the tight bounds of
the λ-calculus: probabilistic programs are themselves expressed in higher-order
logic; we can thus provide an expressive probabilistic compositional semantics
without the use of radically novel tools.

2 Formal semantics

To illustrate, we provide a schematic English fragment, which we translate into
a higher-order language with types for individuals (e), truth values (t), and real
numbers (r). In addition to function types (α→ β), we assume access to products
(α×β and unit type �), along with their associated constructors 〈M,N〉 : α×β
(for M : α and N : β), destructors M1 : α and M2 : β (for M : α× β), and unit
� : �, as well as n-ary generalizations of these. Notably, we employ an indicator
function 1 : t→ r taking > (‘true’) and ⊥ (‘false’) onto 1 and 0, respectively. We
additionally assume the existence of a family di of subtypes of r corresponding
to degree types. For instance dtall represents degrees of height, dhappy degrees of
happiness, etc.

In general, we assume the language to have a finite number of non-logical
constants. For our example, we employ the following:

human : e→ t height : e→ dtall θtall : dtall (≥) : r → r → t

In terms of these, the following meanings can be given for someone, is, and tall,
in order to derive the meaning of someone is tall via functional application:

JsomeoneK = λk.∃x : human(x) ∧ k(x)

JisK = λx.x

JtallK = λx.height(x) ≥ θtall



Probabilistic compositional semantics, purely 3

The meaning of someone is tall, JsomeoneK(JisK(JtallK)), can then be computed
to be ∃x : human(x) ∧ height(x) ≥ θtall.

3 The traditional interpretation

We have so far illustrated the use of a language with an intuitively clear meaning.
For completeness, we spell out the “traditional” meaning of this language pre-
cisely in terms of an interpretation function, L·M, given by a λ-homomorphism:1

LxM = x (x is a variable)

Lλx.MM = λx.LMM
LMNM = LMMLNM
L〈M,N〉M = 〈LMM, LNM〉
LMiM = LMMi
LθtallM = d

LheightM = height

LhumanM = human

L(≥)M = (≥)

Here, d is some real number representing the contextual standard of height used
by the adjective tall, height is some function from individuals to real numbers,
and human is some function from individuals to truth values. The ≥ symbol
corresponds to the “greater-than-or-equal-to” relation on real numbers. To save
space, we have left implicit the interpretation of logical constants, like >, ⊥, and
∃, which is standard. One can now compose L·M with J·K and map someone is tall
onto ∃x : human(x) ∧ height(x) ≥ d, i.e., a truth value.

4 The probabilistic interpretation

We provide the probabilistic interpretation in two steps. First, we parameterize
our interpretation function, L·Mκ, by a tuple κ of values, which we call a context.
The idea is to use such a tuple to provide an interpretation for the non-logical
constants. In particular, we assume that the n non-logical constants of the lan-
guage are ordered, such that, if constant ci has type αi, then κ : α1 × ... × αn.

1 The λ-homomorphisms that we employ map one higher-order language into an-
other, preserving variables, abstractions, applications, pairing, and projection. They
are accompanied by type-homomorphisms · which, for us, preserve implication and
products (i.e., α→ β = α→ β and α× β = α×β), but which may affect base types.
In general, if M : α, then LMM : α. The motivation for these constraints is that they
provide meanings to the constants of the source language, leaving the surrounding
λ-calculus unaffected (as analogous to a traditional model-theoretic interpretation).
In this case, both L·M and its associated type homomorphism are trivial, mapping
both constants and base types into (notational variants of) themselves.



4 Julian Grove and Jean-Philippe Bernardy

For any such κ, L·Mκ is the following λ-homomorphism:

LxMκ = x (x is a variable)

Lλx.MMκ = λx.LMMκ

LMNMκ = LMMκLNMκ

L〈M,N〉Mκ = 〈LMMκ, LNMκ〉
LMiMκ = LMMκi
LciMκ = κi (ci is the ith constant)

Thus if ci is one of θtall, height, or ≥, then its interpretation is determined by
the context. (Again, we have omitted the interpretation of logical constants to
save space.) Obviously, if ci is of type αi, then so is κi. We assume that all
probabilistic semantic knowledge resides in the interpretation of constants, that
is, in the context. It remains to be shown how to evaluate the above expressions
when κ is a random variable.

5 Probabilistic programs

In general, we consider something a random variable if it is the value returned
by a probabilistic program. In our framework, a probabilistic program returning
values of type α is a function of type (α→ r)→ r; that is, one which consumes
a projection function (from values of type α to real numbers), in order to return
a real number.2 The intent is that if p is a probabilistic program and f is a
projection function, then p(f) is the sum of f(x), for all possible values of x
returned by the program, weighted in proportion to their probabilities.

Given this setup, probabilistic programs form a monad. A monad, as stated
in Figure 1, is a functor M from types to types, associated with two operators, η
(‘unit’) and ? (‘bind’), satisfying certain laws. In general, implementing a monad
in a pure setting, such as the λ-calculus, allows one to simulate various notions
of side effect, including probabilistic computation, as we shall see. The role of
η is to inject an ordinary value into the monad, while that of ? is to compose
computations. More precisely, ? runs a computation of type Mα, and then binds
the returned value to a variable in the next computation (something of type
α → Mβ). In the case of probabilistic programs, Mα = (α → r) → r, and the

2 There is some precedent for this representation of probabilistic programs, by Mo-
hammed Ismail and Shan (2016), who describe a small typed probabilistic program-
ming language and provide a denotational semantics for it in terms of continuations.
Our formulation is chiefly inspired by the dependently typed language of Bernardy
et al (2021). See also Jannsson et al 2021.



Probabilistic compositional semantics, purely 5

Operators

η : α→Mα

(?) : Mα→ (α→Mβ)→Mβ

Laws on terms

η(v) ? k = k(v) (Left Identity)

m ? η = m (Right Identity)

(m ? n) ? o = m ? (λx.n(x) ? o) (Associativity)

Fig. 1. Definition of a monad

unit η and bind operator ? are inherited from the continuation monad:

η : α→ (α→ r)→ r

η(a) = λc.ca

(?) : ((α→ r)→ r)

→ (α→ (β → r)→ r)

→ (β → r)→ r

m ? k = λc.m(λx.k(x)(c))

Employing the monadic operators, one may sequence a program p : (α →
r)→ r with some projection function f : α→ r, producing:

p ? λx.η(f(x)) : (r → r)→ r

Indeed, feeding the identity function to the result obtains p(f) : r.
The encoding of probabilistic programs in terms of continuations may appear

somewhat indirect. In general, one can see a continuation (here, of type α→ r)
as a question to ask a program. The result type r restricts the sorts of questions
one may ask, i.e., to those having real numbers as answers. As if responding
with a riddle, moreover, the probabilistic program returns the weighted sum
of the answers for its possible values. This means, for instance, that given a
probabilistic program p, one may feed it the question (λx.1), which asks how
much mass it assigns in total, in order to get the answer, p(λx.1), which returns
the total mass assigned by p.

If p returns truth values (i.e., is of type (t → r) → r), we can ask for the
mass it assigns to > by passing the indicator function as a continuation: p(1).
Consequently, we may compute a probability for p as the expected value of 1, in
terms of a function P : ((t→ r)→ r)→ r:

P (p) =
p(1)

p(λb.1)

The denominator (the total mass assigned by p) normalizes the result.



6 Julian Grove and Jean-Philippe Bernardy

Now, let K be a probabilistic program representing the distribution of con-
texts; that is, if α1× ...×αn is the type of contexts, K is of type (α1× ...×αn →
r)→ r. Given a term φ of type t, we encode its interpretation in the context of
K as the following probabilistic program:

K ? λκ.η(LφMκ)

Like all probabilistic programs returning truth values, the above is of type
(t → r) → r. Operationally, it reads in the random context returned by K
and computes from it a truth value for φ in this context. As such, one can
determine a probability for it, as outlined above.

To illustrate, consider our running example, someone is tall, to which we
assigned the interpretation ∃x : human(x) ∧ height(x) ≥ θtall. Let us assume a
probabilistic program K returning contexts where the interpretation of θtall is
a random variable having a normal distribution with a mean of 72 inches and a
standard deviation of 3 inches. Moreover, we assume that the interpretations of
the other constants are fixed as the functions height, human, and ≥, as above.
Then, assuming the order of the constants to be height, human, ≥, θtall, we have
the following definition of K:

K = N (72, 3) ? λd.η(height, human, (≥), d)

Here, N (72, 3) is a probabilistic program (of type (dtall → r)→ r) representing
a normal distribution with the relevant mean and standard deviation. If fed a
projection function f of type dtall → r, it will integrate f over the real line,
weighting each f(d) by the probability of d.3 Our strategy allows us to associate
a probabilistic program with the sentence someone is tall, as follows:

K ? λκ.η(L∃x : human(x) ∧ height(x) ≥ θtallMκ)

= K ? λκ.η(∃x : LhumanMκ(x) ∧ L(≥)Mκ(LheightMκ(x))(LθtallMκ))

= N (72, 3) ? λd.η(height, human, (≥), d〉 ? λκ.η(∃x : κ2(x) ∧ κ3(κ1(x))(κ4))

= N (72, 3) ? λd.η(∃x : human(x) ∧ height(x) ≥ d)

= λc.N (72, 3)(λd.c(∃x : human(x) ∧ height(x) ≥ d))

As expected, we have a program of type (t→ r)→ r. We may therefore compute
a probability for it as:

N (72, 3)(λd.1(∃x : human(x) ∧ height(x) ≥ d))

N (72, 3)(λd.1)

3 We leave N : dtall × dtall → (dtall → r) → r unanalyzed. In general, computing a
continuous distribution D : p1×...×pn → (d→ r)→ r over d amounts to computing

λ〈p1, ..., pn〉, f.
∫ ∞
−∞

PDFD(p1,...,pn)(x) ∗ f(x)dx

where PDFD(p1,...,pn) provides the probability density function associated with D
(given parameters p1, ..., pn). Such integrals don’t in general admit closed-form so-
lutions, and so one must resort to approximations. We implement this via Markov
chain Monte Carlo sampling in our Haskell implementation, using the library at
https://github.com/jyp/ProbProg.

https://github.com/jyp/ProbProg


Probabilistic compositional semantics, purely 7

Because N represents a genuine probability distribution, its total mass is 1, and
we can simply ignore the denominator. The theoretical value of this expression
is determined by computing the truth of the proposition that someone’s height
exceeds the height threshold d at every possible value of d, and weighting it by
the probability associated with d. This model of the uncertainty associated with
someone is tall locates it in the meaning of tall ; in particular, how tall one must
be to be considered tall.

For example, consider a case in which exactly one person is 72 inches tall and
no one is taller. Then the condition imposed by the meaning of someone is tall
will be met by all θtall ≤ 72, and the sentence will be assigned the probability
0.5. In general, the probability assigned will be equal to the mass of N (72, 3)
that is less than or equal to the height of the tallest human.

6 Bayesian inference

One of the main interests of a probabilistic semantics such as the one proposed
is that it can be combined with Bayesian marginalization. For this purpose, we
define the following function observe:

observe : t→ (� → r)→ r

observe φ f = 1(φ) ∗ f(�)

Given a proposition φ, observe either keeps or throws out its continuation, as
according to whether φ is true or false; hence, the resulting program retains only
values from the part of the distribution it represents compatible with φ being
true.4 This function thus allows us to marginalize the truth value of φ under a
premise ψ as follows, exploiting the monadic structure of probabilistic programs:

K ? λκ.observe(LψMκ) ? λ�.η(LφMκ)

Such a marginalization process can be used for several purposes: for probabilistic
inference (as suggested by our running example), but also to refine the proba-
bility distributions associated with constants; that is, for semantic learning. We
briefly suggest how each of these tasks can be accomplished in our framework,
starting with semantic learning.

6.1 Semantic learning

Semantic learning in our framework is matter of updating (distributions of)
contexts. Given a program K0 returning contexts which represents the initial
state of one’s semantic knowledge, one may observe a number of propositions to
be true or false, thus obtaining a new program, K1:

K1 = K0 ? λκ.observe(φ1) ? λ�. ... observe(φn) ? λ�.η(κ)

4 Some may recognize it as akin to the guard function of Haskell’s MonadPlus and
Alternative classes.



8 Julian Grove and Jean-Philippe Bernardy

The effect of sequencing K0 with such a series of observations is to zero out the
portion of its distribution in which φ1, ..., φn are false, returning the values that
survive.

Let us say that a learner is attempting to learn the meaning of tall, and they
start out with a distribution of contexts such that the height threshold that
the adjective makes use of ranges over a normal distribution with a mean of 68
inches and a standard deviation of 3 inches (we will deal here with the constants
height, ≥, and θtall, along with the four names for individuals c, m, a, and v):

K0 = N (68, 3) ? λd.η(c,m, a, v, height, (≥), d)

In addition, this learner happens to know the following three facts: that Camilla
is 65 inches tall, that Matt is 67 inches tall, and that Anna is 72 inches tall:

height(c) = 65 height(m) = 67 height(a) = 72

One day, someone this learner trusts utters the following three sentences, in
sequence: (1) Camilla isn’t tall, (2) Matt isn’t tall, (3) Anna is tall. Upon hearing
these utterances, the learner updates K0, in order to obtain K1:

K1 = K0

? λκ.observe(L¬height(c) ≥ θtallMκ)

? λ�.observe(L¬height(m) ≥ θtallMκ)

? λ�.observe(Lheight(a) ≥ θtallMκ)

? λ�.η(κ)

= N (68, 3) (by Associativity and Left Identity)

? λd.observe(¬65 ≥ d)

? λ�.observe(¬67 ≥ d)

? λ�.observe(72 ≥ d)

? λ�.η(c,m, a, v, height, (≥), d)

This may in turn be simplified to:

N (68, 3) ? λd.observe(72 ≥ d ∧ d > 67) ? λ�.η(c,m, a, v, height, (≥), d)

Thus K1 is just like K0, but for the fact that the distribution associated with
θtall has been pared down to only include the mass of N (68, 3) in the interval
(67, 72]. If Vlad is 68 inches tall (height(v) = 68), then the sentence Vlad is tall
would have been associated with the probability 0.5 in K0, while it is associated
with a probability of around 0.24 in K1:

K0(λκ.1(Lheight(v) ≥ θtallMκ))

K0(λκ.1)
= 0.5

K1(λκ.1(Lheight(v) ≥ θtallMκ))

K1(λκ.1)
≈ 0.24



Probabilistic compositional semantics, purely 9

6.2 RSA: background

In the case of probabilistic inference, our framework can serve as the basis for
complex pragmatic reasoning, as in RSA models. For example, Lassiter and
Goodman (2013) present an RSA model of the inference made when someone
utters a sentence such as Vlad is tall. This model consists of a pragmatic listener
(L1), who reasons about probable meanings based on the expected behavior of a
pragmatic speaker (S1), who, in turn, reasons about a literal listener (L0). These
agents’ behaviors are modeled in terms of the following equations (adapted to
the current example):

PL1
(h, dtall | ‘Vlad is tall’) ∝ PS1

(‘Vlad is tall’ | h, dtall) ∗ PL1
(h) (L1)

PS1
(u | h, dtall) ∝ (PL0

(h | u, dtall) ∗ e−C(u))α (S1)

PL0
(h | u, dtall) = PL0

(h | JuKdtall = >) (L0)

Each of these statements defines a probability distribution for the random vari-
ables of interest. h and dtall are values of the random variables representing
Vlad’s height and the height threshold for the adjective tall, respectively. The
function C in the S1 model is utterance cost. α is the “temperature” of the S1

model: it controls the extent to which the speaker behaves rationally, i.e., by
taking the expected behavior of the literal listener L0, as well as utterance cost,
into account in designing their distribution over utterances.

Given the more general notions of a world state w and a parameter θ, (h
and dtall, respectively, in the above), these equations may be presented more
perspicuously as follows, given some utterance u0:

PL1
(w, θ | u0) =

PS1
(u0 | w, θ) ∗ PL1

(w, θ)∫
w′∈W

∫
θ′∈Θ PS1(u0 | w′, θ′) ∗ PL1(w′, θ′)dθ′dw′

(L1)

PS1(u | w, θ) =
(PL0(w | u, θ) ∗ e−C(u))α

Σu′∈U (PL0
(w | u′, θ) ∗ e−C(u′))α

(S1)

PL0
(w | u, θ) = PL0

(w | JuKθ = >) (L0)

Thus abstractly, pragmatic listeners provide a joint posterior distribution over
world states w and parameters θ, given an utterance u0.5 Pragmatic speakers
provide a distribution of utterances, given the particular world state w (and
parameter θ) they wish to communicate. These utterances, moreover, are taken
from an antecedently chosen set U of possible utterances, which is generally
assumed to be finite, thus justifying the use of summation in the normalizing
factor for S1. Finally, linguistic uncertainty is represented by the parameter θ,
which is passed from the pragmatic listener L1 down to the literal listener L0,
through the speaker model S1. Note, therefore, that L1 differs from L0 in a

5 Note that we define this posterior in terms of a prior joint distribution. Lassiter
and Goodman (2013) assume the prior distributions over world states and linguistic
parameters to be independent, with an effectively uniform prior over parameters.



10 Julian Grove and Jean-Philippe Bernardy

crucial respect: while L1 samples both world states and parameters, L0 samples
only world states, relying on a parameter which has been fixed by L1.

6.3 RSA: implementation

Our purpose is to illustrate how the RSA framework may be realized in the
vocabulary of probabilistic programs. Thus taking u to be the type of utterances,
σ the type of world states, and π the type of linguistic parameters, we aim to find
a program L1 of type u→ (σ×π → r)→ r, which, given an utterance, provides
a joint distribution over world states and parameters, and which satisfies the
desiderata laid out above. In order to do so, it is useful to introduce the following
generalization of observe to fuzzy conditions:

factor : r → (� → r)→ r

factor x f = x ∗ f(�)

Instead of a truth value, factor takes a real number and applies it as a weight to
the result of its continuation. Thus observe may be viewed as the specific case
of factor in which the relevant weight is either 1 or 0.

Now, we may formulate L1 as follows. Say that S1 provides a probabilistic
program returning utterances, given a world state and a parameter; i.e., it is of
type σ × π → (u → r) → r. Then given some w and θ, we would like access
to the probability density function corresponding to S1(w, θ) — PDFS1(w,θ) —
of type u → r, so that we may appropriately factor the probability of 〈w, θ〉
in L1, given an utterance. (We will come back to how we obtain the PDFs
of probabilistic programs shortly. For now, we simply take them for granted.)
Moreover, let us assume that world states and parameters take prior distributions
W : (σ → r) → r and Θ : (π → r) → r, respectively. These assumptions leave
us with the following definition of L1:

L1(u0) = W ? λw.Θ ? λθ.factor(PDFS1(w,θ)(u0)) ? λ�.η(w, θ)

Now, given some prior distribution U over utterances (i.e., of type (u→ r)→ r),
we may similarly provide definitions of S1 and L0:

S1 : σ × π → (u→ r)→ r

S1(w, θ) = U ? λu.factor(PDFL0(u,θ)(w) ∗ e−C(u))α ? λ�.η(u)

L0 : u× π → (σ → r)→ r

L0(u, θ) = W ? λw.observe(LuM〈w,θ〉) ? λ�.η(w)

Note our use of notation in the definition of L0: 〈w, θ〉 is assumed to provide a
context in which we can interpret the utterance u, which we encode as a formula.
Thus the relevant λ-homomorphism maps the type u onto t (u = t).

Having stated our formulation of RSA somewhat abstractly, let us now turn
to the problem of PDFs; that is, of obtaining a PDF of type α → r from a



Probabilistic compositional semantics, purely 11

probabilistic program of type (α → r) → r. If α is finite, we may construct
this function as follows (recall that P takes a probabilistic program of type
(t→ r)→ r into a probability):6

PDF(·) : ((α→ r)→ r)→ α→ r

PDFp = λx.P (p ? λy.η(y = x))

That is, for every x : α, PDFp(x) evaluates the probability that p returns x.
If α is continuous, however, we have a problem: the probability that any two

values x and y are equal is zero, and the above definition of a PDF would have
it return zero everywhere! Fortunately, there are sound remedies which we may
adopt. For instance, we may take the derivative of the cumulative mass of a
given distribution p with respect to the argument:

PDFp = λx.
d

dx
[P (p ? λy.η(y ≤ x))]

Indeed, these two definitions of PDF may be plugged into the definitions above,
depending on whether the type of the relevant argument is finite (e.g., an utter-
ance) or continuous, in order to obtain a fuller specification of L1.7 One need
only determine what the distributions U , W , and Θ are. To realize the model of
Lassiter and Goodman (2013), we would take U to be a small finite set, W to be
a normal distribution, and Θ to be, effectively, uniform.8 The resulting proba-
bilistic program can be computed approximately using Monte Carlo methods; in
this case, one will typically evaluate a probabilistic program to an approximate,
finite PDF.

We close out this section by observing a noteworthy feature of the foregoing
formulation of RSA: it highlights an odd lack of symmetry between the L1

model and the L0 model. Why does L1 sample both world states from W and
linguistic parameters from Θ, while L0 samples only the former? Indeed, this
fact is reflected in their types! L1 is of type u → (σ × π → r) → r: it takes an
utterance and returns a distribution over pairs of world states and parameters.
Meanwhile, L0 is of type u × π → (σ → r) → r: it takes a pair of an utterance
and a parameter and returns a distribution over world states. Thus L0 considers
a linguistic parameter which has been fixed by L1 and S1. Put differently, S1

reasons about an L0 that knows θ ahead of time, when determining what to say.

6 When α is finite, one generally speaks of a probability mass function. We use the
term ‘PDF’ in a generic way, however.

7 An alternative, syntactically closer to the discrete case, relies on the Dirac δ distri-
bution, whose value is zero everywhere except when its argument is zero, and whose
total mass sums to one. Thus we recover a non-zero result after integration:

PDFp = λx.p(λy.δ(x− y))

8 More accurately, we would take U to be uniform over a finite set, SU . Thus we would
define it as U = λk.Σu∈SU k(u).



12 Julian Grove and Jean-Philippe Bernardy

Yet more vividly, the pragmatic listener assumes that the speaker is under the
impression that the two have already (telepathically, perhaps) coordinated on
linguistic parameters.

Maybe, it is more realistic not to assume that S1 imagines such an omniscient
L0. In fact, relaxing this assumption restores the symmetry of the model. At the
same time, it conveniently allows us not to explicitly split the context κ into two
parts w and θ. As in previous sections, we assume that the context has some
type κ = α1 × ...× αn:

L1 : u→ (κ→ r)→ r

L1(u) = K ? λκ.factor(PDFS1(κ)(u)) ? λ�.η(κ)

S1 : κ→ (u→ r)→ r

S1(κ) = U∗ ? λu.factor(PDFL0(u)(κ)α) ? λ�.η(u)

L0 : u→ (κ→ r)→ r

L0(u) = K ? λκ.observe(LuMκ) ? λ�.η(κ)

To simplify the presentation, we have used the notation U∗ to stand for a distri-
bution over utterances which has already incorporated a notion of cost.9 In our
final formulation, both L1 and L0 have the same type. There is thus a more gen-
eral notion of “listener”, corresponding to a family of maps from utterances to
distributions over contexts (or, equivalently, joint distributions over world states
and linguistic parameters). Such listeners differ only in how they marginalize the
prior: the literal listener uses a literal interpretation, while the pragmatic listener
uses a pragmatic interpretation. Such pragmatic interpretations arise from the
the speaker model, which chooses utterances which best fit the state of the world
that it wishes to communicate.10

In summary, we have a realization of RSA that is highly compositional, in
two senses. First, the models themselves are assembled compositionally in terms
of probabilistic programs and monadic combinators. Second, utterances, repre-
sented by logical formulae, are interpreted compositionally, and such formulae
may be obtained from natural language sentences using standard compositional
techniques. At the same time, the mathematical vocabulary for describing RSA
models is one and the same as that for describing linguistic meanings.

7 Conclusion

Our aim has been to lay a strong foundation for compositional probabilistic
semantics. Many details have been left out, including about how one might rep-
resent prior knowledge, concretely. Many possibilities arise here. For instance,

9 To implement the definition of cost employed by RSA models, for example, U∗ could
be U ? λu.factor(e−α∗C(u)) ? λ�.η(u), given some uniform distribution U .

10 Systematically, if α tends to ∞; probabilistically, otherwise.



Probabilistic compositional semantics, purely 13

one may follow machine-learning methods and use vectors to represent individ-
uals (Bernardy et al, 2021), while predicates are represented by hyperplanes in
the relevant space (Bernardy et al, 2019). An alternative would encode prior
knowledge in terms of the same logic used to represent meanings, i.e., as sets of
formulae. One may then constrain distributions over contexts in terms of such
formulae (Grove et al, 2021). Following this route, one may obtain a seamless
integration of Bayesian and logical representations of knowledge.

We should note that, while the logical fragments provided here are rudimen-
tary, they are also merely expository: there is no deep reason that we did not
provide a richer semantics, e.g., incorporating dynamism (following the tradition
of combining dynamic semantics with the simply typed λ-calculus). Indeed, one
could combine the framework we have illustrated with a logical semantics that
itself uses continuations (Barker and Shan, 2014; Lebedeva, 2012) or monads
(Charlow, 2014).

Finally, while our contribution is chiefly a theoretical one, the system de-
scribed in this paper has been implemented using the Haskell programming
language (available at https://github.com/juliangrove/grove-bernardy-lenls18).
The mathematical vocabulary that we have employed here to assemble expres-
sions of type r is closely mirrored by the implementation in terms of a domain-
specific language for characterizing Markov chain Monte Carlo sampling proce-
dures. Thus while many of the probabilistic programs provided above cannot be
evaluated to closed-form solutions, they may all be finitely approximated, given
sufficiently many samples. Most important, however, the modular division of la-
bor between logical expressions and probabilistic side effects is straightforward
to simulate in Haskell, given the pure functional setting it provides.

We have shown that a probabilistic semantics of natural language is amenable
to a fully formal treatment — one which remains squarely within the realm of
pure typed λ-calculi. The key idea is to use an effect system to capture prob-
abilistic operations (i.e., sampling and marginalization). Our approach fits the
general framework of monadic semantics, and, as such, augments a literature
that has grown in many exciting ways since the work of Shan (2002).

Bibliography

Barker C, Shan Cc (2014) Continuations and natural language, vol 53. Oxford
studies in theoretical linguistics

Bernardy JP, Blanck R, Chatzikyriakidis S, Lappin S, Maskharashvili A (2019)
Predicates as Boxes in Bayesian Semantics for Natural Language. In: Proceed-
ings of the 22nd Nordic Conference on Computational Linguistics, Linköping
University Electronic Press, Turku, Finland, pp 333–337

Bernardy JP, Blanck R, Chatzikyriakidis S, Maskharashvili A (2021) Bayesian
Natural Language Semantics and Pragmatics. In: Bernardy JP, Blanck R,
Chatzikyriakidis S, Lappin S, Maskharashvili A (eds) Probabilistic Ap-
proaches to Linguistic Theory, CSLI Publications

Charlow S (2014) On the semantics of exceptional scope. PhD Thesis, NYU,
New York, URL https://semanticsarchive.net/Archive/2JmMWRjY

https://github.com/juliangrove/grove-bernardy-lenls18
https://semanticsarchive.net/Archive/2JmMWRjY


14 Julian Grove and Jean-Philippe Bernardy

Girard JY (1972) Interprétation fonctionnelle et élimination des coupures de
l’arithmétique d’ordre supérieur. PhD thesis, Université Paris 7

Goodman ND, Frank MC (2016) Pragmatic Language Interpretation as Proba-
bilistic Inference. Trends in Cognitive Sciences 20(11):818–829

Goodman ND, Lassiter D (2015) Probabilistic Semantics and Pragmatics Un-
certainty in Language and Thought. In: Lappin S, Fox C (eds) The Handbook
of Contemporary Semantic Theory, John Wiley & Sons, Ltd, pp 655–686

Goodman ND, Stuhlmüller A (2013) Knowledge and Implicature: Modeling
Language Understanding as Social Cognition. Topics in Cognitive Science
5(1):173–184

Goodman ND, Mansinghka VK, Roy D, Bonawitz K, Tenenbaum JB (2008)
Church: a language for generative models. In: Proceedings of the Twenty-
Fourth Conference on Uncertainty in Artificial Intelligence, AUAI Press, Ar-
lington, Virginia, USA, UAI’08, pp 220–229

Grice HP (1975) Logic and Conversation. In: Cole P, Morgan JL (eds) Syntax
and Semantics, vol 3, Speech Acts, Academic Press, New York, pp 41–58

Grove J, Bernardy JP, Chatzikyriakidis S (2021) From compositional semantics
to Bayesian pragmatics via logical inference. In: Proceedings of Natural Logic
meets Machine Learning 2021

Jannsson P, Ionescu C, Bernardy JP (2021) Probability Theory. In:
Domain Specific Languages of Mathematics, pp 196–215, URL
https://github.com/DSLsofMath/DSLsofMath/blob/master/L/snapshots/
DSLsofMathBook snapshot 2021-03-06.pdf

Lassiter D, Goodman ND (2013) Context, scale structure, and statistics in the
interpretation of positive-form adjectives. Semantics and Linguistic Theory
23(0):587–610, number: 0

Lassiter D, Goodman ND (2017) Adjectival vagueness in a Bayesian model of
interpretation. Synthese 194(10):3801–3836

Lebedeva E (2012) Expressing discourse dynamics through continuations. PhD
thesis, Université de Lorraine, Lorraine

Mohammed Ismail W, Shan Cc (2016) Deriving a probability density calculator
(functional pearl). In: Proceedings of the 21st ACM SIGPLAN International
Conference on Functional Programming, Association for Computing Machin-
ery, New York, NY, USA, ICFP 2016, pp 47–59

Shan Cc (2002) Monads for natural language semantics. In: Striegnitz K (ed)
Proceedings of the ESSLLI 2001 Student Session, 13th European Summer
School in Logic, Language, and Information, Helsinski

https://github.com/DSLsofMath/DSLsofMath/blob/master/L/snapshots/DSLsofMathBook_snapshot_2021-03-06.pdf
https://github.com/DSLsofMath/DSLsofMath/blob/master/L/snapshots/DSLsofMathBook_snapshot_2021-03-06.pdf

	Probabilistic compositional semantics, purely

