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Abstract We investigatewhether the factive presuppositions associatedwith some clause-

embedding predicates are fundamentally discrete in nature—as classically assumed—or

fundamentally gradient—as recently proposed (Tonhauser, Beaver, and Degen 2018). To

carry out this investigation, we develop statistical models of presupposition projection

that implement these two hypotheses, fit these models to existing inference judgment

data aimed at measuring factive presuppositions (Degen and Tonhauser 2021), and com-

pare the models’ fit to the data using standard statistical model comparison metrics. We

find that models implementing the hypothesis that presupposition projection is funda-

mentally discrete fit the data better than models that implement the hypothesis that it is

fundamentally gradient. To evaluate the robustness of this finding, we collect three ad-

ditional datasets: a replication of the original dataset, as well as two datasets that modify

the methodology of the original. Across each of these three datasets, we again find that

models implementing the discreteness hypothesis fit the data better than models that

implement the gradience hypothesis. Based on these results, we argue that classical se-

mantic accounts of factive predicates can remain largely intact.

1 Introduction

Semantic theories aim to characterize the inferences that natural language expressions sup-

port and to account for at least a subset of the necessary inferences, given the meanings of

the expressions. Whether or not a particular inference is necessary is commonly assessed via

native speaker judgments. Judgment data, however, tends to be influenced by a number of

non-semantic factors. These factors run the gamut: from high-level factors, such as speakers’

prior beliefs about the likelihood that an inference is true or ambiguities about the expressions

involved, to low-level factors, such as the strategies speakers use to map their judgments to a

data collection instrument (e.g., a slider representing likelihood or certainty) or their skill in

producing an accurate target response using such instruments.

Testing a semantic theory against inference judgment data thus requires auxiliary as-

sumptions about the link between (some representation of) these factors and the theoretical
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constructs of interest. Such linking assumptions are often left implicit in classical methodolo-

gies employing informal experiments. In recent years, however, the need to formulate explicit

linking assumptions has become pressing in light of theoretical developments within seman-

tics that are motivated by finer-grained aspects of the distribution of inference judgments

than can be observed informally.

One area where such motivations have become particularly important is the domain of

presupposition projection (in general) and factivity (in particular). A predicate is said to be

factive if it is implicated in triggering veridicality inferences—i.e., inferences that the content
of its embedded clause is true—regardless of whether or not entailment canceling operators

take scope over that predicate (Kiparsky and Kiparsky 1970). For example, love is often taken

to be factive, since sentences such as those in (1) give rise to the inference in (2).

(1) a. Jo loves that Mo left.

b. Jo doesn’t love that Mo left.

c. Does Jo love that Mo left?

d. Jo might love that Mo left.

e. If Jo loves that Mo left, she’ll also love that Bo left.

(2) Mo left.

Diagnosing factivity has long been know to be challenging due to the influence a predicate’s

context of use exerts on the relevant veridicality inferences (Karttunen 1971 et seq). Thus, to
better understand the factors that drive factive inferences, it has become more common for

researchers to collect judgments from native speakers in formal experiments, often in large

quantities, in order to evaluate hypotheses about the semantic properties of factive predi-

cates, as well as about how these semantic properties relate to the distributional properties

of judgment data (Tonhauser 2016; Djärv and Bacovcin 2017; Djärv, Zehr, and Schwarz 2018;

White and Rawlins 2018b; White, Rudinger, et al. 2018; White 2021; Degen and Tonhauser

2021; Degen and Tonhauser 2022; Jeong 2021; Kane, Gantt, and White 2022).

Of particular importance in the experimental literature on factivity has been the obser-

vation that, in tasks aimed at measuring a predicate’s factivity, aggregate measures derived

from inference judgment tasks show much more gradience than one might initially expect

under a classical view of factivity as a discrete property (White and Rawlins 2018b). Some

authors have gone so far as to claim that such gradience casts doubt on the very notion that

there are discrete lexical properties driving factive inferences at all (Degen and Tonhauser

2022). Such doubt is consistent with the view that presupposition projection is fundamen-

tally gradient in general (Tonhauser, Beaver, and Degen 2018). This fundamental gradience
hypothesis contrasts with a fundamental discreteness hypothesis, which instead aims to retain

the classical view of factivity as a discrete property (or collection of properties) by attributing

a significant portion of the observed gradience to the sorts of non-semantic factors discussed

above. We discuss these hypotheses in more detail in Section 2.
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Our central aim in this paper is to quantitatively evaluate these two hypotheses by de-

veloping a framework that allows us to explicitly formulate the link between their respective

construals of factivity and the way humans produce judgments that depend on these constru-

als. The core theoretical contribution we make in developing this framework, which builds

on one proposed by Grove and Bernardy (2023), is to provide a way to transparently relate

the sorts of formal compositional analyses of expressions’ meanings that are common in the

formal semantics literature to probabilistic models characterizing distributions over inference

judgments.

We formally define the framework in Section 3 before using it to carry out an apples-to-

apples comparison of the two hypotheses in Sections 4 and 5. This apples-to-apples compar-

ison is possible because our framework allows us not only to precisely target where these

hypotheses make different predictions about the distribution of inference judgments across

participants, but furthermore does so by allowing us to use standard statistical model com-

parison metrics which balance out a model’s fit to some inference judgment data against the

model’s complexity. Using such metrics, we find that models that implement the fundamental

discreteness hypothesis unambiguously outperform models that implement the fundamental

gradience hypothesis across both an existing dataset aimed at measuring factivity (Degen and

Tonhauser 2021) and three new datasets: a replication of the existing dataset, along with two

novel datasets. Based on these results, we argue in Section 6 that a classical semantic account

of factive predicates can remain largely intact. We also discuss how the framework we de-

velop in this paper might be understood as providing a common view of classsical theories of

factivity and theories that attempt to reduce it to an entirely pragmatic process (Simons 2007;

Simons, Tonhauser, et al. 2010; Simons, Beaver, et al. 2017).

2 Gradient inference patterns among factive predicates

The advent of large-scale inference judgment datasets—such as MegaVeridicality (White and

Rawlins 2018b; White, Rudinger, et al. 2018), VerbVeridicality (Ross and Pavlick 2019), and

CommitmentBank (De Marneffe, Simons, and Tonhauser 2019)—has enabled fine-grained

analyses of inference judgment patterns across the entire clause-embedding lexicon. Across

such datasets, there is substantial gradience observed in the aggregate judgments of multiple

speakers. This aspect of the distribution of inference judgments has garnered sustained focus.

In the domain of factivity, such gradience is noted by White and Rawlins (2018b), who

look at aggregate measures of different predicates’ degree of factivity, using data from the

MegaVeridicality dataset (see Figure 1). They observe that “there are not necessarily clear

dividing lines between. . . classes [expected in a standard classification of clause-embedding

predicates]. . . suggesting that speakers’ inferences about veridicality are generally quite gra-

dient and likely influenced by the fine-grained semantics of particular verbs” (ibid, p. 228).1

In later work building on White and Rawlins’s, Degen and Tonhauser (2022) investigate

the nature of this gradience in six experiments, arguing that its persistence across experiments

1
This gradience is not White and Rawlins’s main focus, since they are interested in the relationship between

inference and predicate distribution, rather than the semantic classification of predicates. They thus make no

particular claims about its importance.
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Figure 1: Aggregatemeasure of factivity derived fromMegaVeridicality fromWhite and Rawl-

ins 2018b (their Ex. 14). The 𝑦-axis corresponds to an aggregate measure of responses to

prompts of the form Someone (was) __ed that a particular thing happened. Did that thing hap-
pen? with possible responses yes, maybe or maybe not, and no. The 𝑥-axis corresponds to
the same measure for prompts of the form Someone {didn’t, wasn’t} __ that a particular thing
happened. Did that thing happen? with the same possible responses. Each grey point is a pred-

icate, with a subset of predicates labeled. Label color corresponds to the syntactic context a

predicate was measured in. Arrows and dotted lines can be ignored for current purposes.

militates against the hypothesis that there is a coherent class of factive predicates.

Our own modeling work uses data collected under the same experimental paradigm that

Degen and Tonhauser employ, and so we describe their data and arguments in detail in Sec-

tion 2.1. In Section 2.2, we turn to the broad question of which factors are responsible for the

gradience observed in inference judgment tasks; we discuss evidence that, when one appro-

priately accounts for these factors, a small number of clear, inferentially defined classes of

predicates are brought into relief (Kane, Gantt, andWhite 2022), thus casting doubt on Degen

and Tonhauser’s argument that there is no coherent class of factive predicates. Nonetheless,

as we discuss in Section 2.3, there is apparent gradience internal to each of these classes,

as well as among them, which may be compatible with the program, laid out by Tonhauser,

Beaver, and Degen (2018), of viewing all presupposition projection as fundamentally gradient

in nature. It is this latter hypothesis that we address in this paper.
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2.1 Measuring veridicality and factivity

In each of their experiments, Degen and Tonhauser (2022) focus on the set of twenty clause-

embedding predicates listed in (3), which they group into classes based on priorwork (Kiparsky

and Kiparsky 1970; Karttunen 1971; Hooper and Thompson 1973; Givón 1973; Hooper 1975;

Abusch 2002; Abusch 2010; Abrusán 2011; Abrusán 2016; Anand and Hacquard 2014, i.a.).

(3) Twenty clause-embedding predicates (Degen and Tonhauser 2022, p. 559, ex. 13)

a. canonically factive: be annoyed, discover, know, reveal, see

b. non-factive

(i) non-veridical non-factive: pretend, say, suggest, think
(ii) veridical non-factive: be right, demonstrate

c. optionally factive: acknowledge, admit, announce, confess, confirm, establish, hear,
inform, prove

In their discussion of the relationship between the traditional classification of these predicates

and the experimental data involving projective inferences which they go on to collect, they

say, “. . .we expect to see a categorical difference in projection between canonically factive

predicates on the one hand, and optionally factive and nonfactive predicates on the other”

(p. 569). To assess projection, Degen and Tonhauser provide participants with a scenario

in which someone asks a polar question whose main verb is one of the factive predicates of

interest, e.g., (4).

(4) Helen asks: Did Amanda discover that Danny ate the last cupcake?

They then ask participants to provide a rating on a continuous scale from no to yes in answer

to a prompt of the form in (5), in order to assess the extent to which participants believe that

the embedded clause is presupposed.

(5) Is Helen certain that Danny ate the last cupcake?

In another experiment, Degen and Tonhauser give participants a variant of this task in which

their answer is provided as a binary forced choice between no and yes.
Degen and Tonhauser also claim that categories of predicates ought to emerge when ana-

lyzing judgments of veridicality: “we expect the [contents of the complements of] canonically

factive and veridical nonfactive predicates to be entailed” (p. 569). They assess veridicality

inferences using two methods. First, they provide participants with a scenario in which a

sentence containing one of the predicates of interest is assumed to be true, as in (6).

(6) What is true: Edward proved that Grace visited her sister.

They then prompt participants using a question of the form in (7).
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Figure 2: Verb means from Degen and Tonhauser’s (2022) experiment 1a. “Non-factive” verbs

are in red, “optionally factive” verbs are in teal, and “canonically factive” verbs are in green.

Violin plots indicate the probability density of responses. (See Degen and Tonhauser 2022,

Figure 2, p. 562.)

(7) Does it follow that Grace visited her sister?

Depending on the experiment, either participants answer on a sliding scale from no to yes, or
they are asked to make a binary forced choice between no and yes.

Second, Degen and Tonhauser provide participants with a scenario in which someone

makes an utterance which should be contradictory if the relevant complement clause is en-

tailed, as in (8).

(8) Margeret: “Edward heard that Mary is pregnant, but she isn’t.”

Participants are then prompted to answer a question of the form in (9) either on a sliding scale

or by making a binary forced choice, depending on the experiment.

(9) “Is Margaret’s utterance contradictory?”

Consistent with White and Rawlins’s original observation, Degen and Tonhauser observe

that the patterns of inference across predicates in the six experiments are gradient in nature

for both projection and veridicality. The degree to which predicates display projective in-

ferences appears to evolve continuously from the least projective predicate (pretend) to the

most projective (be annoyed) when predicates are compared in terms of their mean ratings

(see Figure 2). Such gradience is manifest in both of the experiments assessing projection—

the one which collects sliding scale judgments and the one which collects binary judgments.

A similar pattern emerges in the experiments assessing veridicality inferences. Crucially, no
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predicate patterns consistently across all four of the experiments assessing veridicality with

the control items that were constructed to generate entailments to the relevant clause.

2.2 Gradience in inference datasets

Degen and Tonhauser’s results are consistent, not only with White and Rawlins’s original

observation, but with findings from adjacent domains. An and White (2020) observe simi-

lar gradience in neg-raising inferences captured in their MegaNegRaising dataset; and Kane,

Gantt, and White (2022) note an analogous pattern among belief and desire inferences cap-

tured in their MegaIntensionality dataset.

Kane, Gantt, and White note that, in the face of such gradience, it is reasonable to en-

tertain two kinds of hypotheses. One possibility is that “apparent gradience indicates that

no formally represented lexical property controls whether a particular inference is triggered”

(p. 572). Another is that “apparent gradience [may be] partly or wholly a product of the

methods often used to collect inference judgments, and that there are discrete, formally

represented lexical properties that are [nevertheless] active in triggering. . . inferences” (p.

572). To pursue this question, they ask whether clear patterns of inference emerge across

the inference judgment datasets discussed above—MegaVeridicality, MegaNegRaising, and

MegaIntensionality—by clustering predicates into classes according to the responses from

those datasets so as to optimize their ability to predict predicates’ syntactic distributions, as

measured in the MegaAcceptability dataset (White and Rawlins 2016).
2
They uncover fifteen

classes of predicates that correspond extremely closely to those that one would expect from

prior work on clause-embedding predicates. As can be seen in Figure 3, these classes include

a variety of factive subclasses that differ principally in the pattern of belief and desire infer-

ences they are associated with. As one might expect from prior literature, the true factive

subclasses tend to be emotive, including, for example, love and hate.
Kane, Gantt, and White’s findings establish that there is a coherent class of factive pred-

icates (which are, in turn, subclassed by the belief and desire inferences they give rise to).

But they also find that there are a variety of classes associated with weaker veridicality in-

ferences than one might expect from a truly factive class. These classes include non-emotive

predicates, like know and realize. Thus while it is not correct to say that there is no class of

factive predicates, one must still explain the source of the apparent gradience associated with

certain classes, such as the non-emotive ones, as Degen and Tonhauser point out (Section 4.1,

Objection 3). Class-level gradience of this kind is unlikely to be—as Kane, Gantt, and White

put it—“partly or wholly a product of the methods often used to collect inference judgments”,

since their analysis expressly accounts for the relevant task effects.

One way to account for this gradience is to adapt Tonhauser, Beaver, and Degen’s hypoth-

esis that projection is fundamentally gradient to classes; for example, by admitting predicate

classes that may be associated with particular amounts of gradience in the degree to which a

predicate’s complement projects. Alternatively, one might take seriously a hypothesis which

2
The idea behind optimizing the predictability of predicates’ syntactic distribution is that, insofar as the classes

to which a predicate belongs are predictive of its syntactic distribution, there is preliminary evidence that that

class is associated with some distributionally active lexical representation.
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Figure 3: Veridicality inferences associated with each class found in Kane, Gantt, and White

2022. Kane, Gantt, and White provide labels for each class based on the predicates that occur

in that class as well as the belief and desire inferences associated with that class. The top

row and bottom row correspond to the 𝑦- and 𝑥-axes of Figure 1, respectively. The classes

associated with dark orange cells in both rows are taken to be factive subclasses.

Degen and Tonhauser discuss—namely, that “the observed gradience in projection [is] com-

patible with a binary factivity category in combination with two assumptions: first, that pred-

icates may be ambiguous between a factive lexical entry. . . and a nonfactive lexical entry. . .

and, second, that interpreters may be uncertain about which lexical entry a speaker intended

in their utterance” (p. 583). Our task in this paper is to formalize these two possibilities so

that we may quantitatively compare them.

2.3 The role of world knowledge in gradient inference judgments

Our comparison will rely crucially on a paradigm used by Degen and Tonhauser (2021), who

aim to characterize the influence of world knowledge on projection inferences, focusing on

the same twenty clause-embedding predicates in (3). We employ this paradigm because it

allows us to explicitly model the influence of non-semantic factors—specifically, speakers’

prior beliefs about the likelihood of an inference being true. Similar to the experiment re-

ported above, in which Degen and Tonhauser (2022) measure presupposition projection out

of the complement of a predicate placed inside of a polar question, Degen and Tonhauser

(2021) measure projective inferences in the presence a background fact whose content they

manipulate (their experiment 2b). To illustrate, the following experimental trial features the

predicate pretend:
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The same twenty complement clauses as fromDegen and Tonhauser 2022 are also featured

in this experiment, but now each clause is paired with one of two facts: either a fact intended

to make the clause likely to be true (as in the example above), or a fact intended to make

the clause unlikely to be true. Each participant in this experiment sees twenty items (along

with six control items). On each experimental trial, a predicate is placed in the context of

one of the twenty clauses, along with one of the two background facts constructed for that

clause. The results Degen and Tonhauser (2021) obtain in this setting mirror those of Degen

and Tonhauser (2022). In particular, the mean projection ratings for the twenty predicates

show a similar gradient pattern (Spearman’s 𝑟 = 0.98∗∗∗).3

In addition to the assessment of projective inferences given background facts, Degen and

Tonhauser (2021) conduct a norming experiment, in which the prior certainties about the

truth of the complement clauses featured in their projection experiment are assessed inde-

pendently, given the same background facts (their experiment 2a). Trials in this experiment

ask participants to judge how likely the relevant clause is to be true, given one of the two

background facts constructed for it. For example, the following trial features the same clause

as in the example given above, but with the alternate low-probability fact:

Degen and Tonhauser find that the by-item means for the forty pairs of complement

clauses and background facts, as assessed in their norming experiment, are a good linear

predictor of the inference ratings for items featuring the same complement clauses and facts

3
Following standard convention, we use three asterisks to indicate that 𝑝 < 0.001 when reporting correlation

coefficients.
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which they obtain in their experiment investigating projection inferences.
4
Thus at least one

source of variation among the projective inferences associated with clause-embedding pred-

icates is the context in which these predicates are placed; in particular, the prior certainties

that people associate with these contexts. This, of course, cannot be the whole story, as De-

gen and Tonhauser observe: the mean projection ratings for predicates display substantial

gradience even after collapsing across the contexts in which they occur (following their 2022

experiment 1a: see Figure 2). So, what explains the remaining variation?

2.4 Two accounts of gradience

We consider two hypotheses about the source of variation in projective inference judgments

among clause-embedding predicates:

(10) a. The Fundamental Discreteness Hypothesis. Factivity is a discrete semantic prop-

erty of at least some token occurrences of expressions containing at least some

clause-embedding predicates. A given use of an expression containing a particular

predicate either triggers a projective inference, or it does not trigger a projective

inference.

b. The Fundamental Gradience Hypothesis. There is no grammatical property dis-

tinguishing factive from non-factive occurrences of clause-embedding predicates.

Rather, the gradient distinctions among predicates (and classes thereof) reflect the

different gradient contributions specific predicates make to the inferences about

the truth of their complement clauses.

According to the fundamental discreteness hypothesis, the gradience among the predicates

discussed above is driven by metalinguistic knowledge. Individual occasions on which a

predicate is used may be associated with uncertainty about whether or not the expression

containing the predicate triggers projection, but that uncertainty is about which of the alter-

native interpretations of the expression should be selected. Alternative interpretations may

be available because the predicate has multiple senses—at least one that is implicated in trig-

gering projection and at least one that is not; or because the predicate may occur in multiple

structures—at least one that is implicated in triggering projection and at least one that is not.
5

The gradience associated with particular classes of predicates that Kane, Gantt, andWhite ob-

serve might then indicate a sort of regular polysemy among predicates within a class, or it

might indicate that predicates in the class bias the resolution of syntactic ambiguity in similar

ways.
6

4
They find a similar effect when the type of prior fact, whether “low” or “high”, is coded as a categorical

variable.

5
The second option is possible in light of a substantial amount of cross-linguistic evidence that functional

items surrounding a predicate—e.g., nominal morphology attached to verbs or their clausal complements—can

modulate veridicality inferences (see Varlokosta 1994; Giannakidou 1998; Giannakidou 1999; Giannakidou 2009;

Roussou 2010; Farudi 2007; Abrusán 2011; Kastner 2015; Ozyildiz 2017; see White 2019 for discussion).

6
Alternatively, one could posit that, rather than indeterminacy in the interpretation of an expression, there is

uncertainty over possible questions under discussion (QUDs) against which the expression is interpreted. Such

an alternative is compatible with, e.g, the proposal in Simons, Beaver, et al. 2017. While the QUD may be the
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According to the fundamental gradience hypothesis, the variation in projective inferences

among clause-embedding predicates is gradient because the inferences that the predicates

trigger are themselves gradient (Tonhauser, Beaver, and Degen 2018). In this respect, such

inferences may be on a par with those contributed by prior world knowledge: the use of

a given predicate boosts the likelihood that its complement clause is true, but this boost is

not conditioned by a discrete, formal aspect of the predicate’s semantic representation that

produces a presupposition or an entailment. Crucially, there is no selection among alternative

interpretations on particular occasions of use, under this hypothesis. One way to think about

it is that it analogizes clause-embedding predicates, like know, to vague predicates, like tall.
Importantly, both of these hypotheses concern what comprehenders do when they draw

inferences from particular uses of a predicate; that is, does their behavior look more like am-

biguity resolution or more like, e.g., reasoning about vagueness? We stress that this question

is independent of the question of whether there are factive predicates (or subclasses thereof),

which we take to be resolved by Kane, Gantt, and White’s findings. Thus, our findings do not

presuppose the correctness of Kane, Gantt, and White’s argument, though our interpretation

of our own findings in Section 6 crucially makes reference to theirs.

3 Probabilistic semantics

To state a theory of gradience precisely, it is useful to have a general method for integrat-

ing probabilistic reasoning into a compositional semantics. Here, we rely on the framework

provided by Grove and Bernardy (2023), which supplies an interface for performing Bayesian

reasoning in the simply typed 𝜆-calculus (with products) usingmonads.7 The main upshot of

this framework is that it allows one to transparently relate the sorts of compositional analyses

of expressions’ meanings common in the formal semantics literature to probabilistic models

characterizing distributions over inference judgments.

As we will show, the framework allows for a precise specification of the two hypotheses

laid out above, while keeping fixed both the formal analysis of the expressions of interest

and the way in which probability distributions over inference judgments are mapped onto a

particular data collection instrument. These aspects of the framework are important because,

as we show in Sections 4 and 5, they allow us to conduct an apples-to-apples comparison of the

two hypotheses that not only precisely targets where they make different predictions about

the distribution of inference judgments across participants, but furthermore does so using

standard statistical model comparison metrics which balance out a model’s fit to inference

judgment data against the model’s complexity.

We begin in Section 3.1 with introductory background on Grove and Bernardy’s frame-

work before turning in Section 3.2 to our extension of it, which allows us to finely delineate

source of ambiguity, it is not clear how to reconcile this approach with the observation that different (classes

of) predicates are associated with particular levels of gradience without saying that lexical semantic knowledge

conditions QUD choice. This move would violate the spirit of such conversationalists proposals, which generally

attempt to do away with heavy conditioning on lexical information (see White 2019 for discussion).

7
See Giorgolo and Asudeh 2014; Asudeh and Giorgolo 2020 and Bernardy, Blanck, Chatzikyriakidis, and

Lappin 2018 for related monadic approaches. These approaches have slightly different aims from Grove and

Bernardy’s, which are reflected in the distinct interfaces they supply.
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uncertainty that is core to the semantic value of an expression—giving rise to phenomena

such as vagueness—from uncertainty about which interpretation should be associated with a

particular string—giving rise to metalinguistic uncertainty (see Bergen, Levy, and Goodman

2016; Potts et al. 2016; Monroe 2018 for a collection of related approaches). We illustrate the

distinction between these two forms of uncertainty by first walking through an analysis of

gradable adjectives in the Grove and Bernardy setting, since it allows us to highlight how their

framework approaches vague predicates. We then give a minimalistic analysis of factivity in

Section 3.3.

3.1 Denotations as probabilistic programs

The thrust of Grove and Bernardy’s framework is to provide an approach to probabilistic
semantics that assimilates the probabilistic component of such a semantics to other notions

of effect that have been studied in the formal semantics literature using monads—e.g., Shan’s

(2002) first introduction of monads into this literature, with illustrations from focus, question

semantics, anaphora, and quantification; Unger’s (2012) and Charlow’s (2014) approaches

to anaphora using the State monad (and, in the latter case, the State transformer of Liang,

Hudak, and Jones 1995); and various other phenomena, including conventional implicature

(Giorgolo and Asudeh 2012), intensionality (Charlow 2020; Elliott 2022), and presupposition

(Grove 2022).

To take an example familiar from probabilistic semantics settings, consider the meaning

of the gradable adjective tall. Modeling only its role as a descriptor of individuals, one might

regard tall as a predicate of type 𝑒 → 𝑡 . To capture the contribution of tall to the entail-

ments of expressions that contain it, one might then model its denotation as contributing the

entailment that the height of the predicated individual 𝑥 is greater than some contextually

determined threshold 𝑑 . Doing this, however, might lead to a semantic representation like

the following, which involves an unbound degree variable 𝑑 :

𝜆𝑥.height(𝑥) ≥ 𝑑

There are different ways of remedying this situation. One approach assumes that the degree

variable is existentially quantified—e.g., in virtue of the presence of an unpronounced mor-

pheme which binds it—and that its value is constrained by some property made available by

the context (see, e.g., Kennedy and McNally 2005). Another—and the one we build on here—

leaves the variable unbound and relies on the context to directly fix its value (see, e.g., Barker

2002; Kennedy 2007).
8
Among approaches that implement the second possibility, many rely

on probabilistic knowledge to constrain how the value is fixed (Lassiter 2011; Goodman and

Lassiter 2015; Lassiter and Goodman 2017; Bernardy, Blanck, Chatzikyriakidis, and Lap-

pin 2018; Bernardy, Blanck, Chatzikyriakidis, Lappin, and Maskharashvili 2019a; Bernardy,

Blanck, Chatzikyriakidis, Lappin, and Maskharashvili 2019b; Bernardy, Blanck, Chatzikyri-

akidis, and Maskharashvili 2022, i.a.).

Grove and Bernardy’s framework is one such probabilistic implementation, which uses a

monad (P) to constrain the interpretation of the degree variable without tampering with the

8
Our use of the term ‘variable’ here is a bit metaphorical: we mean to include any approach that values the

standard of the relevant gradable adjective through contextual means.
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underlying compositional semantics. P maps types, such as 𝑒 , 𝑡 , 𝑒 → 𝑡 , 𝑒 × 𝑡 , etc., to types

P𝑒 , P𝑡 , P(𝑒 → 𝑡), P(𝑒 × 𝑡), etc., which are inhabited by probabilistic programs. Because it is

a monad, P comes with two monadic operators: (∼) : P𝛼 → (𝛼 → P𝛽) → P𝛽 (‘bind’) and
(·) : 𝛼 → P𝛼 (‘return’), which we describe in turn.

3.1.1 The ‘bind’ operator

The bind operator can be used to characterize the interpretation of contextually regulated

parameters, like 𝑑 above, by sequencing one probabilistic program with another that depends

on a variable. This sequencing—notated ‘𝑚 ∼ 𝜆𝑥.𝑘 (𝑥)’—can be understood as sampling a

random value 𝑥 : 𝛼 from a probabilistic program𝑚 : P𝛼 , and then using that value to con-

struct the new probabilistic program 𝑘 (𝑥) : P𝛽 (which is now parameterized by 𝑥 ). Following

standard convention, ‘𝑚 ∼ 𝜆𝑥 .𝑘 (𝑥)’ can be written in the following “imperative style”:

𝑥 ∼𝑚

𝑘 (𝑥)

We use this notation throughout the remainder of the paper. It is important to note that these

two lines together describe the probabilistic program𝑚 ∼ 𝜆𝑥.𝑘 (𝑥) and that similar multi-line

descriptions below will also describe a single complex probabilistic program.

3.1.2 The ‘return’ operator

The return operator allows ordinary logical meanings to be lifted to probabilistic programs

associated with a trivial effect.

(·) : 𝛼 → P𝛼

The effect associated with the resulting program is trivial in the sense that it always returns

the same thing. (Indeed, as we will discuss shortly, this behavior is part-and-parcel of what

it means to be a monad.) For instance, sampling from JJoK : P𝑒 will always result in JJoK : 𝑒 .
In the parlance of probability theory, such programs describe degenerate distributions.

3.1.3 The semantic value of tall as a probabilistic program

Tomodel gradable adjectives like tall, Grove and Bernardy assume that JtallK is a probabilistic
program of type P(𝑒 → 𝑡). Their analysis uses the two monadic operators described above

to model the interpretation of such adjectives in terms of probabilistic programs like the fol-

lowing one:

𝑑 ∼ thresholdPrior
𝜆𝑥 .height(𝑥) ≥ 𝑑

This program first samples a random degree value 𝑑 : 𝑟 , where 𝑟 is the type of real numbers,

from thresholdPrior—aprogramof type P𝑟—and then uses it inside the program 𝜆𝑥.height(𝑥) ≥ 𝑑

of type P(𝑒 → 𝑡), thus providing a function of type 𝑒 → 𝑡 which depends on a probability

distribution over degrees of height.
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Left identity Right identity Associativity

𝑥 ∼ 𝑣

𝑘 (𝑥) = 𝑘 (𝑣) 𝑥 ∼𝑚

𝑥
= 𝑚

𝑦 ∼
(
𝑥 ∼𝑚

𝑛(𝑥)

)
𝑜 (𝑦)

=

𝑥 ∼𝑚

𝑦 ∼ 𝑛(𝑥)
𝑜 (𝑦)

Figure 4: The monad laws

Importantly, thresholdPrior can be anything, as long as it is of the right type (P𝑟 ). Its

main function is to represent the constraints that the context—including comprehenders’

prior beliefs—imposes on 𝑑 . For instance, one could assume that 𝑑 is normally distributed

with some mean 𝜇 and standard deviation 𝜎 , in which case the meaning of tall would be:

𝑑 ∼ N(𝜇, 𝜎)
𝜆𝑥.height(𝑥) ≥ 𝑑

Under this assumption, the height threshold is sampled from—that is, bound by—the program
N(𝜇, 𝜎) : P𝑟 that computes a normal distribution.

3.1.4 Why it matters that P is a monad

Because P, together with (·) and (∼), is assumed to be a monad, it must satisfy the laws

in Figure 4. Among these laws, Left identity guarantees that transforming a value 𝑣 via (·)
creates a “pure” probabilistic program that just returns 𝑣 ; that is, 𝑣 is the only value which

may be sampled. Right identity guarantees that returning a value randomly sampled from𝑚

is just the same as computing a value from𝑚. Associativity provides a syntactic convenience

by allowing probabilistic programs to be re-bracketed: if one samples 𝑦 from a complex prob-

abilistic program that contains a use of (∼), one may also pull out the parts composing the

program and, instead sample 𝑦 from the last one. Together, the laws ensure that P never

tampers with the underlying compositional semantics (see Charlow 2014; Charlow 2020 for

extensive discussion).

3.1.5 Extracting probabilities from probabilistic programs

Because Grove and Bernardy deal primarily with sentences containing vague predicates, they

require not only a way of describing how probabilistic programs may be constructed and

sampled from, but also a way of computing the probability of a particular value—e.g., the

probability that a sentence containing some vague predicate is true. Thus, they require a

method of going from programs𝑚 of type P𝛼 to values of type 𝑟 (real values). To satisfy this

requirement, they (at least implicitly) use an expected value operator:

E( ·) : P𝛼 → (𝛼 → 𝑟 ) → 𝑟

Given a function 𝑓 from values of type 𝛼 to real numbers, E𝑥∼𝑚 [𝑓 (𝑥)] is the expected value
of 𝑓 , given the probability distribution over values of type 𝛼 represented by𝑚.

9
If𝑚 returns

9
An expected value of a function 𝑓 is effectively an average over values 𝑓 (𝑥) in that function’s range, weighted

by the probability associated with 𝑥 (in this case, as implied by the probabilistic program𝑚).
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truth values—i.e., if it is of type P𝑡—it can be associated with a probability by taking the

expected value of the indicator function 1 : 𝑡 → 𝑟 , which maps ⊤ (‘true’) to 1 and ⊥ (‘false’)

to 0:

P : P𝑡 → 𝑟

P(𝑚) = E𝜏∼𝑚 [1(𝜏)]

For illustration, suppose we want to find the probability that the sentence Jo is tall is true.
Taking the denotation of this sentence to be

JJo is tallK : P𝑡
JJo is tallK = 𝑑 ∼ N(𝜇, 𝜎)

height(j) ≥ 𝑑

we use the probability operator P to compute the probability

P

(
𝑑 ∼ N(𝜇, 𝜎)
height(j) ≥ 𝑑

)
= E

𝜏∼
(

𝑑 ∼ N(𝜇, 𝜎 )
height(j) ≥ 𝑑

) [1(𝜏)]
= E𝑑∼N(𝜇,𝜎 ) [1(height(j) ≥ 𝑑)]

Thus the probability that Jo is tall is true is equal to the probability that height(j) ≥ 𝑑 , where

𝑑 is a normally distributed random variable with mean 𝜇 and standard deviation 𝜎 .

3.1.6 Contexts in a probabilistic semantics

To model clause-embedding predicates, we need some way of representing the denotations

of declarative clauses, which are standardly taken to be propositions. Following Grove and

Bernardy (2023), we encode such representations by allowing the meanings of expressions

to depend on contexts. Contexts, in our setting, are finite tuples of parameters that deter-

mine the semantic values of expressions. Thus, they are akin to models, possible worlds,

or situations (see von Fintel and Heim 2021 and references therein). In addition to providing

parameters that determine the denotations of expressions, contexts provide values for contex-

tual parameters—e.g., the height threshold relevant to evaluating the meaning of a gradable

adjective like tall. Taking 𝜅 to be the type of contexts (i.e., 𝜅 is an 𝑛-ary product, for some 𝑛),

we may use the following notation to provide a new meaning for tall:

JtallK : 𝑒 → 𝜅 → 𝑡

JtallK = 𝜆𝑥, 𝑐.height(𝑐) (𝑥) ≥ 𝑑tall(𝑐)

height(𝑐) selects whichever component of 𝑐 maps individuals to their heights, and 𝑑tall(𝑐)
selects whichever component of 𝑐 provides the contextual degree threshold relevant to de-

termining the truth of the gradable adjective tall. In addition to settling facts about how

the world is—e.g., people’s heights—contexts settle matters of vagueness and metalinguistic

uncertainty—e.g., how tall one must be in order to be considered tall—as well as, possibly,
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whether or not subjective predicates, like tasty, are true or false of some entity. Thus they

may also be seen as akin to the “counterstances” of Kennedy and Willer (2016) and Kennedy

and Willer (2022) or the “outlooks” of Coppock (2018).

Propositions in the current setting can now be conveniently viewed as sets of contexts,

or functions of type 𝜅 → 𝑡 . Furthermore, following Grove and Bernardy (2023), the common

ground may be viewed as a distribution over contexts, or a probabilistic program of type

P𝜅. To update the common ground with a proposition, we make use of a function observe,

which is defined, in turn, using a more primitive operation factor, whose role is to scale the

distribution represented by the probabilistic programwhich follows it by some scalar value:
10

factor : 𝑟 → P⋄

observe : 𝑡 → P⋄
observe(𝜙) = factor(1(𝜙))

⋄ is the unit type: it is inhabited by a single value—the 0-tuple (also written ‘⋄’). It therefore
carries no interesting information, implying that the role of factor is only to contribute a

probabilistic effect, i.e., without computing a value.

Given a common ground 𝑐𝑔 : P𝜅, one can update it with the proposition 𝜙 : 𝜅 → 𝑡 by

turning 𝜙 from a static into a dynamic proposition:

update : (𝜅 → 𝑡) → P𝜅 → P𝜅

update(𝜙) (𝑐𝑔) = 𝑐 ∼ 𝑐𝑔

observe(𝜙 (𝑐))
𝜅

Dynamizing propositions is thus a matter of observing them in the context provided by the

relevant common ground.

To foreshadow our analyses a bit, each of the models we consider in this paper provides

a representation of the common ground: at their heart, our models characterize distributions

over contexts. The ways in which they differ from one another has to do with how the distri-

butions over certain relevant parameters of a given context are evaluated, and in turn, how

these distributions contribute to the predicted behavior of someone who makes an inference.

3.2 Our contribution: two levels of uncertainty

Our main contribution comes in how we model the common ground. Rather than represent-

ing the common ground as a probability distribution over contexts—i.e., as a program of type

P𝜅—we represent it as a probability distribution over probability distributions over contexts—
i.e., as a program of type P(P𝜅). By invoking the map P twice, we are effectively providing

two layers, or levels, of probabilistic uncertainty.

10
In the continuation-based setting of Grove and Bernardy 2023, factor is defined as

factor(𝑥) = 𝜆𝑘.𝑥 ∗ 𝑘 (⋄)

so that it scales its continuation by the relevant factor. For current purposes, we maintain a relatively abstract

interface so that our main points aren’t obscured by implementation details.
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Identity Composition

𝑖𝑑↑↓ = 𝑖𝑑 (𝑓 ◦ 𝑔)↑↓ = 𝑓 ↑↓ ◦ 𝑔↑↓

Figure 5: The functor laws

We use the “inner” P to represent the uncertainty that is manifest on particular occasions

of use and interpretation. Such uncertainty may, in principle, arise because of linguistic ex-

pressions which are vague or subjective, or it may be uncertainty related to beliefs that people

have about the world. As an umbrella term, we refer to any of these sources of uncertainty

as contextual uncertainty.
We use the “outer” P to represent metalinguistic uncertainty. Although there may, in

general, be uncertainty about the values of linguistic parameters that govern the meanings

of expressions, by regulating them on the outer layer, we take those values to be fixed on

particular occasions of language use and interpretation. Thus one may regard the outer P as

providing a distribution over possible kinds of occasions of use and interpretation—that is,

which fix the values of parameters which are metalinguistically uncertain—while the inner P
may be considered to be residual uncertainty that arises on particular occasions of use and

interpretation, once the relevant type of occasion is fixed.

Which phenomena should be tethered to which layer of uncertainty is, importantly, up

for debate and should ultimately be settled empirically. Our attempt to study the source of the

gradience induced by factive predicates aims to help resolve this question in one of its mani-

festations. Thus to sharpen the distinction between the two hypotheses of Section 2.2, we ask

whether the uncertainty giving rise to gradience among judgments of presupposition projec-

tion is (a) uncertainty that is settled as the occasion of use is fixed, or (b) an inherent property

of particular uses and interpretations, so that presuppositions might project gradiently.

We note two important properties of the layering described above. First, the composition

of P with itself has a certain formal license: because P is a monad, it is also a functor. This
means that it comes with an operation (·)↑↓ (‘map’) allowing one to perform pure operations

on the values returned by probabilistic programs, while keeping their probabilistic effects

intact. (·)↑↓ may be defined in terms of the monadic (·) and (∼), as follows:

(·)↑↓ : (𝛼 → 𝛽) → P𝛼 → P𝛽

𝑓
↑↓ = 𝜆𝑚. 𝑥 ∼𝑚

𝑓 (𝑥)

The two laws regulating functors are given in Figure 5.
11

Crucially, functors are composable, meaning that we can take the composition of the func-

tor Pwith itself to obtain the new functor P(P𝛼), whose (·)↑↓ may be defined simply as (·)↑↓↑↓.12
Old operations are easily recast in the current setting involving structured uncertainty, that

11
Note that both laws may be proved from the monad laws of Figure 4.

12
Indeed, because P is a monad, it is not only a functor, but an applicative functor (McBride and Paterson 2008),

meaning that it comes with an operation

(⊛) : P(𝛼 → 𝛽) → P𝛼 → P𝛽
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is, by mapping them onto operations on higher-order probabilistic programs. Updates to the

common ground, for instance, may be presented as follows:

update
2
: (𝜅 → 𝑡) → P(P𝜅) → P(P𝜅)

update
2
(𝜙) = update(𝜙)↑↓

The second property of note is that, because P(P𝛼) is obtained as the composition of

functors, it provides a tight constraint on the way information may flow from one level to

another; the flow is unidirectional, going from the outer level that regulates metalinguistic

uncertainty to the inner level that regulates contextual uncertainty. As a result, it is possi-

ble for contextual uncertainty to remain even after questions of metalinguistic uncertainty

have been settled—e.g., whether a semantically ambiguous expression has one interpretation

versus another. But by necessity, settling contextual uncertainty also settles metalinguistic

uncertainty.

This asymmetry is motivated by the general behavior of the two sources of uncertainty

being modeled. To illustrate this, say someone makes the utterance Jo is tall in a noisy en-

vironment, rendering it ambiguous between Jo is tall and Jo is small. Moreover, say that,

from the interlocutor’s perspective, the probability that Jo is tall was uttered is 0.7 and the

probability that Jo is small was uttered is 0.3. Then (setting aside our commitment to em-

ploying contexts, momentarily), the metalinguistically uncertain Jo is -all can be assigned the

following interpretation:

JJo is -allK : P(P𝑡)
JJo is -allK = 𝜏 ∼ Bernoulli(0.7)

𝑑 ∼ N(𝜇𝑡 , 𝜎𝑡 )
height(j) ≥ 𝑑

𝜏

𝑑 ∼ N(𝜇𝑠 , 𝜎𝑠)
size(j) ≤ 𝑑

¬𝜏

According to this interpretation, themeaning of Jo is -all depends on the Bernoulli-distributed
variable 𝜏 : 𝑡 . If 𝜏 is ⊤ (which occurs with a probability of 0.7), then the interpretation is the

returned program which encodes the meaning of Jo is tall; whereas, if 𝜏 is ⊥ (which occurs

with a probability of 0.3), then it is the returned program which encodes the meaning of Jo is
small. Crucially, once the value of the random variable 𝜏 , which represents the metalinguis-

tic uncertainty about what was uttered, is settled, one obtains a meaning having contextual

uncertainty, encoded by a normal distribution over degrees of height or size, respectively.

Thus, the probabilistic effects encoding contextual uncertainty depend on those encoding

metalinguistic uncertainty (about the value of 𝜏 , in particular). But the former cannot, in

turn, influence the latter, simply because they are part of the program which is returned; any
parameters introduced by such effects are not in scope early enough.

We now turn to an account of factivity within this two-layered probabilistic setting.

called ‘sequential application’, which can apply an effectful function to an effectul argument, in order to sequence

the effects. Applicatives also enjoy composability (so that P(P𝛼) is also applicative), but we suppress this fact in

the discussion for now, since applicatives provide a somewhat more powerful interface than we require.
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3.3 The meaning of factivity

In general, we assume that clause-selecting predicates entail the complement clauses they se-

lect with some probability.
13

For example, we may represent the meaning of know as follows,

where 𝜏know selects from the context 𝑐 a truth value determining whether to instantiate the

meaning of know with a factive or a non-factive meaning:

JknowK : (𝜅 → 𝑡) → 𝑒 → 𝜅 → 𝑡

JknowK = 𝜆𝜙, 𝑥, 𝑐 .

{
know(𝜙) (𝑥) (𝑐) ∧ 𝜙 (𝑐) 𝜏know(𝑐)
know(𝜙) (𝑥) (𝑐) ¬𝜏know(𝑐)

And likewise for all clause-selecting predicates. Those verbs which are always factive will

have the meaning 𝜆𝜙, 𝑥, 𝑐 .verb(𝜙) (𝑥) (𝑐) ∧𝜙 (𝑐) with probability 1, and those verbs which are

never factive will have the meaning verb with probability 1.

It is important to note that while the entry provided above for know may appear to render

it semantically ambiguous, we stress that it does not. On our account, ambiguity is a poten-

tial cause of metalinguistic uncertainty, but not of contextual uncertainty (ambiguities are

resolved in context). Thus whether the above entry for know renders it ambiguous versus,

say, vague is a matter of how the parameter 𝜏know is regulated; that is, whether its distribution

is determined by metalinguistic uncertainty or contextual uncertainty.

We should also point out that the kind of analysis we present here is ad hoc in the sense

that it provides no explanation of factivity beyond the entailment properties associated with

predicates’ interpretations. This approach is sufficient for current purposes, since we do

not aim to provide an explanation of factivity. Rather, we aim to discover properties of its

behavior—i.e., whether the gradience it exhibits is a manifestation of contextual uncertainty

(supporting the fundamental gradience hypothesis) or metalinguistic uncertainty (supporting

the fundamental discreteness hypothesis).

To sharpen this point, note that we could just as easily analyze factivity as arising from

a source external to the predicate by assuming, e.g., a complementizer that encodes factivity

(Kiparsky and Kiparsky 1970 et seq).

JthatK : (𝜅 → 𝑡) → ((𝜅 → 𝑡) → 𝑒 → 𝜅 → 𝑡) → 𝑒 → 𝜅 → 𝑡

JthatK = 𝜆𝜙, 𝑣, 𝑥, 𝑐 .

{
𝑣 (𝜙) (𝑥) (𝑐) ∧ 𝜙 (𝑐) 𝜏that(𝑐)
𝑣 (𝜙) (𝑥) (𝑐) ¬𝜏that(𝑐)

Given such a complementizer, we need not assume that clause-embedding predicates, such

as know, themselves give rise to factive interpretations.
14

JknowK : (𝜅 → 𝑡) → 𝑒 → 𝜅 → 𝑡

JknowK = know

13
We do not distinguish between factivity and veridicality for current purposes. This approach bears a resem-

blance to the general approach in Simons 2007 and Simons, Tonhauser, et al. 2010.

14
This implemention—in which the semantic value of the complementizer operates on the semantic value of

the predicate—is analogous to some neo-Davidsonian approaches to the semantics of propositional attitude verbs

and complementizers (see, e.g., White and Rawlins 2018a, fn. 6) and may be adapted to other such approaches

that regard the embedded clause as an intersective modifier of eventualities (Elliott 2016; Elliott 2020).
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What this sort of approach requires, in turn, is that contexts provide information about which

predicate a given complementizer co-occurs with, which must be available in order for the

probability of projection to be modulated by predicate type (see Gordon and Chafetz 1990;

Trueswell, Tanenhaus, and Kello 1993; MacDonald, Pearlmutter, and Seidenberg 1994; Gar-

nsey et al. 1997; Altmann and Kamide 1999, i.a.). Insofar as the context makes such infor-

mation available, this implementation could be used to yield the same range of statistical

models as an implementation which assumes that factivity is driven principally by the lexical

semantics of predicates.

4 Modeling

To investigate the theories of factivity and world knowledge possible under the framework

described in Section 3, we implement Bayesian models in the Stan programming language

({Stan Development Team} 2023) via the CmdStanR interface (Gabry and Češnovar 2023). We

fit these models using Degen and Tonhauser’s (2021) experimental data and then compare

them in terms of their expected log pointwise predictive densities (ELPDs) computed under

the widely applicable information criterion (WAIC; Watanabe 2013; Gelman, Hwang, and

Vehtari 2014) as implemented in R’s loo package (Vehtari et al. 2023). This measure quantifies

how well each model fits the data, while also penalizing each for how complex it is—i.e., the

effective number of parameters it uses to fit the data.

In Section 4.1, we formalize our assumptions about the link between higher-order prob-

abilistic programs of the kind described in Section 3 and participants’ response behavior. We

then describe each of the models of factivity possible under our framework in Section 4.2

before reporting our comparisons of these models given Degen and Tonhauser’s projection

experiment data in Section 4.3.

4.1 Linking to response behavior

To connect the probabilistic programs associated with sentences to actual data, we need link-

ing assumptions that relate the former to the inference judgments experimental participants

report on a slider scale between ‘no’ and ‘yes’. Following Degen and Tonhauser (2022), we

model these responses as a distribution of values on the unit interval.

We specify our models by defining a class of functions respond𝜎 , each of which takes a

distribution over contexts𝑚 of type P𝜅 and a possible inference𝜙 of type𝜅 → 𝑡 and associates

it with a distribution over slider responses on the unit interval:

respond𝜎( ·) : P𝜅 → (𝜅 → 𝑡) → P𝑟

respond𝜎𝑐∼𝑚 (𝜙 (𝑐)) = N(𝑥, 𝜎) T[0, 1]

where 𝑥 = P

(
𝑐 ∼𝑚

𝜙 (𝑐)

)
In essence, this implementation of response behavior assumes that participants compute the

probability 𝑥 of the inference 𝜙 by determining whether or not the inference is true in a

context, weighted by how likely that context is under the probabilistic program 𝑚. They
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then attempt to respond with 𝑥 , but due to factors independent of the process by which 𝑥 is

computed—e.g., inaccuracies in their ability to perfectly target 𝑥 on the response scale—they

produce an actual response that is normally distributed (with standard deviation 𝜎) around

𝑥 , truncated to [0, 1].15
To give a schematic example, let’s say that the common ground of interest is characterized

by a probabilistic program commonGround of type P(P𝜅). Then, the following program of type

P𝑟 characterizes the distribution of slider responses on the unit interval, where a response

reflects a judgment of certainty about the truth of the sentence Grace visited her sister, given
the information Susan knows that Grace visited her sister :

𝑚 ∼ commonGround

respond𝜎
𝑐∼𝑚′ (JGrace visited her sisterK𝑐)

where 𝑚′ = update(JSusan knows that Grace visited her sisterK) (𝑚)
= 𝑚 ∼ commonGround

N(𝑥, 𝜎) T[0, 1]

where 𝑥 = P
©­­«
𝑐 ∼𝑚

observe(JSusan knows that Grace visited her sisterK𝑐)
JGrace visited her sisterK𝑐

ª®®¬
This probabilistic program first samples a distribution over contexts 𝑚 of type P𝜅. Under

this distribution, the parameters regulating metalinguistic knowledge have been fixed, but
the parameters regulating contextual uncertainty still remain indeterminate. The program

then computes a distribution over responses by doing a couple of things inside the scope of

the P operator: (i) it samples a context from𝑚, which it uses to perform Bayesian update—by

observing that Susan knows that Grace visited her sister is true—before (ii) returning ⊤ or ⊥,
depending on which is the interpretation of Grace visted her sister, given that context.

For the purpose of specifying our models abstractly, we assume the type 𝜅 of contexts to

be a product 𝑡𝑚 × 𝑡𝑛 , where the inhabitants of 𝑡𝑚 are𝑚-tuples of truth values 𝝉v determining

whether or not the complement of each predicate under consideration indeed projects, and
the inhabitants of 𝑡𝑛 are 𝑛-tuples of truth values 𝝉w determining whether or not each fact

under consideration related to world knowledge is true or false. Thus, each model will be of

the form

commonGround : P(P(𝑡𝑚 × 𝑡𝑛))
15
The likelihood assumed here is known as a truncated normal distribution, which we express using STAN’s

notational convention for truncation (T[0, 1]) throughout. This assumption is analogous to the one that Degen

and Tonhauser (2021) make in using a linear mixed model—though, in using a truncated normal, we additionally

capture the boundedness of the response scale. An alternative likelihood sometimes used with bounded response

scales is a Beta distribution (see, e.g., Degen and Tonhauser 2022). This assumption is not strictly appropriate for

bounded response scales that include their endpoints—e.g., a response scale on the closed interval [0, 1] rather
than the open interval (0, 1)—because Beta distributions only have support on the open interval—i.e., they exclude
{0, 1} (see Liu and Eugenio 2018 and references therein). It is particularly problematic in the current context, where

endpoint responses are meaningful by hypothesis. Truncated normals do not have this problem because they can

have support on the closed interval. Zero-one inflated Beta distributions are another option (again, see Liu and

Eugenio 2018), but they bring their own conceptual challenges in the current context because they effectively

require the assumption that all models assume some amount of discreteness.
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Updating any such representation of the common ground with a proposition and predicting

the distribution of judgments generated by an inference is a matter of following the procedure

outlined above. Using the same example, we would obtain the following characterization of

this distribution:

𝑚 ∼ commonGround

N(𝑥, 𝜎) T[0, 1]

where 𝑥 = P
©­­«
⟨𝝉v,𝝉w⟩ ∼𝑚

observe(JSusan knows that Grace visited her sisterK⟨𝝉v,𝝉w ⟩)
JGrace visited her sisterK⟨𝝉v,𝝉w ⟩

ª®®¬
If we take know(𝝉v) to be the component of 𝝉v that says whether or not the complement

of know projects, and grace(𝝉w) to be the component of 𝝉w that says whether or not Grace

visited her sister, then the program above can be rephrased as follows:

𝑚 ∼ commonGround

N(𝑥, 𝜎) T[0, 1]

where 𝑥 = P

( ⟨𝝉v,𝝉w⟩ ∼𝑚

know(𝝉v) ∨ grace(𝝉w)

)
That is, because all that is required for Grace visited her sister to be entailed by the common

ground is for the complement of know to project (i.e., for know(𝝉v) to be ⊤) or for it to be

entailed by prior knowledge (i.e., for grace(𝝉w) to be ⊤), its semantic value is equivalent to a

disjunction.
16

The general set-up described here will remain invariant under the theories considered in

the rest of this section. What varies is the structure of commonGround, and, crucially, whether

the parameters regulating world knowledge and factivity are understood as being governed

by metalinguistic uncertainty or contextual uncertainty.

4.2 Models of factivity

We now provide our four models of factivity and prior world knowledge, which we fit to

Degen and Tonhauser’s projection experiment data.
17

Each of these models assumes that fac-

tivity is either discrete or gradient and that world knowledge is either discrete or gradient in

their contributions to inference. Indeed, the models we present here make these assumptions

wholesale, either regarding every predicate as making a discrete contribution or regarding

every predicate as making a gradient contribution (and likewise for world knowledge). Our

current purpose is to compare these strong versions of the two hypotheses stated in Section 2,

since we take it that prior work assumes that either one or the other is true of all predicates.

Nonethless, the possibility that predicates vary with respect to whether their factivity is dis-

crete or gradient is an interesting one. We investigate this question in ongoing work.

16
The full model specifications presented in Appendix A make crucial use of this fact.

17
See Appendix A for the full model specifications.
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4.2.1 Factivity as a fundamentally discrete phenomenon

The first theory we consider is consistent with the classical view of factivity, implicit in

Kiparsky and Kiparsky (1970) and Karttunen (1974), inter alia. It regards clause-embedding

predicates as either triggering or not triggering factive inferences on particular occasions of

use, depending on their interpretations. The uncertainty about whether or not a given pred-

icate’s complement clause projects is thus regarded as metalinguistic in nature.

We take it that most classical accounts of factivity do not take a stance on how world

knowledgemight affect these inferences. There are two posibilities implied by our framework,

which we discuss in turn.

The first possibility allows for uncertainty related to world knowledge to manifest itself

as contextual uncertainty, which may, in turn, make individual judgments of truth uncertain.

We refer to this theory as the discrete-factivity theory, emphasizing that it regards the con-

tribution factivity makes as fundamentally discrete in nature. It gives rise to the following

common ground:

discrete-factivity : P(P𝜅)
discrete-factivity = ⟨v,w⟩ ∼ priors

𝝉v ∼ Bernoulli(v)
𝝉w ∼ Bernoulli(w)
⟨𝝉v,𝝉w⟩

The aspect of this model crucial to the way in which it regards factivity is the location of

the sampling statement ‘𝝉v ∼ Bernoulli(v)’; in particular, it is crucial that this statement

occurs prior to returning the probabilistic program of type P𝜅 that characterizes contextual

uncertainty—that is, outside of the orange boxes. As a result, whether or not the comple-

ment of a given predicate projects is fixed in individual utterance contexts. By contrast, the

sampling statement ‘𝝉w ∼ Bernoulli(w)’ is part of the returned program, rendering world

knowledge contextually uncertain.

The second possibility understands both factivity and world knowledge as discrete in

nature.

wholly-discrete : P(P𝜅)
wholly-discrete = ⟨v,w⟩ ∼ priors

𝝉v ∼ Bernoulli(v)
𝝉w ∼ Bernoulli(w)
⟨𝝉v,𝝉w⟩

Thiswholly-discrete version of the theory, which we do not take anyone to endorse but whose
possibility is implied by our framework, effectively hypothesizes that no inferences display

uncertainty in context: under this version, the sampling statement ‘𝝉w ∼ Bernoulli(w)’
has also been moved outside of the outer orange box. Any gradience displayed in people’s

measured inferences must therefore be due to response error.
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4.2.2 Factivity as a fundamentally gradient phenomenon

The theory which regards factivity as fundamentally gradient in nature does so by pushing

what would otherwise be metalinguistic uncertainty about factivity onto the contextual un-

certainty level. This theory also has two possible implementations that vary with respect to

whether world knowledge is modeled as contextually uncertain or metalinguistically uncer-

tain. We refer to the version of the theory that regards both factivity and world knowledge

as contextually uncertain as the wholly-gradient version. We take this version to be the one

that comes closest to implementing Tonhauser, Beaver, and Degen’s (2018) proposal among

the four we consider here.

We obtain the correspondingmodel bymaking a smallmodification to the discrete-factivity

model—that is, by changing the location of the relevant sampling statement:

wholly-gradient : P(P𝜅)
wholly-gradient = ⟨v,w⟩ ∼ priors

𝝉v ∼ Bernoulli(v)
𝝉w ∼ Bernoulli(w)
⟨𝝉v,𝝉w⟩

We refer to the alternative that regards world knowledge as discrete and factivity as gradient

as the discrete-world version. As with the wholly-discrete model described above, we do not

take anyone to endorse version of the theory, but we include it, since it is a possibility implied

by our framework. Under this version, the locations of the sampling statements which were

used to encode the discrete-factivity model are switched:

discrete-world : P(P𝜅)
discrete-world = ⟨v,w⟩ ∼ priors

𝝉w ∼ Bernoulli(w)
𝝉v ∼ Bernoulli(v)
⟨𝝉v,𝝉w⟩

4.3 Comparisons

To construct our models, we use a pipelined approach.
18

Following this approach, we first fit

a model of Degen and Tonhauser’s norming data (experiment 2a) in order to obtain posterior

distributions for parameters associated with the forty pairs of complement clauses and facts,

whichwe refer to as contexts.19 We then use these posterior distributions as prior distributions

for the corresponding parameters in the four models of Degen and Tonhauser’s projection

experiment data (experiment 2b) implied by the framework described in Section 3.

Figure 6 (left plot) provides ELPDs estimated for the four models, based on log-likelihoods

computed from Degen and Tonhauser’s experimental data. We observe that the discrete-

factivity model captures the data the best, while the wholly-discrete model trails behind it;

18
We provide additional formal details about the modeling pipeline in Appendix A.

19
Note that we are overloading the term context here. This notion of context is not the same as our formal

notion.
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Figure 6: Left: ELPDs for the four models. Right: ELPDs for the four model evaluations on our

replication experiment data. Dotted lines indicate estimated differences between each model

and the discrete-factivity model. Error bars indicate standard errors.

meanwhile, the wholly-gradient and discrete-world models—the two that assume factivity to

be gradient—perform the worst.

Thus, we have preliminary evidence that the best model of Degen and Tonhauser’s data

treats factive presupposition projection as a discrete phenomenon and the inferences con-

tributed by world knowledge as gradient. Meanwhile, by simply modifying the discrete-

factivity model so that it treats factivity as gradient, one goes from the best-performing model

to the worst-performing one.

To give a sense of the performance of the models as assessed against the inference judg-

ment data, the posterior predictive distributions for each model are plotted for six predicates,

for all contexts combined, in Figure 7 (see Figure 16 of Appendix B.2 for all predicates). These

plots provide a visual indicator of how well each model fits the distribution of judgments for

these predicates across contexts: the closer a particular curve is to the shape of the histogram,

the better the corresponding model fits the data.

We observe here that the models that assume that either factivity or world knowledge is

discrete are better able to capture dips in the frequency of responses in the middle of the scale

than the wholly-gradient model. As one might expect, the wholly-gradient model predicts

distributions that are much smoother than the models that assume some form of discreteness.

This behavior is the main reason the wholly-gradient model fits the inference judgment data

the worst of any model.

One reason the models assuming some amount of discreteness can capture the dips in

frequency toward the middle of the scale is that they effectively model the distribution over

inference judgments as a mixture of distributions: at least one with a mode at 1 and another

with a mode determined by the structure of the particular model. In contrast, the wholly-

gradient model only assumes a single distribution.
20

This property of the models that assume

some amount of discreteness makes them more complex than the wholly-gradient model—in

20
Multi-modality may still arise in the posterior predictive distributions for the wholly-gradient model; see, e.g.,

the posterior predictive distribution for confirm in Figure 7. Such multi-modality can only arise due to participant

random effects. See Appendix A for formal details of these random effects.
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Figure 7: Posterior predictive distributions (with simulated participant intercepts) of all four

models for six predicates from Degen and Tonhauser’s (2021) projection experiment, for all

contexts combined. Empirical distributions are represented by density histograms of data

from Degen and Tonhauser 2021.

the sense that they have more effective parameters—but as the pattern of ELPDs in Figure 6

shows, this additional complexity is offset by how much better they fit the data. (Recall that

ELPD explicitly quantifies how well a model fits the data while penalizing model complexity

as measured by the effective number of parameters.)

Notably, none of the four models fits the data perfectly. For instance, the canonically

non-projective predicates think and pretend have distributions which all four of our models

appear to have difficulty capturing, at least by visual inspection of Figure 16. This difficulty

appears to be due to an anti-veridicality inference associated with these predicates—i.e., that

the complement clause is not true.21

None of our models naturally captures such anti-veridicality inferences, since we con-

sider denotations that vary only with respect to veridicality and non-veridicality—not anti-

veridicality. Assuming a three-way distinction among veridicality, non-veridicality, and anti-

veridicality would effectively allow the wholly-discrete, discrete-factivity, and discrete-world

models to mix in another distribution with a mode at 0, thereby allowing them to fit the data

better. Even so, such a modification is unlikely to change the fact that the wholly-gradient

model performs the worst, which is apparently due to its inability model the bimodality in

the response distributions as well as the other models do. Whether or not it will can only be

21
These inferences likely arise from different sources: e.g., the lexical semantics of pretend, but a conversational

implicature in the case of think. More generally, inferences of this kind may, in principle, arise for any predicate

on its non-factive interpretation (assuming factivity is discrete), which may shed additional light on the mass of

responses at or close to 0 in the empirical data across predicates.
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answered by implementing the relevant models, however, which we leave for future work.

5 Evaluations

Strictly speaking, the comparisons we report in Section 4 are post hoc; and while the results

are suggestive, we cannot draw firm conclusions from these model comparisons without a

replication of Degen and Tonhauser’s experiment. In Section 5.1, we report such a replication,

finding the same pattern of model comparison results: the models that assume that factivity is

discrete reliably outperform the models that assume it is gradient. To ensure that these results

are not somehow driven by the particular discourse contexts used in Degen and Tonhauser’s

experiments, we collect two additional datasets that use the same paradigm but that mask

the contents of the embedded clause in two distinct ways. In these additional experiments,

which we report in Section 5.2, we again find that the discrete-factivity models outperform

all of the other models.

5.1 Experiment 1: held-out projection experiment data

5.1.1 Materials

Our materials and methods were identical to those of Degen and Tonhauser (2021).

5.1.2 Participants

We collected data from 300 participants using Amazon Mechanical Turk, paying each par-

ticipant one dollar. Each participant was required to pass the qualification test described in

White, Hacquard, and Lidz 2018, in order to ensure that they were a native speaker of Amer-

ican English. We removed data from two participants who claimed to have technical difficul-

ties completing the experiment, and from ten more whose performance was more than two

standard deviations below the mean on the six control items, leaving us with data from a total

of 288 participants.

5.1.3 Results

Figure 8 shows the item means from our replication experiment plotted against Degen and

Tonhauser’s original experiment, along with the means obtained by collapsing across con-

texts. We observe that there is strong agreement (Spearman’s 𝑟 = 0.98∗∗∗) between these

means and those obtained from Degen and Tonhauser’s data.

5.1.4 Model fitting

To evaluate the four models using this data, we obtain, from each model, means 𝝁𝝂 and

standard deviations 𝝈 𝝂 of the marginal posterior distribution of the log-odds of projection

for each predicate, as well as means 𝝁𝝎 and standard deviations 𝝈𝝎 of the marginal posterior

distribution of the log-odds certainty for each context. We then use normal distributions with
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Figure 8: Degen and Tonhauser’s (2021) projection data versus our replication. Left: item

means (Spearman’s 𝑟 = 0.68∗∗∗). Right: verb means (Spearman’s 𝑟 = 0.98∗∗∗). For both, “non-
factive” verbs are in red, “optionally factive” verbs are in teal, and “canonically factive” verbs

are in green.

these means and standard deviations as prior distributions for the corresponding parameters

in the models constructed for the evaluations.
22

5.1.5 Model comparison

Figure 6 (right plot) provides ELPDs estimated for the four model evaluations, based on log-

likelihoods computed from the data obtained in our replication experiment. The pattern of

goodness-of-fit observed here is extremely close to that exhibited by the original model com-

parison on the left in Figure 6: the discrete-factivity model fares the best, followed by the

wholly-discrete model. The wholly-gradient and discrete-world models fare the worst.

Thus we have evidence that the differences in performance among these models that was

reported in the previous section are quite robust, at least when assessed using data fromDegen

and Tonhauser’s experimental task. The next two experiments provide a test of the models

in a somewhat different setting—one in which the uncertainty contributed by the linguistic

contexts of the predicates of interest is sent to an extreme.

5.2 Experiments 2 and 3: non-contentful contexts

We now test the inferred posterior distributions over probabilities of projection on held-out

data from two experiments inwhich the context of each predicate is stripped of the rich lexical

content that partially governs the inferences produced in the original experiment. We obtain

contexts for this evaluation in two ways. In our Experiment 2, we bleach each predicate’s

complement clause so that it is just a particular thing happened. In the Experiment 3, we use

a templatic complement clause of the form X happened.

22
See Appendix A.3 for further details concerning these models.
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These manipulations serve two purposes. First, they allow us to assess the performance

of the four models when the source of variance among inference judgments contributed by

prior world knowledge is removed. Second, they put the predicates in environments in which

knowledge about the context is minimal; as a result, they may produce greater uncertainty

in people’s inferences. This additional uncertainty could confer an a priori advantage to the

wholly-gradient model, which considers all inferences, even those triggered by projective

predicates, to be beset with some uncertainty. We thus consider these evaluations to be a

stronger test of the discrete-factivity model’s edge over the wholly-gradient model than the

original experiments were.

5.2.1 Materials

To construct the bleached items, each of the twenty predicates investigated in Degen and

Tonhauser’s experiment was placed in a context in which its subject was one of the proper

names from the original experiment, and in which its complement clause was just a particular
thing happened. On each trial, participants were provided with a background context that

was intended to make the prompt as natural as possible. The only thing that varied in this

background context from one trial to the next was the name of the individual who makes the

relevant utterance. Finally (taking that individual’s name to be 𝑃 ), participants were prompted

to answer the question Is 𝑃 certain that that thing happened? on a sliding scale with ‘no’ on

the left and ‘yes’ on the right. The following experimental trial, for example, involves the

predicate pretend:

In addition to the twenty bleached items, participants saw six control items which were

constructed in order to somehow incorporate a bleached subordinate clause; for example, Did
Madison have a baby, despite the fact that a particular thing happened?. All six control items

had an intended response of 1.

5.2.2 Experiment 3: templatic items

To construct the templatic items, each of the same twenty predicates was placed in a context

in which its subject was, again, a proper name from the original Degen and Tonhauser ex-
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periment, and in which its complement clause was X happened. A background context was

provided on each trial, so that the prompt was natural. Background contexts, again, only

differed from one another in the name of the individual who makes the relevant utterance.

Given a trial on which the individual 𝑃 was the speaker, participants were prompted with the

question Is 𝑃 certain that X happened?, which they answered on a sliding scale with ‘no’ on

the left and ‘yes’ on the right. The following example trial features the predicate pretend:

Participants, again, saw six control items which were constructed in order to incorporate

a templatic subordinate clause; for example, Did Madison have a baby, despite the fact that X
happened?.

5.2.3 Participants

For each experiment, we collect data from 50 new participants using Amazon Mechanical

Turk, paying each participant one dollar. Each participant was, again, required to pass the

qualification test described in White, Hacquard, and Lidz 2018, and any participant whose

average score on the control items did not fall within two standard deviations below the

mean of all participant’s responses was excluded from the analysis. Using this criterion, three

participants’ data was excluded from Experiment 2, leaving 47 participants for analysis; and

one participant was excluded from Experiment 3, leaving 49 participants for analysis.

5.2.4 Results

We observe in Figure 9 that the responses elicited by both the bleached (Spearman’s 𝑟 =

0.97∗∗∗) and templatic (Spearman’s 𝑟 = 0.87∗∗∗) items track the gradient knowledge about

factivity that people deploy in the typical contentful setting extremely well. Not only is the

same type of gradience observed among predicates when they are placed in bleached or tem-

platic contexts, but the rankings among predicates are maintained almost entirely.
23

This

23
Notably, the range of average ratings for predicates in Experiment 3 is not as wide as exhibited in the pre-

vious experiments, with most falling between 0.5 and 0.75, suggesting that there may have been a great deal of

uncertainty governing the inferences produced from this task.
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Figure 9: Degen and Tonhauser’s (2021) projection data versus data from contexts with min-

imal lexical content. Left: bleached data (Spearman’s 𝑟 = 0.97∗∗∗). Right: templatic data

(Spearman’s 𝑟 = 0.87∗∗∗). For both, “non-factive” verbs are in red, “optionally factive” verbs

are in teal, and “canonically factive” verbs are in green.

finding furthermore suggests that it is safe to compare modeling results obtained from only

bleached or templatic items to those obtained from contentful items—e.g., the clustering re-

sults of Kane, Gantt, and White 2022 discussed in Section 2—at least if those results pertain

to the aggregate responses for individual predicates.

5.2.5 Model fitting

To evaluate the four models using both the bleached and templatic data, we use the same

means 𝝁𝝂 and standard deviations 𝝈 𝝂 of the marginal posterior distributions of the log-odds

of projection that we used for the evaluations on the replication experiment data. As before,

we use normal distributions with these means and standard deviations as prior distributions

for the corresponding parameters in themodels constructed for the evaluations. Then, in each

evaluation, we infer a distribution over the parameters 𝜎𝜔 and 𝜔 that regulate the certainty

associated with either the bleached or the templatic context.
24

5.2.6 Model comparison

Figure 10 provides ELPDs for all four models evaluated on Experiments 2 and 3. We see,

here, that the discrete-factivity model fares the best in both experiments, while the other

three models fare comparably with each other. It is somewhat remarkable that the more fine-

grained differences among models observable from both the original fits and the evaluation

on the replication data do not appear to hold up under the current evaluation; for exam-

ple, the wholly-discrete model no longer appears distinguished from the wholly-gradient and

24
See Appendix A.4 for further details concerning these models.
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Figure 10: ELPDs for the four model evaluations on the bleached data (left) and the templatic

data (right). Dotted lines indicate estimated differences between each model and the discrete-

factivity model. Error bars indicate standard errors.

discrete-world models by its better performance. Rather, the discrete-factivity model seems

to have a unique advantage.

This difference is especially notable for Experiment 3, given the somewhat squashed av-

erage responses seen across verbs in Figure 9. That is, despite the high amount of uncertainty

which this task may have produced, such uncertainty seems to have been filtered through

the discrete behavior of factive inferences. The uncertainty about such inferences appears to

relate to the interpretation of a given predicate, rather than a gradient contribution which

that predicate makes to an inference.

To give a sense of the differences among the model evaluations on the bleached and tem-

platic data, Figures 17 and 18 of Appendix B.2 show the posterior predictive distributions of

these evaluations for all predicates.

6 Consequences for theories of factivity

We have compared four models of the task reported in Degen and Tonhauser 2021, each fit to

their experimental data. These models differ from one another along two axes: (a) whether

they consider the contribution of prior world knowledge to inferences about the truth of the

clause embedded by a predicate to be gradient or discrete; and (b) whether they consider the

contribution of the relevant predicate itself to these inferences to be gradient or discrete. The

contribution of a given factor to an inference is “gradient” if varying that factor produces a

continuous effect on the magnitude of the judgment associated with the inference; and it is

“discrete” if varying the factor affects the probability with which the inference is judged as

certain, versus remains unaffected.

Our initial comparison of the four models found that the discrete-factivity model best

accounts for the distributions of judgments in Degen and Tonhauser’s experimental data.

That is, the model which regards the contribution of prior world knowledge to such infer-

ences as gradient and the contribution of a given predicate to such inferences as discrete (as

assessed by ELPDs, plotted in Figure 6, left). Moreover, follow-up evaluations of the fourmod-

els confirmed the initial comparison: the same model best accounts for held-out data from a
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replication of Degen and Tonhauser’s experiment, for which distributions over the parame-

ters of interest are extracted from the posteriors of the initial models (Figure 6, right plot).

The discrete-factivity model also best accounts for data from two tasks in which predicates

are placed in contexts with minimal lexical content (Figure 10). Taken together, these results

provide strong evidence that the observed gradience among the clause-embedding predicates

studied by Degen and Tonhauser ismetalinguistic. Different clause-embedding predicates dif-

fer in the frequencies with which they trigger projective inferences, but the contribution a

predicate makes on particular occasions of use and interpretation is discrete, either producing
the relevant inference or not producing it at all.

What do these conclusionsmean for factivity as a property and the notion of ‘factive pred-

icate’ as a class? Are there factive predicates? We propose that our results support an account

of factivity whereon it is a semantically live property of expressions, but a property that may

be observed on only some uses of those expressions. Indeed, many predicates which have

traditionally been considered factive may, in fact, be systematically ambiguous. We take this

finding to largely confirm what prior work stretching back to Karttunen 1971 has (at least im-

plicitly) assumed in discussing ‘semifactive predicates’. These predicates may support factive

readings in certain contexts, and with some proclivity which varies by individual predicate,

or by class of predicate (Kane, Gantt, and White 2022). Hence, our results, in conjunction

with Kane, Gantt, and White’s, are consistent with a fairly conservative picture of factivity,

according to which it is an optional property of at least a subset of the predicates that Degen

and Tonhauser investigate.

6.1 Factivity as an epiphenomenon

Our proposal is crucially a proposal about semantic properties of expressions. Yet, it is con-

sistent with an account of factivity on which projection is intimately tied to properties of the

discourse in which the expressions of interest are embedded.
25

A prime example of such an

account can be found in Simons, Beaver, et al. 2017, who rely crucially on the notion of a

question under discussion (QUD; Roberts 2012). On their account, whether or not the com-

plement of a clause-embedding predicate projects varies according to prosodic and contextual

factors associated with the QUD. Simons, Beaver, et al.’s main aim in giving this account is

to do away with factivity as a semantic property of expressions, arguing rather that projec-

tive inferences are simply those which are backgrounded by the QUD, while non-projective

inferences are those that are at-issue (and generally, entailed).

We do not believe that completely doing away with the notion of factivity as a semantic

property will be possible for reasons that we have already mentioned in passing (Footnote 6):

insofar as one is willing to countenance that discrete choices are made about the identity of

the QUD on individual occasions of interpretation (pace Tonhauser, Beaver, and Degen 2018),

one could posit that there is no indeterminacy in the interpretations for the relevant string

and, rather, that there is uncertainty over possible QUDs against which the string is inter-

preted; but it is not clear how to reconcile such an account with the observation that (classes

25
See Qing, Goodman, and Lassiter 2016 for an approach along these lines within the Rational Speech-Act

framework (Frank and Goodman 2012; Goodman and Stuhlmüller 2013).
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of) predicates are associated with particular levels of gradience without saying that lexical

knowledge somehow conditions QUD choice. Such lexical knowledge could be knowledge

one has about the kinds discourses in which a predicate or class of predicates is used—and

therefore not semantic in nature—but this assumption raises a further question about why

such knowledge would predict predicates’ syntactic distributions, as Kane, Gantt, and White

(2022) show that it does. It seems much more plausible that this knowledge is at least partly

semantic in nature.

So how could a semantic notion of factivity be integrated with accounts that intimately tie

projection to properties of the discourse inwhich the expressions of interest are embedded? In

answering this question, we believe it will be fruitful to combine standard dynamic accounts

of presupposition projection (Heim 1992 et seq) with a probabilistic framework like Grove and

Bernardy’s (2023) and our extension.

In broad strokes, dynamic accounts of presupposition projection in the Heimian tradition

associate factive predicates with constraints on the contexts they can be used in—generally,

requiring that the common ground entails the content of the factive predicate’s embedded

clause. Such constraints could be stated in Grove and Bernardy’s framework (coupled with

our extension) as constraints imposed by the predicate on the distribution over contexts as-

sociated with the common ground. Uncertainty about whether a predicate is factive or not

thus implies uncertainty about what constraints to impose on that distribution over contexts.

Under such an account, properties of the QUD correlate with projection because possible

QUDs are constrained by the common ground in at least the sense that the QUD cannot be

trivial—i.e., the common ground cannot entail an answer to the QUD. Hence, insofar as a

factive variant of a predicate is more probable, QUDs that are trivial under common grounds

that are made more probable by that variant will have lower probability.

6.2 Which predicates are factive?

Which clause-embedding predicates do, in fact, belong in the class of factives is not a ques-

tion whose answer we have formally pursued here. As we note in Section 2, the question we

address in this paper is independent of whether or not there is a distinct class of factive pred-

icates (or subclasses thereof). But to retrace the discussion of Section 2, we note that Kane,

Gantt, and White (2022) have already done relevant work on this front by investigating how

best to cluster the predicates of interest (and many other predicates) into semantic classes

that are predictive of their syntactic distributions. Among other datasets, Kane, Gantt, and

White rely on the MegaVeridicality dataset (White and Rawlins 2018b), which Degen and

Tonhauser (2022) also use to support their findings of gradience among predicates’ veridi-

cality inferences. Kane, Gantt, and White find that emotive predicates, such as love and be
pleased, yield the most strongly factive inferences, and that such predicates are followed by

discourse commitment predicates, which include know. Thus we are optimistic that cluster-

ings of predicates based solely on diagnostics of factivity will also give rise to semantically

potent classes.

In this vein, restricting attention only to the predicates that Degen and Tonhauser study

yields a promising outlook. Figure 11 plots the posterior probability of projection associated

with the discrete-factivity model for all predicates combined, with the mean log-odds for
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Figure 11: Density plot of the posterior probability of projection (with participant intercepts

zeroed out) for the discrete-factivity model, for all predicates combined, scaled to log-odds

space. Points represent the posterior mean log-odds associated with individual predicates

(Spearman’s 𝑟 = 0.98∗∗∗, when compared with the empirical means).

individual predicates represented toward the bottom. One can see that there are roughly two

modes underneath which the means associated with individual predicates cluster. The left

mode is around 0.018, or near zero. The right mode is close to a probability of around half.

Indeed, one could make a cut between the predicates whose means appear to fall under the

left versus the right mode. Such a cut would classify all of the predicates under Degen and

Tonhauser’s “non-factive” category, except for demonstrate, as non-factive, alongwith confirm
and establish; it would then classify the remaining predicates as optionally factive. Moreover,

the contours visible in the right mode might suggest that more than one semantic class is

active, insofar as such classes govern the frequency with which a given predicate triggers

presupposition projection.

These observations are merely suggestive, however. We leave a detailed investigation of

the semantic classes organizing the lexical knowledge of factivity for the future, notingmerely

that the extension of Grove and Bernardy’s framework proposed here provides a natural way

to integrate uncertainty over predicate classes and their inferential effects into a model that

connects the compositional semantics to experimental data in an unbroken chain.

7 Conclusion

As a whole, the results presented here can be taken to motivate a fairly traditional view of

factivity, of the kind originally advocated by Kiparsky and Kiparsky (1970), Karttunen (1971),

inter alia. Some predicates may be understood to trigger a presupposition that the clause they
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select is true. The key departure from this tradition we would advocate, based on our results

(and following Degen and Tonhauser), is in the particular classification of predicates which

researchers ought to appeal to. Indeed, none of the predicates which Degen and Tonhauser

investigate appear to be assigned a factive interpretation in all of their uses; rather, all seem

to be associated with some degree of metalinguistic uncertainty about their status as factive.

For many predicates, such as think, the degree of uncertainty is fairly trivial, fixing a near-

zero probability of being factive. This is natural: if people are Bayesian reasoners about the

knowledge they maintain about the world, including its linguistic conventions, some uncer-

tainty about the semantic properties of linguistic expressions will be an essential feature of

that knowledge.

References

{Stan Development Team}. 2023. Stan Modeling Language Users Guide and Reference Manual,
2.32. Tech. rep.

Abrusán, Márta. 2011. Predicting the presuppositions of soft triggers. Linguistics and Philoso-
phy 34.6, pp. 491–535.

Abrusán, Márta. 2016. Presupposition cancellation: explaining the ‘soft–hard’ trigger distinc-

tion. Natural Language Semantics 24.2, pp. 165–202. doi: 10.1007/s11050-016-9122-7.

Abusch, Dorit. 2002. Lexical alternatives as a source of pragmatic presuppositions. Semantics
and Linguistic Theory. Ed. by Brendan Jackson. Vol. 12. University of California, San Diego
and San Diego State University, pp. 1–19.

Abusch, Dorit. 2010. Presupposition triggering from alternatives. Journal of Semantics 27.1,
pp. 37–80.

Altmann, Gerry and Yuki Kamide. 1999. Incremental interpretation at verbs: Restricting the

domain of subsequent reference. Cognition 73.3, pp. 247–264.

An, Hannah and Aaron White. 2020. The lexical and grammatical sources of neg-raising in-

ferences. Proceedings of the Society for Computation in Linguistics 3.1, pp. 220–233. doi:
https://doi.org/10.7275/yts0-q989.

Anand, Pranav and Valentine Hacquard. 2014. Factivity, Belief and Discourse. In The Art and
Craft of Semantics: A Festschrift for Irene Heim. Ed. by Luka Crni\v{c} and Uli Sauerland.

Vol. 1. MITWPL 70. MITWPL, pp. 69–90.

Asudeh, Ash and Gianluca Giorgolo. 2020. Enriched Meanings: Natural Language Semantics
with Category Theory. Oxford Studies in Semantics and Pragmatics. Oxford: Oxford Uni-

versity Press.

Barker, Chris. 2002. The Dynamics of Vagueness. Linguistics and Philosophy 25.1, pp. 1–36.

doi: 10.1023/A:1014346114955.

https://doi.org/10.1007/s11050-016-9122-7
https://doi.org/https://doi.org/10.7275/yts0-q989
https://doi.org/10.1023/A:1014346114955


Factivity, presupposition projection, and the role of discrete knowledge in gradient inference judgments 37

Bergen, Leon, Roger Levy, and Noah Goodman. 2016. Pragmatic reasoning through semantic

inference. Semantics and Pragmatics 9, ACCESS–ACCESS. doi: 10.3765/sp.9.20.

Bernardy, Jean-Philippe, Rasmus Blanck, Stergios Chatzikyriakidis, and Shalom Lappin. 2018.

A Compositional Bayesian Semantics for Natural Language. Proceedings of the First In-
ternational Workshop on Language Cognition and Computational Models. Santa Fe, New

Mexico, USA: Association for Computational Linguistics, pp. 1–10.

Bernardy, Jean-Philippe, Rasmus Blanck, Stergios Chatzikyriakidis, Shalom Lappin, and Alek-

sandre Maskharashvili. 2019a. Bayesian Inference Semantics: A Modelling System and A

Test Suite. Proceedings of the Eighth Joint Conference on Lexical and Computational Se-
mantics (*SEM 2019). Minneapolis, Minnesota: Association for Computational Linguistics,

pp. 263–272. doi: 10.18653/v1/S19-1029.

Bernardy, Jean-Philippe, Rasmus Blanck, Stergios Chatzikyriakidis, Shalom Lappin, and Alek-

sandre Maskharashvili. 2019b. Predicates as Boxes in Bayesian Semantics for Natural Lan-

guage. Proceedings of the 22nd Nordic Conference on Computational Linguistics. Turku, Fin-
land: Linköping University Electronic Press, pp. 333–337.

Bernardy, Jean-Philippe, Rasmus Blanck, Stergios Chatzikyriakidis, and Aleksandre Maskha-

rashvili. 2022. Bayesian Natural Language Semantics and Pragmatics. In Probabilistic Ap-
proaches to Linguistic Theory. Ed. by Jean-Philippe Bernardy et al. CSLI Publications.

Charlow, Simon. 2014. On the semantics of exceptional scope. PhD Thesis. New York: New

York University.

Charlow, Simon. 2020. The scope of alternatives: indefiniteness and islands. Linguistics and
Philosophy 43.4, pp. 427–472. doi: 10.1007/s10988-019-09278-3.

Coppock, Elizabeth. 2018. Outlook-based semantics. Linguistics and Philosophy 41.2, pp. 125–

164. doi: 10.1007/s10988-017-9222-y.

De Marneffe, Marie-Catherine, Mandy Simons, and Judith Tonhauser. 2019. The Commit-

mentBank: Investigating projection in naturally occurring discourse. Proceedings of Sinn
und Bedeutung. Vol. 23, pp. 107–124.

Degen, Judith and Judith Tonhauser. 2021. Prior Beliefs Modulate Projection. Open Mind 5,

pp. 59–70. doi: 10.1162/opmi_a_00042.

Degen, Judith and Judith Tonhauser. 2022. Are there factive predicates? An empirical inves-

tigation. Language 98.3, pp. 552–591. doi: 10.1353/lan.0.0271.

Djärv, Kajsa and Hezekiah Akiva Bacovcin. 2017. Prosodic Effects on Factive Presupposition

Projection. Semantics and Linguistic Theory 27.0, pp. 116–133. doi: 10.3765/salt.v27i0.4134.

Djärv, Kajsa, Jérémy Zehr, and Florian Schwarz. 2018. Cognitive vs. emotive factives: An ex-

perimental differentiation. Proceedings of Sinn und Bedeutung. Vol. 21, pp. 367–386.

Elliott, Patrick. 2020. Elements of Clausal Embedding. PhD thesis. University College London.

https://doi.org/10.3765/sp.9.20
https://doi.org/10.18653/v1/S19-1029
https://doi.org/10.1007/s10988-019-09278-3
https://doi.org/10.1007/s10988-017-9222-y
https://doi.org/10.1162/opmi_a_00042
https://doi.org/10.1353/lan.0.0271
https://doi.org/10.3765/salt.v27i0.4134


38 Julian Grove and Aaron Steven White

Elliott, Patrick D. 2016. Explaining DPs vs. CPs without syntax. Proceedings of the Fifty-first
Annual Meeting of the Chicago Linguistic Society. Ed. by Ksenia Ershova et al. Chicago:

Chicago Linguistic Society, pp. 171–186.

Elliott, Patrick D. 2022. A flexible scope theory of intensionality. Linguistics and Philosophy.
doi: 10.1007/s10988-022-09367-w.

Farudi, Annahita. 2007. An antisymmetric approach to Persian clausal complements.Ms., Uni-
versity of Massachusetts, Amherst.

Frank, Michael C. and Noah D. Goodman. 2012. Predicting Pragmatic Reasoning in Language

Games. Science 336.6084, pp. 998–998. doi: 10.1126/science.1218633.

Gabry, Jonah and Rok Češnovar. 2023. CmdStanR. Tech. rep.

Garnsey, Susan M. et al. 1997. The contributions of verb bias and plausibility to the com-

prehension of temporarily ambiguous sentences. Journal of Memory and Language 37.1,
pp. 58–93.

Gelman, Andrew, Jessica Hwang, and Aki Vehtari. 2014. Understanding predictive informa-

tion criteria for Bayesian models. Statistics and Computing 24.6, pp. 997–1016. doi: 10 .

1007/s11222-013-9416-2.

Giannakidou, Anastasia. 1998. Polarity sensitivity as (non) veridical dependency. Vol. 23. John
Benjamins Publishing.

Giannakidou, Anastasia. 1999. Affective dependencies. Linguistics and Philosophy 22.4, pp. 367–
421.

Giannakidou, Anastasia. 2009. The dependency of the subjunctive revisited: Temporal seman-

tics and polarity. Lingua 119.12, pp. 1883–1908.

Giorgolo, Gianluca and Ash Asudeh. 2012. ⟨M, 𝜂, ★⟩ Monads for Conventional Implicatures.

Sinn und Bedeutung. Ed. byAnaAguilar Guevara, AnnaChernilovskaya, and RickNouwen.
Vol. 16. MITWPL, pp. 265–278.

Giorgolo, Gianluca and Ash Asudeh. 2014. One Semiring to Rule Them All. CogSci 2014 Pro-
ceedings.

Givón, Talmy. 1973. The Time-Axis Phenomenon. Language 49.4, pp. 890–925.

Goodman, Noah D. and Daniel Lassiter. 2015. Probabilistic Semantics and Pragmatics Uncer-

tainty in Language and Thought. In The Handbook of Contemporary Semantic Theory. Ed.
by Shalom Lappin and Chris Fox. John Wiley & Sons, Ltd, pp. 655–686. doi: 10 . 1002 /

9781118882139.ch21.

Goodman, Noah D. and Andreas Stuhlmüller. 2013. Knowledge and Implicature: Modeling

Language Understanding as Social Cognition. Topics in Cognitive Science 5.1, pp. 173–184.
doi: https://doi.org/10.1111/tops.12007.

https://doi.org/10.1007/s10988-022-09367-w
https://doi.org/10.1126/science.1218633
https://doi.org/10.1007/s11222-013-9416-2
https://doi.org/10.1007/s11222-013-9416-2
https://doi.org/10.1002/9781118882139.ch21
https://doi.org/10.1002/9781118882139.ch21
https://doi.org/https://doi.org/10.1111/tops.12007


Factivity, presupposition projection, and the role of discrete knowledge in gradient inference judgments 39

Gordon, Peter and Jill Chafetz. 1990. Verb-based versus class-based accounts of actionality

effects in children’s comprehension of passives. Cognition 36.3, pp. 227–254.

Grove, Julian. 2022. Presupposition projection as a scope phenomenon. Semantics and Prag-
matics 15.15. doi: 10.3765/sp.15.15.

Grove, Julian and Jean-Philippe Bernardy. 2023. Probabilistic Compositional Semantics, Purely.

New Frontiers in Artificial Intelligence. Ed. by Katsutoshi Yada et al. Lecture Notes in Com-

puter Science. Cham: Springer Nature Switzerland, pp. 242–256. doi: 10.1007/978-3-031-

36190-6_17.

Heim, Irene. 1992. Presupposition projection and the semantics of attitude verbs. Journal of
Semantics 9.3, pp. 183–221. doi: 10.1093/jos/9.3.183.

Hooper, Joan B. 1975. On assertive predicates. In Syntax and Semantics. Ed. by John P. Kimball.

Vol. 4. New York: Academy Press, pp. 91–124.

Hooper, Joan B. and Sandra A. Thompson. 1973. On theApplicability of Root Transformations.

Linguistic Inquiry 4.4, pp. 465–497.

Jeong, Sunwoo. 2021. Prosodically-conditioned factive inferences in Korean: An experimental

study. Semantics and Linguistic Theory 30.0, pp. 1–21. doi: 10.3765/salt.v30i0.4798.

Kane, Benjamin, Will Gantt, and Aaron StevenWhite. 2022. Intensional Gaps: Relating veridi-

cality, factivity, doxasticity, bouleticity, and neg-raising. Semantics and Linguistic Theory
31.0, pp. 570–605. doi: 10.3765/salt.v31i0.5137.

Karttunen, Lauri. 1971. Some observations on factivity. Paper in Linguistics 4.1, pp. 55–69. doi:
10.1080/08351817109370248.

Karttunen, Lauri. 1974. Presuppositions and Linguistic Context. Theoretical Linguistics 1.1–3,
pp. 181–194.

Kastner, Itamar. 2015. Factivity mirrors interpretation: The selectional requirements of pre-

suppositional verbs. Lingua 164, pp. 156–188.

Kennedy, Christopher. 2007. Vagueness and grammar: the semantics of relative and absolute

gradable adjectives. Linguistics and Philosophy 30.1, pp. 1–45. doi: 10.1007/s10988-006-

9008-0.

Kennedy, Christopher and Louise McNally. 2005. Scale Structure, Degree Modification, and

the Semantics of Gradable Predicates. Language 81.2, pp. 345–381. doi: 10.1353/lan.2005.
0071.

Kennedy, Christopher and Malte Willer. 2016. Subjective attitudes and counterstance contin-

gency. Semantics and Linguistic Theory 26.0, pp. 913–933. doi: 10.3765/salt.v26i0.3936.

Kennedy, Christopher and Malte Willer. 2022. Familiarity inferences, subjective attitudes and

counterstance contingency: towards a pragmatic theory of subjectivemeaning. Linguistics
and Philosophy 45.6, pp. 1395–1445. doi: 10.1007/s10988-022-09358-x.

https://doi.org/10.3765/sp.15.15
https://doi.org/10.1007/978-3-031-36190-6_17
https://doi.org/10.1007/978-3-031-36190-6_17
https://doi.org/10.1093/jos/9.3.183
https://doi.org/10.3765/salt.v30i0.4798
https://doi.org/10.3765/salt.v31i0.5137
https://doi.org/10.1080/08351817109370248
https://doi.org/10.1007/s10988-006-9008-0
https://doi.org/10.1007/s10988-006-9008-0
https://doi.org/10.1353/lan.2005.0071
https://doi.org/10.1353/lan.2005.0071
https://doi.org/10.3765/salt.v26i0.3936
https://doi.org/10.1007/s10988-022-09358-x


40 Julian Grove and Aaron Steven White

Kiparsky, Paul and Carol Kiparsky. 1970. FACT. In Progress in Linguistics. De Gruyter Mouton,

pp. 143–173.

Lassiter, Daniel. 2011. Vagueness as Probabilistic Linguistic Knowledge. Vagueness in Commu-
nication. Ed. by Rick Nouwen et al. Lecture Notes in Computer Science. Berlin, Heidelberg:

Springer, pp. 127–150. doi: 10.1007/978-3-642-18446-8_8.

Lassiter, Daniel and Noah D. Goodman. 2017. Adjectival vagueness in a Bayesian model of

interpretation. Synthese 194.10, pp. 3801–3836. doi: 10.1007/s11229-015-0786-1.

Liang, Shen, Paul Hudak, and Mark Jones. 1995. Monad transformers and modular inter-

preters. POPL ’95 Proceedings of the 22nd ACM SIGPLAN-SIGACT symposium on Principles
of programming languages. New York, pp. 333–343.

Liu, Fang and Evercita C Eugenio. 2018. A review and comparison of Bayesian and likelihood-

based inferences in beta regression and zero-or-one-inflated beta regression. Statistical
Methods in Medical Research 27.4, pp. 1024–1044. doi: 10.1177/0962280216650699.

MacDonald, Maryellen C., Neal J. Pearlmutter, and Mark S. Seidenberg. 1994. The lexical na-

ture of syntactic ambiguity resolution. Psychological Review 101.4, p. 676.

McBride, Conor and Ross Paterson. 2008. Applicative Programming with Effects. Journal of
Functional Programming 18.1, pp. 1–13.

Monroe, Will. 2018. Learning in the Rational Speech Acts model. PhD thesis. Stanford: Stan-

ford University.

Ozyildiz, Deniz. 2017. Attitude reports with and without true belief. Semantics and Linguistic
Theory. Ed. by Dan Burgdorf et al. Vol. 27. Linguistic Society of America, pp. 397–417.

Potts, Christopher et al. 2016. Embedded Implicatures as Pragmatic Inferences under Com-

positional Lexical Uncertainty. Journal of Semantics 33.4, pp. 755–802. doi: 10.1093/jos/
ffv012.

Qing, Ciyang, Noah D. Goodman, and Daniel Lassiter. 2016. A rational speech-act model of

projective content. Proceedings of the 38th Annual Meeting of the Cognitive Science Society:
Recognising and representing events. The Cognitive Science Society, pp. 1110–1115.

Roberts, Craige. 2012. Information Structure: Towards an integrated formal theory of prag-

matics. Semantics and Pragmatics 5, 6:1–69. doi: 10.3765/sp.5.6.

Ross, Alexis and Ellie Pavlick. 2019. How well do NLI models capture verb veridicality? Pro-
ceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and
the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP).
Hong Kong, China: Association for Computational Linguistics, pp. 2230–2240. doi: 10 .

18653/v1/D19-1228.

Roussou, Anna. 2010. Selecting complementizers. Lingua 120.3, pp. 582–603.

Shan, Chung-chieh. 2002. Monads for natural language semantics. arXiv:cs/0205026.

https://doi.org/10.1007/978-3-642-18446-8_8
https://doi.org/10.1007/s11229-015-0786-1
https://doi.org/10.1177/0962280216650699
https://doi.org/10.1093/jos/ffv012
https://doi.org/10.1093/jos/ffv012
https://doi.org/10.3765/sp.5.6
https://doi.org/10.18653/v1/D19-1228
https://doi.org/10.18653/v1/D19-1228


Factivity, presupposition projection, and the role of discrete knowledge in gradient inference judgments 41

Simons, Mandy. 2007. Observations on embedding verbs, evidentiality, and presupposition.

Lingua 117.6, pp. 1034–1056. doi: 10.1016/j.lingua.2006.05.006.

Simons, Mandy, David Beaver, et al. 2017. The Best Question: Explaining the Projection Be-

havior of Factives. Discourse Processes 54.3, pp. 187–206.

Simons,Mandy, Judith Tonhauser, et al. 2010.What projects andwhy. Semantics and Linguistic
Theory. Ed. by Nan Li and David Lutz. Vol. 20. University of British Columbia and Simon

Fraser University: Linguistic Society of America, pp. 309–327. doi: 10.3765/salt.v20i0.2584.

Tonhauser, Judith. 2016. Prosodic cues to presupposition projection. Semantics and Linguistic
Theory 26.0, pp. 934–960. doi: 10.3765/salt.v26i0.3788.

Tonhauser, Judith, David I. Beaver, and Judith Degen. 2018. How Projective is Projective Con-

tent? Gradience in Projectivity and At-issueness. Journal of Semantics 35.3, pp. 495–542.
doi: 10.1093/jos/ffy007.

Trueswell, John C., Michael K. Tanenhaus, and Christopher Kello. 1993. Verb-specific con-

straints in sentence processing: separating effects of lexical preference from garden-paths.

Journal of Experimental Psychology: Learning, Memory, and Cognition 19.3, p. 528.

Unger, Christina. 2012. Dynamic Semantics as Monadic Computation. New Frontiers in Artifi-
cial Intelligence. Ed. by Manabu Okumura, Daisuke Bekki, and Ken Satoh. Lecture Notes

in Computer Science. Berlin, Heidelberg: Springer, pp. 68–81. doi: 10.1007/978-3-642-

32090-3_7.

Varlokosta, Spyridoula. 1994. Issues in Modern Greek Sentential Complementation. PhD the-

sis. University of Maryland, College Park.

Vehtari, Aki et al. 2023. loo: Efficient Leave-One-Out Cross-Validation and WAIC for Bayesian
Models.

Von Fintel, Kai and Irene Heim. 2021. Intensional semantics. MIT.

Watanabe, Sumio. 2013. A Widely Applicable Bayesian Information Criterion. Journal of Ma-
chine Learning Research 14.27, pp. 867–897.

White, Aaron S., Valentine Hacquard, and Jeffrey Lidz. 2018. Semantic Information and the

Syntax of Propositional Attitude Verbs. Cognitive Science 42.2, pp. 416–456. doi: 10.1111/
cogs.12512.

White, Aaron Steven. 2019. Lexically triggered veridicality inferences. In Handbook of Prag-
matics. Vol. 22. John Benjamins Publishing Company, pp. 115–148.

White, Aaron Steven. 2021. On believing and hoping whether. Semantics and Pragmatics 14.6,
pp. 1–18. doi: 10.3765/sp.14.6.

White, Aaron Steven and Kyle Rawlins. 2016. A computational model of S-selection. Semantics
and Linguistic Theory 26.0, pp. 641–663. doi: 10.3765/salt.v26i0.3819.

https://doi.org/10.1016/j.lingua.2006.05.006
https://doi.org/10.3765/salt.v20i0.2584
https://doi.org/10.3765/salt.v26i0.3788
https://doi.org/10.1093/jos/ffy007
https://doi.org/10.1007/978-3-642-32090-3_7
https://doi.org/10.1007/978-3-642-32090-3_7
https://doi.org/10.1111/cogs.12512
https://doi.org/10.1111/cogs.12512
https://doi.org/10.3765/sp.14.6
https://doi.org/10.3765/salt.v26i0.3819


42 Julian Grove and Aaron Steven White

White, Aaron Steven and Kyle Rawlins. 2018a. Question agnosticism and change of state.

Proceedings of Sinn und Bedeutung 21.2, pp. 1325–1342.

White, Aaron Steven and Kyle Rawlins. 2018b. The role of veridicality and factivity in clause

selection. NELS 48: Proceedings of the Forty-Eighth Annual Meeting of the North East Lin-
guistic Society. Ed. by Sherry Hucklebridge andMax Nelson. Vol. 48. University of Iceland:

GLSA (Graduate Linguistics Student Association), Department of Linguistics, University

of Massachusetts, pp. 221–234.

White, Aaron Steven, Rachel Rudinger, et al. 2018. Lexicosyntactic Inference in Neural Mod-

els. Proceedings of the 2018 Conference on Empirical Methods in Natural Language Process-
ing. Brussels, Belgium: Association for Computational Linguistics, pp. 4717–4724. doi:

10.18653/v1/D18-1501.

A Full model specifications

Models were fit using Stan’s HamiltonianMarkov chainMonte Carlo sampling algorithm. For

each model of Degen and Tonhauser’s data, as well as each model of either the bleached or

templatic data, we obtained 6,000 posterior samples of the model parameters, following 6,000

burn-in samples, on four chains each. For each model of our replication experiment data, we

obtained 24,000 posterior samples of the model parameters, following 24,000 burn-in samples,

on four chains each.

A.1 The norming model

We characterize our model of the norming data as a probabilistic program, with the following

structure, given data ynorming : 𝑟
𝑛
context

2
∗𝑛participant

, where 𝑛context and 𝑛participant are the number

of contexts and participants, respectively, featured in the experiment. That is, each partici-

pant saw half of the available contexts, where each complement clause from the projection

experiment was rated in conjunction with either a low-prior fact or a high-prior fact.

We encode the certainties for contexts as parameters 𝝎 on a log-odds scale, with partici-

pant random intercepts 𝝐 added to these parameters before they are mapped to transformed

parameters w for certainty on the unit interval. Normal priors centered at zero are placed

on the participant intercepts, as well as the log-odds parameters for contexts; the standard

deviations (𝜎𝝐 and 𝝈𝝎 ) of these normal distributions are, in turn, given exponential hyper-

priors. Finally, the likelihood for our model is given by a normal distribution centered at

the certainty, whose standard deviation 𝜎𝑒 is parameterized with a prior uniform on the unit

interval, truncated to the unit interval. We use w𝑖, 𝑗 to denote the parameter encoding the

certainty for participant 𝑗 , given context 𝑖 .

We point out an important notational convention, which pertains to all of the model

specifications we give here. We use the operator

𝐷 ( ·) : P𝛼 → 𝛼 → 𝑟

to obtain a density (or mass, as the case may be) function on 𝛼 ’s from a probabilistic program

https://doi.org/10.18653/v1/D18-1501
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Figure 12: Density plots of the posterior log-odds certainty (with participant intercepts zeroed

out) for three items in Degen and Tonhauser’s (2021) norming task. Low and high priors are

for Grace visited her sister, given the facts Grace hates her sister and Grace loves her sister,
respectively. Mid prior is for Sophia got a tattoo, given the fact Sophia is a hipster.

that returns 𝛼 ’s as values. Thus ifm returns, say, tuples of real numbers, then we may obtain

the density (or mass) thatm assigns to the tuple x as 𝐷m(x).
The model of the norming data can be presented compactly as follows:

norming : P(𝑟𝑛context × 𝑟𝑛participant × 𝑟𝑛context × 𝑟 2)
norming = 𝝈𝝎 ∼ Exponential(1)

𝜎𝝐 ∼ Exponential(1)
𝜎𝑒 ∼ Uniform(0, 1)
𝝎 ∼ N(0,𝝈𝝎)
𝝐 ∼ N(0, 𝜎𝝐 )
factor(𝐷N(w,𝜎𝑒 )T[0,1] (ynorming))
⟨𝝎, 𝝐,𝝈𝝎, 𝜎𝝐 , 𝜎𝑒⟩

where w𝑖, 𝑗 = logit−1(𝝎𝑖 + 𝝐 𝑗 )

The parameters 𝝎 encode a log-odds certainty rating for each item. We obtain prior distri-

butions for these parameters in our models of factivity by extracting their marginal posterior

distributions from our norming model and, for each item (i.e., each parameter of 𝝎), tak-

ing a normal distribution with mean and variance equal to that of the posterior distribution.

Density plots for three items are given in Figure 12 (see Figure 14 of Appendix B for all items).

A.2 The factivity models

We now provide our four models of factivity and prior world knowledge, which we fit to De-

gen and Tonhauser’s projection experiment data. In specifying each one, we use 𝝁𝝎 and 𝝈𝝎

to denote the means and standard deviations, respectively, of the marginal posterior distribu-

tions of the log-odds certainty ratings for the contexts assessed in the norming experiment.
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In each model specification, yprojection : 𝑟𝑛verb∗𝑛participant
encodes the experimental data, since

each participant saw each verb exactly once.

For each model, we encode the log-odds of projection for verbs, along with the log-odds

certainties for contexts, as parameters 𝝂 and 𝝎. Participant random intercepts 𝝐1 and 𝝐2 are

added to these parameters, respectively, before they are mapped to transformed parameters

v and w on the unit interval. Normal priors centered at zero are placed on the participant

intercepts, as well as the log-odds parameters for verbs; the standard deviations (𝜎𝝐1 , 𝜎𝝐2 , and

𝝈 𝝂 ) of these normals are, in turn, given exponential hyper-priors. Finally, the likelihoods for

our models are again given by normal distributions truncated to the unit interval, and whose

standard deviation 𝜎𝑒 is parameterized by a prior uniform on the unit interval. The mean

𝜽 of this truncated normal likelihood varies by model, as we show next. In general, we use

v𝑖, 𝑗,𝑘 andw𝑖, 𝑗,𝑘 to denote the parameters encoding the probability of projection and certainty,

respectively, for participant 𝑘 , given verb 𝑖 and context 𝑗 .

A.2.1 The discrete-factivity model

The discrete-factivity model defines the parameters 𝜽 as either 1 or the certainty determined

by world knowledge, depending on whether or not the relevant predicate’s complement

clause projects. This definition of 𝜽 is justified by the following fact, given some fixed 𝜏1:

Fact 1.

P

(
𝜏2 ∼ Bernoulli(𝑝)
𝜏1 ∨ 𝜏2

)
= 1(𝜏1) + 1(¬𝜏1) ∗ 𝑝

In other words, a given predicate’s complement projects or it doesn’t project; if it doesn’t, then
the prior certainty determined by world knowledge takes the reins. This yields the following

model specification:

discrete-factivity : P(𝑟𝑛verb × 𝑟𝑛context × 𝑟𝑛participant × 𝑟𝑛participant × 𝑟𝑛verb × 𝑟 3)
discrete-factivity = 𝝈 𝝂 ∼ Exponential(1)

𝜎𝝐1 ∼ Exponential(1)
𝜎𝝐2 ∼ Exponential(1)
𝜎𝑒 ∼ Uniform(0, 1)
𝝂 ∼ N(0,𝝈 𝝂)
𝝎 ∼ N(𝝁𝝎,𝝈𝝎)
𝝐1 ∼ N(0, 𝜎𝝐1)
𝝐2 ∼ N(0, 𝜎𝝐2)
𝝉v ∼ Bernoulli(v)
factor(𝐷N(𝜽 ,𝜎𝑒 )T[0,1] (yprojection))
⟨𝝂,𝝎, 𝝐1, 𝝐2,𝝈 𝝂 , 𝜎𝝐1, 𝜎𝝐2, 𝜎𝑒⟩

where v𝑖, 𝑗,𝑘 = logit−1(𝝂𝑖 + 𝝐1𝑘 )
w𝑖, 𝑗,𝑘 = logit−1(𝝎 𝑗 + 𝝐2𝑘 )
𝜽 𝑖, 𝑗,𝑘 = 1(𝝉v𝑖, 𝑗,𝑘 ) + 1(¬𝝉v𝑖, 𝑗,𝑘 ) ∗w𝑖, 𝑗,𝑘
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A.2.2 The wholly-gradient model

The wholly-gradient model sets each parameter 𝜽 𝑖, 𝑗,𝑘 equal to v𝑖, 𝑗,𝑘 + (1 − v𝑖, 𝑗,𝑘 ) ∗w𝑖, 𝑗,𝑘 , an

encoding justified by the following fact:

Fact 2.

P
©­«
𝜏1 ∼ Bernoulli(𝑝)
𝜏2 ∼ Bernoulli(𝑞)
𝜏1 ∨ 𝜏2

ª®¬ = 𝑝 + (1 − 𝑝) ∗ 𝑞

Under this model, presupposition projection is genuinely gradient, since it adds directly to

the certainty that the relevant complement clause is true, giving it a boost (albeit not all the
way to 1).

wholly-gradient : P(𝑟𝑛verb × 𝑟𝑛context × 𝑟𝑛participant × 𝑟𝑛participant × 𝑟𝑛verb × 𝑟 3)
wholly-gradient = 𝝈 𝝂 ∼ Exponential(1)

𝜎𝝐1 ∼ Exponential(1)
𝜎𝝐2 ∼ Exponential(1)
𝜎𝑒 ∼ Uniform(0, 1)
𝝂 ∼ N(0,𝝈 𝝂)
𝝎 ∼ N(𝝁𝝎,𝝈𝝎)
𝝐1 ∼ N(0, 𝜎𝝐1)
𝝐2 ∼ N(0, 𝜎𝝐2)
factor(𝐷N(𝜽 ,𝜎𝑒 )T[0,1] (yprojection))
⟨𝝂,𝝎, 𝝐1, 𝝐2,𝝈 𝝂 , 𝜎𝝐1, 𝜎𝝐2, 𝜎𝑒⟩

where v𝑖, 𝑗,𝑘 = logit−1(𝝂𝑖 + 𝝐1𝑘 )
w𝑖, 𝑗,𝑘 = logit−1(𝝎 𝑗 + 𝝐2𝑘 )
𝜽 𝑖, 𝑗,𝑘 = v𝑖, 𝑗,𝑘 + (1 − v𝑖, 𝑗,𝑘 ) ∗w𝑖, 𝑗,𝑘

A.2.3 The discrete-world model

The discrete-world model is defined similarly to the discrete-factivity model, except by al-

ternating which parameters are taken to make discrete versus gradient contributions to the

response. Now, world knowledge affects the certainty discretely, producing values of either 0

or 1. Meanwhile, if the certainty is 0, the factivity of the relevant predicate makes a gradient
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contribution to the response.

discrete-world : P(𝑟𝑛verb × 𝑟𝑛context × 𝑟𝑛participant × 𝑟𝑛participant × 𝑟𝑛verb × 𝑟 3)
discrete-world = 𝝈 𝝂 ∼ Exponential(1)

𝜎𝝐1 ∼ Exponential(1)
𝜎𝝐2 ∼ Exponential(1)
𝜎𝑒 ∼ Uniform(0, 1)
𝝂 ∼ N(0,𝝈 𝝂)
𝝎 ∼ N(𝝁𝝎,𝝈𝝎)
𝝐1 ∼ N(0, 𝜎𝝐1)
𝝐2 ∼ N(0, 𝜎𝝐2)
𝝉w ∼ Bernoulli(w)
factor(𝐷N(𝜽 ,𝜎𝑒 )T[0,1] (yprojection))
⟨𝝂,𝝎, 𝝐1, 𝝐2,𝝈 𝝂 , 𝜎𝝐1, 𝜎𝝐2, 𝜎𝑒⟩

where v𝑖, 𝑗,𝑘 = logit−1(𝝂𝑖 + 𝝐1𝑘 )
w𝑖, 𝑗,𝑘 = logit−1(𝝎 𝑗 + 𝝐2𝑘 )
𝜽 𝑖, 𝑗,𝑘 = 1(𝝉w𝑖, 𝑗,𝑘 ) + 1(¬𝝉w𝑖, 𝑗,𝑘 ) ∗ v𝑖, 𝑗,𝑘

A.2.4 The wholly-discrete model

Finally, the wholly-discrete model generates parameters 𝜽 which are either 0 or 1, depending

on two Bernoullis parameterized by the probabilities of projection and world-knowledge-

derived certainties, respectively. Each parameter 𝜽 𝑖, 𝑗,𝑘 is thus 0 with probability 𝑝 = (1 −
v𝑖, 𝑗,𝑘 ) ∗ (1 −w𝑖, 𝑗,𝑘 ), and 1 with probability 1 − 𝑝 .

wholly-discrete : P(𝑟𝑛verb × 𝑟𝑛context × 𝑟𝑛participant × 𝑟𝑛participant × 𝑟𝑛verb × 𝑟 3)
wholly-discrete = 𝝈 𝝂 ∼ Exponential(1)

𝜎𝝐1 ∼ Exponential(1)
𝜎𝝐2 ∼ Exponential(1)
𝜎𝑒 ∼ Uniform(0, 1)
𝝂 ∼ N(0,𝝈 𝝂)
𝝎 ∼ N(𝝁𝝎,𝝈𝝎)
𝝐1 ∼ N(0, 𝜎𝝐1)
𝝐2 ∼ N(0, 𝜎𝝐2)
𝝉v ∼ Bernoulli(v)
𝝉w ∼ Bernoulli(w)
factor(𝐷N(𝜽 ,𝜎𝑒 )T[0,1] (yprojection))
⟨𝝂,𝝎, 𝝐1, 𝝐2,𝝈 𝝂 , 𝜎𝝐1, 𝜎𝝐2, 𝜎𝑒⟩

where v𝑖, 𝑗,𝑘 = logit−1(𝝂𝑖 + 𝝐1𝑘 )
w𝑖, 𝑗,𝑘 = logit−1(𝝎 𝑗 + 𝝐2𝑘 )
𝜽 𝑖, 𝑗,𝑘 = 1(𝝉v𝑖, 𝑗,𝑘 ∨ 𝝉w𝑖, 𝑗,𝑘 )
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Figure 13: Density plots of the posterior log-odds of projection (with participant intercepts

zeroed out) for all four models for six predicates from Degen and Tonhauser’s (2021) projec-

tion experiment.

A.3 The contentful evaluation model

To evaluate the four models using this data, we obtained, from each model, means 𝝁𝝂 and

standard deviations𝝈 𝝂 of themarginal posterior log-odds of projection distributions for pred-

icates, as well as means 𝝁𝝎 and standard deviations 𝝈𝝎 of the marginal posterior log-odds

certainty distributions for contexts. We then used normal distributions with these means and

standard deviations as prior distributions for the corresponding parameters in themodels con-

structed for the evaluations. (See Figure 13 for density plots of these posterior distributions

for six predicates, and Figure 15 of Appendix B for density plots of the posterior disributions

for all predicates.)
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Each evaluation has the following structure:

replication-evaluation : P(𝑟𝑛verb × 𝑟𝑛context × 𝑟𝑛participant × 𝑟𝑛participant × 𝑟 3)
replication-evaluation = 𝜎𝝐1 ∼ Exponential(1)

𝜎𝝐2 ∼ Exponential(1)
𝜎𝑒 ∼ Uniform(0, 1)
𝝂 ∼ N(𝝁𝝂 ,𝝈 𝝂)
𝝎 ∼ N(𝝁𝝎,𝝈𝝎)
𝝐1 ∼ N(0, 𝜎𝝐1)
𝝐2 ∼ N(0, 𝜎𝝐2)
...

factor(𝐷N(𝜽 ,𝜎𝑒 )T[0,1] (yreplication))
⟨𝝂,𝝎, 𝝐1, 𝝐2, 𝜎𝝐1, 𝜎𝝐2, 𝜎𝑒⟩

where v𝑖, 𝑗,𝑘 = logit−1(𝝂𝑖 + 𝝐1𝑘 )
w𝑖, 𝑗,𝑘 = logit−1(𝝎 𝑗 + 𝝐2𝑘 )
𝜽 𝑖, 𝑗,𝑘 = ...

The ellipsis are used to represent the parts of any given evaluation that are model-specific.

For example, the line above factor would be ‘𝝉v ∼ Bernoulli(v)’ for the evaluation of the

discrete-factivitymodel, and the definition of 𝜽 𝑖, 𝑗,𝑘 would be 1(𝝉 𝝂𝑖, 𝑗,𝑘 )+1(¬𝝉 𝝂𝑖, 𝑗,𝑘 )∗w𝑖, 𝑗,𝑘 .

A.4 The non-contentful evaluation models

To evaluate the four models using both the bleached and templatic data, we used the means

𝝁𝝂 and standard deviations 𝝈 𝝂 of the marginal posterior log-odds of projection that we used

for the evaluations on the replication experiment data. As before, we use normal distributions

with these means and standard deviations as prior distributions for the corresponding param-

eters in the models constructed for the evaluations. Then, in each evaluation, we inferred a

distribution over the parameters 𝜎𝜔 and 𝜔 that regulate the certainty associated with either

the bleached or the templatic context.

In particular, both the bleached and the templatic evaluations have the following struc-
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ture, where ellipses, as above, indicate the unique aspects of each of the four models:

non-contentful-evaluation : P(𝑟𝑛verb × 𝑟 × 𝑟𝑛participant × 𝑟𝑛participant × 𝑟 3)
non-contentful-evaluation = 𝜎𝜔 ∼ Exponential(1)

𝜎𝝐1 ∼ Exponential(1)
𝜎𝝐2 ∼ Exponential(1)
𝜎𝑒 ∼ Uniform(0, 1)
𝝂 ∼ N(𝝁𝝂 ,𝝈 𝝂)
𝜔 ∼ N(0, 𝜎𝜔 )
𝝐1 ∼ N(0, 𝜎𝝐1)
𝝐2 ∼ N(0, 𝜎𝝐2)
...

factor(𝐷N(𝜽 ,𝜎𝑒 )T[0,1] (ynon-contentful))
⟨𝝂, 𝜔, 𝝐1, 𝝐2, 𝜎𝜔 , 𝜎𝝐1, 𝜎𝝐2, 𝜎𝑒⟩

where v𝑖, 𝑗 = logit−1(𝝂𝑖 + 𝝐1 𝑗 )
w𝑖, 𝑗 = logit−1(𝜔 + 𝝐2 𝑗 )
𝜽 𝑖, 𝑗 = ...

The data tuple ynon-contentful should be understood as either ybleached or ytemplatic, depending

on the evaluation performed.

B Plots

B.1 Posterior parameter distributions
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B.2 Posterior predictive distributions
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