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Abstract. We extend our formulation of Merge and Minimalism in terms of Hopf algebras to
an algebraic model of a syntactic-semantic interface. We show that methods adopted in the
formulation of renormalization (extraction of meaningful physical values) in theoretical physics
are relevant to describe the extraction of meaning from syntactic expressions. We show how this
formulation relates to computational models of semantics and we answer some recent controversies
about implications for generative linguistics of the current functioning of large language models.
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1. Introduction: modelling the syntax-semantics interface

The modelling of the generative process of syntax, based on the core computational structure of
Merge, within the setting of the Minimalist Model, satisfies the following fundamental properties:

(1) a concise conceptual framework;
(2) a precise mathematical formulation;
(3) good explanatory power.

For the most recent formulation of Minimalism, the first and third property are articulated in [13],
[14], [15] and in the upcoming [16]. While the requirement of the existence of precise mathematical
models has been traditionally associated to sciences like physics, the fact that syntax is essentially
a computational process suggests that a mathematical formulation should also be a desirable
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requirement in linguistics, and more specifically in the modelling of I-language. We presented a
detailed mathematical model of syntactic Merge in our previous papers [61] and [62].

In comparison with syntax, the modeling of semantics is presently in a less satisfactory state from
the point of view of the same three properties listed above. Some main approaches to semantics
include forms of compositional semantics [73], [74], truth-conditional semantics, semiring semantics
[36], and vector-space models (the latter especially in computational linguistics). General views
of logic-oriented approaches to semantics, which we will not be discussing in this paper, can be
seen, for instance, in [78], [82], [86]. Each of these viewpoints has limitations of a different nature.

Our purpose here is not to carry out a comprehensive comparative analysis and criticism of
contemporary models of semantics. Rather, we want to approach the problem of modeling the
syntactic-semantic interface on the basis of a list of abstract properties, and articulate a possible
mathematical setting that such properties suggest. We can then compare existing models with
the specific structure that we identify. We will show that one can remain, to some extent, agnostic
about specific models of semantics, beyond some basic requirements, and still retain a fundamental
functioning model of the interaction with syntax. This reflects a view of the syntax-semantics
interface that is primarily syntax-driven.

As in the case of our mathematical formulation of Merge in terms of Hopf algebras, our guiding
principle will be an analogy with conceptually similar structures that arise in theoretical physics.
In particular, in the context of fundamental physical interactions described by the quantum field
theory, fundamental problem is the assignment of “meaningful” physical values to the computation
of the expectation values of the theory. This can be compared with the assignment of meaning–
semantics–to syntactic objects. More precisely, assignment of meaning the quantum field theory
setting consists of the extraction of a finite (meaningful) part from Feynman integrals that are in
general divergent (produce meaningless infinities). This process is known in theoretical physics
as renormalization. While the renormalization problem and procedures leading to satisfactory
solutions for it have been known to physicists since the development of quantum electrodynamics
in the 1950s and 60s (see [6]), a complete understanding of the underlying mathematical structure
is much more recent, (see [20], [21]).

Even more recently, it has been shown shown that the same mathematical formalism can be
applied in the theory of computation, in order to extract, in a similar way, computable “subfunc-
tions” from non-decidable problems (undecidability being the analog in the theory of computation
of the unphysical infinities); see [54], [55], and also [23].

Assuming the conceptual standpoint that Internal or I-language is, in essence, a computational
process, the extension of the mathematical framework of renormalization to the theory of compu-
tation suggests the existence of a similar possible manifestation in linguistics as well. In the case
of linguistics, one does not have to deal with divergences (of a physical or computational nature);
rather one has to carry out a consistent assignment of meaning to syntactic objects produced by
the Merge mechanism, and reject inconsistencies and impossibilities. In the rest of this paper we
plan to turn this heuristic comparison into a precise formulation.

There are several reasons why developing such a mathematical model of the syntax-semantics
interface is desirable. Aside from general principles based on the three “good properties” of
theoretical modeling stated above, there are other possible applications of interest. For instance,
a significant ongoing debate and controversy has ensued from the recent development of large
language models, with various claims of incompatibility with, or “disproval” of the generative
linguistics framework itself. Since such theories, in our view, ultimately describe computational
processes (albeit most likely also in our view of a different nature from those governing language
in human brains), a viable computational and mathematical setting is required, where a specific
comparative analysis can be carried out, and such claims can be addressed.
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1.1. Some conceptual requirements for a syntax-semantics interface. We start our anal-
ysis by setting out a simple list of what we regard as desirable properties of a model of the
syntax-semantic interface.

(1) Autonomy of syntax
(2) Syntax supports semantic interpretation
(3) Semantic interpretation is, to a large extent, independent of externalization
(4) Compositionality

The first requirement, the autonomy of syntax, expresses that the computational generative
process of syntax described by Merge is independent of semantics. The second requirement can be
seen as positing that the syntax-semantic interface proceeds from syntax to semantics (a syntax-
first view), while syntax itself is not semantic in nature. The third claim separates the interaction
of the core computational mechanism of syntax with a Conceptual-Intentional system, which
gives rise to the syntax-semantic interface, from the interaction with an Articulatory-Perceptual
or Sensory-Motor system, which includes the process of externalization. While it is reasonable to
assume a certain level of interaction between these two mechanisms, with “independence of exter-
nalization” we emphasize that semantic interpretation depends primarily on structural relations
and proximity in the syntactic structure rather than on linear proximity of words in a sentence.
The compositional property is meant here simply as a requirement of consistency across syntactic
sub-structures.

We also add another general principle that we will try to incorporate in our model and that may
be at odds with some of the traditional approaches to semantics (such as the truth value based
approaches). We propose the following fundamental distinction between the roles of syntax and
semantics in language

• Syntax is a computational process.
• Semantics is not a computational process and is in essence grounded on a notion of topo-

logical proximity.

The first statement is clear in the context of generative linguistics, and in particular in the setting
of Minimalism, where the computational process is run by the fundamental operation Merge. The
second assertion requires some contextual clarification. Saying that semantics is only endowed
with a notion of proximity of a topological nature does not mean that it is not possible, or
desirable, to consider models of semantics where additional structure is present, but rather that
these additional properties (metric, linear, semiring structures, for instance) only play a role to
instantiate or quantify proximity relations. The compositionality of semantics does not require
positing an additional computational structure on semantics itself: the computational structure
of syntax suffices to induce it. In this view, semantics is not really a part of language itself, but
rather an autonomous structure that deals with proximity classifications.

1.2. Syntax. On the syntax side of the syntax-semantic interface we assume the formulation
of free symmetric Merge presented in [61]. This accounts for the properties (1) and (3) in our
list of §1.1: it provides a computational model of syntax that is independent of semantics, and
where the interface with semantics takes place at the level of the free symmetric Merge, without
requiring prior externalization. Free symmetric Merge generates syntactic objects, described by
binary rooted trees without any assigned planar embedding. Thus, our choice of modeling the
syntax-semantic interface starting from the level of free symmetric Merge as the syntactic part of
the interface, has the effect of ensuring that the interface of syntax and semantics (also sometimes
called the Conceptual-Intentional system) is parallel and separate from the channel connecting
the output of Merge to externalization (the so-called Articulatory-Perceptual system), although
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interactions between these two channels can be incorporated in the model (and will be discussed
in §4 of this paper).

Summarizing the setting of [61], syntax is represented by the following data:

• a (finite) set SO0 of lexical items and syntactic features;
• the set of syntactic objects SO, identified with the set TSO0 of binary rooted trees (with

no planar structure) with leaves labeled by SO0, generated as the free, non-associative,
commutative magma over the set SO0,

(1.1) SO = Magmana,c(SO0,M) = TSO0 ;

• the set of accessible terms of a syntactic object T ∈ TSO0 , given by the set of all the full
subtrees Tv ⊂ T with root a non-root vertex v ∈ V (T );
• the commutative Hopf algebra of workspaces given by the vector space V(FSO0) spanned

by the set FSO0 of (finite) binary rooted forests with leaves decorated by elements of the
set SO0, with product given by the disjoint union t and coproduct determined by

(1.2) ∆(T ) = T ⊗ 1 + 1⊗ T +
∑
v

Fv ⊗ T/Fv ,

with Fv = Tvq t · · · t Tvn a collection of accessible terms;
• the action of Merge on workspaces

M = t ◦ (B⊗ id) ◦∆

where B is the grafting of components of a forest to a common root vertex, or for a fixed
pair of syntactic objects S, S ′

(1.3) MS,S′ = t ◦ (B⊗ id) ◦ δS,S′ ◦∆ ,

where δS,S′ selects matching pairs in the workspace (see [61] for a more detailed description).

We will use the notation H = (V(FSO0),t,∆, S) for the Hopf algebra described above. Note
that since the Hopf algebra is graded, the antipode S is defined inductively using the coproduct,
so that we can equivalently just specify the bialgebra part of the structure, H = (V(FSO0),t,∆).

1.2.1. Remark on the Hopf algebra coproduct. We pointed out in [61] that there are two possible
ways of interpreting the quotient T/Tv (or more generally T/Fv) in the coproduct (1.2), either as
contraction of Tv to its root vertex or as deletion of Tv (and taking the unique maximal binary tree
determined by the complement). In [61] we argued that, if one wants to avoid having to introduce
labeling algorithms for the internal vertices of the trees, and only have the leaves labelled by lexical
items and syntactic features in SO0, then the second procedure is preferable.

However, when it comes to interfacing syntax with semantics, it is in fact better to retain the
root vertex v of Tv in the quotient T/Tv as that provides so-called traces, the empty categories
left behind by “movement” implemented by so-called Internal Merge. As is familiar from the long
historical discussion of what is called reconstruction, the trace is needed for semantic parsing, so
in the context we consider here we will be using the quotient T/Tv where Tv is contracted to its
root, marked as trace. Similarly, in quotients T/Fv each tree component Tvi of the forest Fv is
contracted to its root vertex vi.

1

1We thank Martin Everaert and Riny Huijbregts for this observation.
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1.2.2. A comment about Tree Adjoining Grammars – TAGs. Since readers of our previous papers
[61], [62] have occasionally asked this question, we add here a very brief clarification on the
difference between the algebraic structure of Merge described in [61] and that of tree adjoining
grammars (TAGs). In the setting of TAGs, one considers a generative process that depends on an
initial choice of a given finite set of “elementary trees” with vertex labels. In TAGs, in general,
trees are not necessarily assumed to be binary. There are two composition rules: one composition
operation (substitution rule) consists of grafting the root of a tree to the leaf of another tree; a
second composition operation (a so-called adjoining rule) inserts at an internal vertex of a tree
with a label x another tree with root labeled by x, and one of the leaves also labeled by x. The
adjoining rule can be obtained as a suitable composition of grafting of roots to leaves, so the
basic generative operations of TAGs are the operad compositions of rooted trees. Namely, if O(n)
denotes the set of trees in a given TAG with n leaves, then there are composition maps

(1.4) ◦i : O(n)×O(m)→ O(n+m− 1)

that plug the root of a tree in O(n) to the i-th leaf of a tree in O(m) resulting in a tree in
O(n + m − 1). Such operations, subject to associativity and unitarity conditions, define the
algebraic structure of an operad. Label matching conditions may require partial operads, but we
will not discuss this here.

In order to compare the TAG formalism with the algebraic formulation of Merge of [61], one
should note that there is an important relation between the two as well as important differences:
the latter show that these two formalisms do not constitute the same algebraic structure. This
is why, in our view, it is algebraic structure that is essential to the line of work presented here,
rather than the formal language theoretic notion of weak generative capacity (such as mild-context
sensitivity).2

The relation between TAGs and Merge arises from the fact that, in the Merge formalism of
[61], recalled in §1.2 above, the syntactic objects T ∈ SO = TSO0 are generated as elements of
the free non-associative commutative magma (1.1) on the Merge operation M. This does have
an equivalent operad formulation, in terms of the quadratic operad freely generated by the single
commutative binary operation M, see [43]. Thus, there exists an equivalent way of formulating
the generative process for the syntactic objects in terms of operad compositions (1.4), that makes
this generative process appear similar to TAGs. However, the main difference between the two lies
in the fact that the Merge formalism does not just consist of the generation of syntactic objects
through the magma operation, but also of the action of Merge on so-called workspaces, given by
forests F ∈ TSO0 .

The action of Merge on workspaces is not determined only by the operad underlying the SO
magma, but also requires the additional datum of the Hopf algebra structure on workspaces. This
makes it possible to incorporate not just so-called External Merge, that is involved in the magma
SO, but also Internal Merge, that requires an additional coproduct operation.

It is important to observe here that the operad underlying SO also determines a Hopf algebra,
the associative, commutative Hopf algebra on the vector space V(FSO0) spanned by forests of
binary rooted trees, used in [61] to formulate the action of Merge on workspaces. However, this is
not the same as the non-associative, commutative Hopf algebra structure induced by the operad
on the vector space V(TSO0) spanned by binary rooted trees as in TAGs; see [44], [45]. This is the
key algebraic difference between TAGs and Merge. The introduction of workspaces and the action
of Merge on workspaces thus amounts to a key innovation in the modern Minimalist account.

2In other words, this is not to deny that notions of generative capacity might be useful to illuminate one or
another aspect of human language; simply that the algebraic approach presented here does not draw on this more
familiar tradition.
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1.3. Abstract head functions. In order to formulate more precisely property (2) of our list in
§1.1, we start by considering the role of the notion of head in syntax and semantics. In a syntactic
tree, as is familiar in general the syntactic category of the head determines the category of the
phrase (verb for Verb Phrase, etc.; here we use the traditional terminology of “verb phrase” even
though this is actually described by a set). Moreover, the syntactic head determines the “type” of
objects described; hence it can be regarded as part of the mechanism that interfaces syntax with
semantics.

As we discussed in [62], one can define an abstract head function on binary rooted trees T (with
no assigned planar structure) in the following way.

Definition 1.1. A head function is a function h defined on a subdomain Dom(h) ⊂ TSO0 , that
assigns to a T ∈ Dom(h) a map h : T 7→ hT ,

(1.5) hT : V o(T )→ L(T )

from the set V o(T ) of non-leaf vertices of T to the set L(T ) of leaves of T , with the property that
if Tv ⊆ Tw and hT (w) ∈ L(Tv) ⊆ L(Tw), then hT (w) = hT (v). We write h(T ) for the value of hT
at the root of T .

This notion summarizes the main properties of the syntactic head, though of course one can
have many more abstract head functions that do not correspond to the actual syntactic head.

To see this note that our notion of head function of Definition 1.1 can be directly derived
from the formulation of the notion of head and projection given by Chomsky in §4 of [8]. The
equivalence of these formulations follows immediately by observing that in §4 of [8] the syntactic
head is characterized by the following inductive properties:

(1) For T = M(α, β), with α, β ∈ SO0, the head h(T ) should be one or the other of the two
items α, β. The item that becomes the head h(T ) is said to project.

(2) In further projections the head is obtained as the “head from which they ultimately project,
restricting the term head to terminal elements”.

(3) Under Merge operations T = M(T1, T2) one of the two syntactic objects T1, T2 ∈ SO
projects and its head becomes the head h(T ). The label of the structure T formed by
Merge is the head of the constituent that projects.

Lemma 1.2. The three properties listed above are equivalent to Definition 1.1.

Proof. First observe that the three properties from §4 of [8] listed above determine a function
hT : V o(T ) → L(T ) from the set V o(T ) of non-leaf vertices of T to the set L(T ) of leaves of
T . The function is defined by “following the head” determined by the three listed properties.
In other words, the root vertex of the tree carries a label, which by the listed requirements is
obtained as “the head from which it ultimately projects”, which is assumed to be “a terminal
element”. This means that we are assigning to the root vertex a label h(T ) that is one of the
items in SO0 attached to the leaves L(T ). Similarly, for any other internal vertex v of T , one can
view the subtree (accessible term) Tv as the Merge of two subtrees Tv = M(Tv1 , Tv2) where Tvi
are the two subtrees with roots at the vertices below v. The same listed properties then ensures
that we are mapping v to a leaf `(v) ∈ L(Tv) which agrees with either the head of Tv1 or the
head of Tv2 . Moreover, this also ensures that the property of Definition 1.1 is satisfied by the
function hT : V o(T )→ L(T ) obtained in this way. Indeed, suppose given Tv ⊆ Tw. If the function
determined by the three properties above satisfies hT (w) ∈ L(Tv) then it means that it is Tv that
projects, according to the definition of [8], hence hT (w) = hT (v). This shows that the definition
of head in §4 of [8] implies the one given in Definition 1.1.
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Conversely, suppose that we have an abstract head function as in Definition 1.1. We can see
that it has to satisfy the three properties of §4 of [8] in the following way. The first property is
immediate from the fact that hT : V o(T )→ L(T ) is a function, which means that, if we consider
any subtree of T consisting of two leaves with a common vertex above them, that is Tv = M(α, β),
then hT (v) has to be either α or β. To see that the second and third properties also hold, consider
first the full tree T . Since this is a binary rooted tree it is uniquely describable in the form
T = M(T1, T1) for two other binary rooted trees T1, T2. Since the function hT takes values in
the set L(T ) = L(T1) t L(T2), the head h(T ) is in either L(T1) or in L(T2). Suppose it is in
L(T1). The other case is analogous. Then by Definition 1.1 we have h(T ) = h(T1), where we write
h(Tv) := hT (v). Continuing in the same way for each successive nodes, with the corresponding
unique decompositions Tv = M(Tv,1, Tv,2), we obtain, for each internal vertex a path to a leaf,
which follows the head, and provides the “head from which it ultimately projects” as desired in
the second property listed above, while at each step the third property holds. �

Remark 1.3. There are two important remarks to make regarding the two equivalent formulations
of Definition 1.1 and Lemma 1.2. As we discussed in §4.2 of [62], a consistent definition (compatible
with the Merge operation) of a head function h does not extend to the entire SO but is defined
on some domain Dom(h) ⊂ SO, so the identification between the descriptions of Definition 1.1
and of §4 of [8] also holds on such domain. Moreover, as we also discussed in §4.2 of [62], on a
given T ∈ SO there are 2#V o(T ) choices of a head function (which are in bijective correspondence
with the choices of a planar structure for T ). This is why we are saying above that, on a given T ,
there are more abstract head functions than just the one that corresponds to the syntactic head
(when the latter is well defined). This does not matter as for most of the arguments we are using
that involve a head function h, the formal property of Definition 1.1 is the only characterization
required. In terms of explicit linguistics examples, one can think of the usual syntactic head as
presented in [8].

As shown in [62], it follows directly from the definition that assigning a head function hT to a
tree T is equivalent to assigning a planar embedding πhT (every head function determines a planar
embedding and conversely).

Thus, we can equivalently think of an assignment

(1.6) h : T 7→ hT

of a head function to every tree T ∈ TSO0 as a function

(1.7) h : Dom(h) ⊂ TSO0 → Σ∗[SO0]

to the set of all finite ordered sequences, of arbitrary length, in the alphabet SO0, given by

h(T ) = L(T πhT ) ,

where T πhT is the planar embedding of T determined by the head function, and L(T πhT ) is its
ordered set of leaves. Since it is equivalent to describe h(T ) as the ordered set L(T πhT ) or as a
single leaf (the head) in L(T ), we will switch between these two descriptions without changing the
notation.

We have shown in [62] that one does not have a well-defined head function on the entire TSO0 ,
hence we write here h as defined on some domain Dom(h) ⊂ TSO0 . The obstacle to the extension of
a head function to the entire set TSO0 derives from the well-known issue of exocentric constructions,
e.g., the traditional division of sentences into Subjects and Predicates, namely cases of syntactic
objects T ∈ SO = TSO0 that are obtained as the result of External Merge T = M(T ′, T ′′) where
even if a head function is well defined on T ′ and T ′′, there is no good way of comparing h(T ′) and
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h(T ′′) to decide which one should become the head of T = M(T ′, T ′′). Abstract heads are thus
partially defined functions.

It is interesting to observe here that this fact makes abstract heads amenable to treatment
according to the renormalization model used in the theory of computation, where the source of
“meaningless infinities” arises from what lies outside of the domain where a function is computable,
[54], [55]. We will indeed use this approach to construct a very simple illustrative model of our
proposed view of the syntax-semantics interface in §2.

1.4. Algebraic Renormalization: a short summary. The physical procedure of renormal-
ization can be formulated in algebraic terms (see [20], [21], [26], [27]) using Hopf algebras and
Rota–Baxter algebras. In this formulation, the procedure describes a very general form of Birkhoff
factorization, which separates out an initial (unrenormalized) mapping into two parts of a convo-
lution product, with one term describing the desirable (meaningful) part and one term describing
the meaningless part that needs to be removed (divergences in the case of Feynman integrals in
quantum field theory).

The mathematical setting that describes renormalization in physics, which we summarize here,
may seem far-fetched as a model for linguistics, but the point here is that mathematical structures
exist as flexible templates for the description of certain types of universal fundamental processes
in nature, which are likely to manifest themselves in similar mathematical form in a variety of
different contexts.

The Hopf algebra datum H = (V , ·,∆, S), a vector space with compatible multiplication, co-
multiplication (with unit and counit) and antipode, takes care of describing the underlying com-
binatorial data and their generative process. In the case of quantum field theory these are the
Feynman graphs with their subgraphs. The Feynman graphs of a given quantum field theory can
be described as a generative process in two different ways: one in terms of graph grammars (see
[63]), which is similar to the older formal languages approach in generative linguistics, another in
terms of a Hopf algebra (see [20], [21], [26], [27]). The comparison between these two generative
descriptions of Feynman graphs shows direct similarities with what happens in the case of syntax,
with the difference between the old formal languages approach and the new Merge approach in
generative linguistics, where syntactic objects and the workspaces with the action of Merge can
also be described in terms of Hopf algebras, as in [61].

The Hopf algebra structure is central to the renormalization process and the coproduct operation
is the key part of the structure that is responsible for implementing the renormalization procedure,
as we will recall below. The other algebraic datum, the Rota-Baxter algebra (R, R) represents
what in physics is called a “regularization scheme”. This is the choice of a model space where the
factorization into meaningful and meaningless parts takes place. There is an important conceptual
difference between these two algebraic objects H and R, in the sense that H is essentially intrinsic
to the process whileR is an accessory choice, and in principle many different regularization schemes
can be adopted to achieve the same desired renormalization. In terms of our linguistic model, one
should think of this choice of a regularization scheme R as the choice of some model of semantics.
As in the case of regularization in physics, we view the specifics of such a model as accessories to
the interface we are describing, while we view the role of the syntactic structures encoded in H
as the essential part. This again reflects the view of a primarily syntax-driven interface between
syntax and semantics.

In our context, this reflects the fact that there are several approaches to the construction of
possible models of semantics, which are, in our view, not entirely satisfactory and not entirely
compatible. However, we argue that this is not as serious an obstacle as it might first appear, in
the sense that this is very much the situation also with regularization schemes in the physics of
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renormalization (where one has dimensional, cutoff, zeta function regularizations, etc.) and yet
one can still extract a viable procedure of assignment of meaningful physical values, consistently
across the choices of regularization. We will argue that indeed, a viable model of the interface
between syntax and semantics rests upon specific formulations of semantics only through some
very simple abstract properties that can be satisfied within different models.

We have here briefly recalled the detailed definition of the Hopf algebra structure in [62]; for
details we refer the readers to our discussion there. Recall that the datum H = (V , ·,∆, S) is
assumed to be a commutative, associative, coassociative, graded, connected Hopf algebra, but it
is in general not cocommutative. We will fix this to be H = (V(FSO0),t,∆), with FSO0 the set
of finite binary rooted forests (with no planar structure), and with ∆ as in (1.2), the grading via
the number of leaves, and with the unique inductively defined antipode S.

For the Rota-Baxter part of the structure, we can distinguish two cases, the algebra and the
semiring case. The algebra case is the one that was orginally introduced in the physics setting.

Definition 1.4. A Rota-Baxter algebra (R, R) of weight −1 is a commutative associative algebra
R together with a linear operator R : R → R satisfying the identity

R(a)R(b) = R(aR(b)) +R(R(a)b)−R(ab) ,

for all a, b ∈ R.

The prototype example (relevant to physics) is a Laurent series with the operator R of projection
onto their polar (divergent) part.

The case of a semiring (where addition is no longer invertible), more closely related to settings
like the theory of computation, was introduced in [64].

Definition 1.5. A Rota-Baxter semiring of weight +1 is a semiring R together with a Rota-
Baxter operator R of weight +1. This is an additive (with respect to the semiring addition) map
R : R → R satisfying

R(a)�R(b) = R(a�R(b)) �R(R(a)� b) �R(a� b) ,

with (�,�) the semiring addition and multiplication operations. A Rota-Baxter semiring of weight
−1 similarly satisfies the identity

R(a)�R(b) �R(a� b) = R(a�R(b)) �R(R(a)� b) .

Note that since semiring addition is not invertible, in this case we cannot move the term R(a�b)
to the other side of the identity. The purpose of the Rota-Baxter operator R is to project onto
the “part of interest” (for example, divergencies in physics). We will discuss in §1.5 how to adapt
Rota-Baxter data of the form (R, R) to semantic models.

Definition 1.6. A character of a commutative Hopf algebra H with values in a commutative
algebra R is a map

φ : H → R
which is assumed to be a morphism of algebras, hence it satisfies φ(xy) = φ(x)φ(y). In the case
where R is a semiring, we will consider two cases of semiring-valued characters

(1) Semiring maps:

φ : Hsemi → R
defined on a subdomain Hsemi of H that is a commutative semiring, with φ a morphism of
commutative semirings.
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(2) Maps on cones: assuming that H is defined over the field R, we consider maps

φ : Hcone → R
where the subdomain Hcone of H is a cone, closed under convex linear combinations and
under multiplication inH, with φ compatible with convex combinations and with products,
φ(xy) = φ(x)� φ(y), with � the semiring product.

In physics such datum φ : H → R describes the Feynman rules for computing Feynman in-
tegrals in an assigned regularization scheme (given by the Rota-Baxter datum). In our setting,
the map φ : H → R is some map from syntactic objects to a semantic space, which includes the
possibility of meaninglessness, when a consistent semantics cannot be assigned. By “consistent”
here we mean that assignment of semantic values to larger hierarchical structures has to be com-
patible with assignments to sub-structures: this is exactly the same consistency requirement that
is used in the physics of renormalization and that determines the required algebraic structure.
The multiplicativity condition here just means that, in a workspace containing many different
syntactic objects, the image of each of them in the semantic model R is independent of the oth-
ers. Of course, when different syntactic objects are assembled together by the action of Merge,
these different images need to be compared for consistency: this is indeed the crucial part of the
interpretive process, that corresponds to the compositionality requirement, number (4) on our list
of desired properties for the syntax-semantics interface.

Remark 1.7. It is important to stress the fact that a character φ : H → R is only a map of
algebras: it does not know anything about the fact that H also has a coproduct ∆ and that R also
has a Rota-Baxter operator R. In particular, the target R does not carry a coproduct operation
and φ is not a morphism of Hopf algebras.

The observation made in Remark 1.7 will play an important role in our linguistic model. It is in
fact closely related to the statement we made at the beginning of this paper: the computational
structure of syntax –which as we explained in [61] depends on the coproduct structure of H–does
not require an analogous computational counterpart in semantics. We will discuss this point in
more detail in the following sections, where we will show that, in our model, the compositional
properties of semantics are entirely governed by the computational structure of syntax, along with
the topological nature of semantics (as a classifier of proximity relations). This is a very strong
statement on the relative roles of syntax and semantics, presenting what can be viewed as a strong
“syntax-first” model. While several of the examples we present in this paper will be simplified
mathematical models aimed at illustrating the fundamental algebraic properties, we will discuss
at some length how the principle we state here can be understood in the case of Pietroski’s model
of semantics, that we compare with our framework in §6.

In fact, in the physics setting as well as in our linguistics model, the interaction between the
two additional data, ∆ and R, is used to implement consistency across substructures (our desired
property of compositionality). This happens by recursively constructing a factorization (over the
grading of the Hopf algebra), in the following way.

Definition 1.8. A Birkhoff factorization of a character φ : H → R is a decomposition

(1.8) φ = (φ− ◦ S) ? φ+

with S the antipode and ? the convolution product determined by the coproduct ∆

(φ1 ? φ2) (x) = (φ1 ⊗ φ2) ∆(x) .

One interprets one of the two terms φ+ as the meaningful renormalized part and the other φ−
as the meaningless part that needs to be removed. The semiring case is similar.
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Definition 1.9. A Birkhoff factorization of a semiring character φ : Hsemi → R is a factorization
of the form

φ+ = φ− ? φ.

A Birkhoff factorization as in Definition 1.8 is constructed inductively using R and ∆ as follows.

Proposition 1.1. ([20], [26]) If (R, R) is a Rota–Baxter algebra of weight −1 and H is a com-
mutative graded connected Hopf algebra, with φ : H → R a character, there is (uniquely up to
normalization) a Birkhoff factorization of the form (1.8) obtained inductively (on the Hopf algebra
degree) as

(1.9) φ−(x) = −R(φ(x) +
∑

φ−(x′)φ(x′′)) and φ+(x) = (1−R)(φ(x) +
∑

φ−(x′)φ(x′′))

where ∆(x) = 1 ⊗ x + x ⊗ 1 +
∑
x′ ⊗ x′′, with the x′, x′′ of lower degree. The φ± : H → R± are

algebra homomorphisms to the range of R and (1 − R). These are subalgebras (not just vector
subspaces), because of the Rota–Baxter identity satisfied by R.

Remark 1.10. One usually refers to the expression

(1.10) φ̃(x) := φ(x) +
∑

φ−(x′)φ(x′′)

as the Bogolyubov preparation of φ and writes φ− = −R(φ̃) and φ+ = (1−R)(φ̃).

The case of semirings is similar.

Proposition 1.2. ([64]) If (R, R) a Rota–Baxter semiring of weight +1 and H is a commutative
graded connected Hopf algebra with a semiring character φ : Hsemi → R, where Hsemi has an
induced grading, one has a factorization

(1.11)

φ−(x) = R(φ̃(x)) = R(φ(x) � φ−(x′)� φ(x′′))

φ+(x) = (φ− ? φ)(x) = φ(x) � φ−(x) � φ−(x′)� φ(x′′)

= φ− � φ̃ ,

where the φ± are also multiplicative with respect to the semiring product, φ±(xy) = φ±(x)�φ±(y).

Remark 1.11. In the case with (R, R) a Rota–Baxter semiring of weight −1, one still obtains
a Birkhoff factorization of the form (1.11). In this case both φ± still satisfy the multiplicative
property if R has the additional property that

(1.12) R(x� y) �R(x)�R(y) = R(x)�R(y),

see [64]. This happens for instance if R(x+ y) ≤ R(x) +R(y) in R = (R ∪ {−∞},max,+).

1.5. Semantic spaces. If we follow the idea described above of a syntax-semantics interface mod-
eled after the formalism of algebraic renormalization in physics, and we encode the syntactic side
of the interface in terms of the Hopf algebra model of Merge and Minimalism as we described in
[61], we then need a general description of what type of mathematical objects should be feasible on
the semantic side, so that a Birkhoff factorization mechanism as above can be used to implement
the assignment of semantic values to syntactic objects. As we will be illustrating in a series of
different examples in the following sections, Birkhoff factorizations of the form (1.9) or (1.11) will
serve the purpose, in our model, of checking and implementing consistency of semantic assign-
ments throughout all substructures of given syntactic hierarchical structures, through the use of
a combination of values on substructures provided by the Bogolyubov preparation (1.10) and the
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use of a Rota–Baxter operator as a way of checking the possible failures of consistency across
substructures. Since the target of our map from the Hopf algebra of syntax has to be a model of
a “semantic space”, again we proceed first by trying to identify certain key formal properties that
we would like to have for such “semantic spaces” (thought of in similar terms to the regularization
schemes in the physics of renormalization).

We first discuss in §1.5.1 some analogies of the type of model that we have in mind, originating
in neuroscience. The first is a neuroscience model that is somewhat controversial (and that will
play no direct role in this paper, except in the form of an analogy) while the second is a well
established result on neural codes and homotopy types.

1.5.1. Neuroscience data and syntax-semantics interface models. Neuroscience data that study
the human brain’s handling of syntax and semantics in response to auditory or other signals (see
[32] and [3], [33]), e.g., in experiments measuring ERP (event-related brain potentials) waveform
components and in functional magnetic resonance imaging studies, display rapid recognition of
syntactic violations and activation in the middle and posterior superior temporal gyrus for both
semantic and syntactic violations. In contrast,the anterior superior temporal gyrus and the frontal
operculus are activated by syntactic violations. Syntax and semantics has been claimed to be
disentangled in such experiments, by using artificial grammars: syntactic errors in simple cases
that do not involve significant hierarchical syntactic structures appear related to activation of the
frontal operculum, while the type of syntactic structure building that is modeled by the Merge
operation appears related to activation in the most ventral anterior portion of the BA 44 part of
Broca’s area.

Additional semantic information shows involvement of other areas of the brain, in particular
the BA 45 area. This suggests a possible “syntax-first” model of language processing in the brain,
with an initial structure building process taking place at the syntactic level and an interface with
semantics through the connectome involving the frontal operculus, BA 44, and BA 45. It should
be noted though that this proposal regarding brain regions implicated in syntax and semantics
has been strongly contested, for example according to the results of [31], that dispute the disen-
tanglement and partitioning into areas of the syntax-first proposal of [32]. We only mention this
proposal here as an analogy that can help illustrate some for our modeling of the syntax-semantics
interface according to the list of properties outlined in §1.1 above. While we understand that this
view is considered controversial by some, it does furnish a suggestive analogy for some of the basic
geometric requirements that we will be assuming about the semantic side of the interface we wish
to model.

Another insight from neuroscience that we would like to carry into our modeling is the idea of
information encoded via covering spaces and homotopy types. This is well known in the setting
of visual stimuli when hippocampal place cells, that fire in response to a restricted area of the
spatial stimulus, are analyzed to address the question of how neuron spiking activity encodes
and relays information about the stimulus space. In such settings one can show that patterns of
neuron firing and their receptive fields determine a covering that (under a convexity hypothesis)
can reconstruct the stimulus space up to homotopy, see [22] and the mathematical survey in [56].
While this picture is specific to visual stimuli, an important idea that can be extracted from it is
the role of covering spaces (in particular covering spaces associated with binary codes) in encoding
proximity relations, and the role of convexity in such covering spaces. We will incorporate these
ideas in a general basic picture of a notion of “semantic spaces” that can be compatible with how
semantic information may effectively be stored in human brains. It was already observed in [57]
that this structure should be part of modeling of semantic spaces.
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1.5.2. Formal properties of semantic spaces. As basic structure for an adequate parameterizing
space for semantics, we focus on two compositional aspects: measuring degrees of proximity, and
a notion of agreement/disagreement. We argue that, at the least, semantics should be able to
compare different semantic values (points in a semantic space) in terms of their level of agree-
ment/disagreement, and to form new semantic points by some form of combination/interpolation
of previously achieved ones. The type of “interpolation” considered may vary with specific models,
but in general we can think of it in the following related forms:

• geodesic paths
• convex combinations
• overlapping open neighborhoods.

A typical example that would combine these forms of combination/interpolation is provided by a
geodesically convex Riemannian manifold. Another aspect to take into consideration is the idea
that, for instance, one can usually associate with a lexical item a collection of different “semes,”
hence points in a “semantic space.” In other words, the target of a map from lexical items and
syntactic objects should allow for such “lists of semes.”

A very simple mathematical structure where notions of agreement/disagreement, proximity, and
lists are simultaneously present, and combination operations are possible is of course a vector space
structure, and for this reason it happens that frequently used elementary computational models of
semantics tend to be based on vectors and vector space operations. More sophisticated geometric
models of semantics based on spaces with properties of convexity, local coordinates representing
semic axes, and realizations of notions of similarity, were presented for example in [34], [35]. Such
geometric models also incorporate the possibility of covering spaces, intersections of open sets, and
homotopy, as a way of realizing a “meeting of minds” model of [34], [35], where different observers
may produce somewhat different sets of semantic associations with the same linguistic items (see
the corresponding discussion in [57]).

Additional structure can be incorporated, if one desires for example to include a notion akin
to that of “independent events.” This can be achieved by working with spaces that have also a
product operation, such as algebras, rings, or semirings, or that can be mapped to a space with
this kind of structure, where such independence hypotheses can be tested. Thus, for example,
elementary operations like assignments of truth values, or of probabilities/likelihood estimates,
fall within this category, and are usually performed by mapping to some (semi)-ring structure.
More generally, rings, algebras, and semirings can be seen as repositories for comparisons with
specific test hypotheses, probing agreement/disagreement, or likelihood, of representation along a
chosen semic axis. We will discuss a few such examples in the following sections.

1.5.3. Concept spaces in and outside of language. In this viewpoint, the type of fundamental
structure that we associate with semantic spaces is not strictly dependent on their role in language.
Indeed the idea of extracting classifications from certain kinds of sensory data and associating
with them some representation where proximity and difference can be evaluated is common to
other cognitive processes. Conceptual spaces associated with vision are intensely studied in the
context of both neuroscience and artificial intelligence, and in that case certainly the most relevant
structures involved are topological in nature (see for example the theory of perceptual manifolds,
[18]). This suggests that it is possible to consider a model where the conceptual spaces that syntax
interfaces with in language would be of an essentially similar nature as other conceptual spaces,
and not necessarily endowed with additional structure specific to their role in language, with all
the required structure that is of a specifically linguistic nature being provided by syntax.

Formulated in such terms, this leads to a view of semantics that is essentially external to lan-
guage and becomes a part of linguistics through the presence of a map from syntax. A more



SYNTAX-SEMANTICS INTERFACE: AN ALGEBRAIC MODEL 15

nuanced position, as we will illustrate in specific examples that follow, endows the semantic con-
ceptual spaces with just enough additional structure extending the topological notion of proximity,
to make the mapping from syntax sufficiently robust to induce a compositional structure on se-
mantics, modeled on the Merge operation in syntax.

For ease of computation, we will be using examples where such additional structure, aimed at
quantifying proximity relations, consists of metrics with convexity properties and/or evaluations
in semirings. This viewpoint will bring us close to Pietroski’s model of compositional semantics,
[74], where a compositional structure in semantics is modeled on the Merge operation of syntax.
One significant difference in our setting, though, is that we do not need to posit a separate
compositional/computational operation on semantics itself (why should a Merge-type operation
develop twice, once for syntax and once for semantics?). In our model, the compositionality
of semantics is directly induced by the computational structure of syntax through the Birkhoff
factorization mechanism described above. This will constitute the key to our interface model.

Of course one should allow for enough structure on the semantics side to incorporate the possi-
bility of conjunctions of predicates, as well as a way of distinguishing the possibilities of mapping
to conjunctions, predicate saturation, existential closure. We will discuss more of this in §6. The
main point we want to stress here is that one does not need two parallel generative computational
processes, one on the side of syntax and one on the side of semantics (as would be the case if we
were to assume that our maps φ : H → R are Hopf algebra homomorphisms, see Remark 1.7).
What one has instead is a map between two different kinds of mathematical structures, only one
of which (syntax) is constructed by a recursive generative process.

2. Syntax-Semantics Interface as Renormalization: Toy Models

2.1. A simple toy model: Head-driven syntax-semantics interface. We discuss, as a first
illustrative example, a very simple-minded toy model of the type of syntax-semantics interface we
are proposing. The examples we present in this section are intentionally oversimplified in order to
more easily illustrate the main formal aspects.

Consider the semiring (R ∪ {−∞},max,+) where the addition is the maximum (with −∞
as the unit of addition), and with product the usual sum of real numbers (with the rule that
−∞+ x = −∞), with 0 as the unit of the semiring multiplication +.

Lemma 2.1. The ReLU operator R : x 7→ x+ = max{x, 0} is a Rota–Baxter operator of weight
+1 on R = (R ∪ {−∞},max,+).

Proof. To see this, we need to check that the Rota–Baxter relation

x+ + y+ = max{(x+ + y)+, (x+ y+)+, (x+ y)+}
is verified for all x, y ∈ R ∪ {−∞}. The following table shows that this is indeed the case

x ≤ 0, y ≤ 0 x ≥ 0, y ≤ 0 x ≤ 0, y ≥ 0 x ≥ 0, y ≥ 0
x+ + y+ 0 x y x+ y

(x+ + y)+ 0

{
x+ y x+ y ≥ 0
0 x+ y ≤ 0

y x+ y

(x+ y+)+ 0 x

{
x+ y x+ y ≥ 0
0 x+ y ≤ 0

x+ y

(x+ y)+ 0

{
x+ y x+ y ≥ 0
0 x+ y ≤ 0

{
x+ y x+ y ≥ 0
0 x+ y ≤ 0

x+ y

max 0 x y x+ y
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�

Remark 2.2. The identity operator R = id on the same semiring (R ∪ {−∞},max,+) is a
Rota–Baxter operator of weight −1.

Definition 2.3. Consider a semantic space S with a map s : SO0 → S that assigns a meaning
(a point in S) to the lexical items and the syntactic features in SO0. Given a tree T ∈ TSO0 and
a leaf ` ∈ L(T ), we write λ(`) ∈ SO0 for the label (lexical item or syntactic feature) assigned to
that leaf. Given a head function h, defined on a domain Dom(h) ⊂ TSO0 , we obtain a map

s ◦ h : Dom(h) ⊂ TSO0 → S , T 7→ s(λ(h(T )) ,

where h(T ) ∈ L(T ) is the head.

We now assume that the semantic space S has probes, given by functions Υ : S → R, that check
the degree of agreement or disagreement with some particular semantic hypothesis. We assume
that, for an s ∈ S, a value Υ(s) < 0 means that there is disagreement between the semantic object
s and the semantic hypothesis Υ, while a value Υ(s) > 0 signifies agreement, with the magnitude
|Υ(s)| signifying the amount of agreement or disagreement. A value Υ(s) = 0 signifies indifference.

Example 2.4. In the case of the familiar vector space model of semantics, such a probe can be
obtained by taking the inner product with a specified hypothesis-vector,

Υ(s) = 〈s, vΥ〉

where the semantic hypothesis being tested is semantic proximity to a chosen vector vΥ.

Lemma 2.5. Suppose given a semantic space S, a probe Υ : S → R, a map s : SO0 → S assigning
semantic values to lexical items and syntactic features, and a head function h defined on a domain
Dom(h) ⊂ TSO0. Let V(FSO0)

semi ⊂ V(FSO0) denote the semiring of linear combinations
∑

i ciFi
with ci ≥ 0. Then the data (Υ, s, h) determine a semiring homomorphism

φΥ,s,h : V(FSO0)
semi → R ∪ {−∞} .

Proof. The data (Υ, s, h) determine a map

Υs,h : TSO0 → R ∪ {−∞}

(2.1) Υs,h : T 7→
{

Υ(s(λ(h(T ))) T ∈ Dom(h)
−∞ T /∈ Dom(h) .

The value −∞ in the case of T /∈ Dom(h) here represents the case where the comparison with the
hypothesis in the probe cannot be performed due to the lack of a well-defined head in the tree T .
This map can be extended from trees to a forest by setting

φΥ,s,h : FSO0 → R ∪ {−∞} , φΥ,s,h(F ) =
∑
a

Υs,h(Ta) , for F = taTa .

We can further extend this map to the subdomain V(FSO0)
semi ⊂ V(FSO0) by setting

φΥ,s,h(
∑
i

ciFi) = �iφΥ,s,h(Fi)� log(ci) = max
i
{φΥ,s,h(Fi) + log(ci)} .

�

The extension to linear combinations is needed for formal consistency. In the case of sums where
all the coefficients are 1 the corresponding log(ci) term vanishes.
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Remark 2.6. One reason why this simple-minded toy model is too oversimplified is that the
assignment φΥ,s,h only follows the semantic value of the head of the tree, hence it only uses the
semantic values already attached to the leaves of the tree. However, in general we want to obtain
new points in semantic space, as the lexical items attached to the leaves are related and combined
inside more elaborate syntactic objects. We will show in §2.2 how to correct this problem and
obtain more refined toy models.

To see how our interface model works in this simplified example, we first perform the Birkhoff
factorization with respect to the Rota–Baxter operator R = id of weight −1 and then with respect
to the ReLU Rota–Baxter operator R = (·)+ of weight +1.

Lemma 2.7. For a semiring homomorphism φ : V(FSO0)
semi → R = (R ∪ {∞},max,+), where

the values φ(T ) signify agreement/disagreement between a semantic value assigned to the tree T
and a semantic probe, the Birkhoff factorization with R = id has the effect of checking, for a given
syntactic object T ∈ TSO0, and all chains of subforests FvN ⊂ FvN−1

⊂ · · · ⊂ Fv1 ⊂ T , when the
combined agreement with the semantic probe of the parts

φ(FvN ) + φ(FvN−1
/FvN ) + · · ·+ φ(T/Fv1)

is greatest, and is at least as good as the overall agreement φ(T ).

Proof. The Birkhoff factorization with respect to the Rota–Baxter operator R = id of weight −1
simply gives φ− = φ̃, so that we have

φ−(T ) = φ̃(T ) = max{φ(T ),
N∑
i=1

φ(Fvi) + φ(Fvi−1
/Fvi)}

where FvN ⊂ FvN−1
⊂ · · ·Fv0 = T is a nested sequence of subforests (collections of accessible

terms, and the maximum is taken over all such sequences of arbitrary length N ≥ 1. �

Corollary 2.8. For the case of φ = φΥ,s,h the Birkhoff factorization as in Lemma 2.7 has the
effect of checking, for a given syntactic object T ∈ TSO0, and all chains of subtrees (subforests)
TvN ⊂ TvN−1

⊂ · · · ⊂ Tv1 ⊂ T , when the combined agreement with the semantic probe is maximal.
If φΥ,s,h(T ) > 0, this maximum is bounded below by the sum of values on the chain of subtrees with
h(Tvi) = h(T ) which is N ·φΥ,s,h(T ) with N the length of the path from the root of T to the leaf h(T ).
If φΥ,s,h(T ) < 0, on the other hand, the maximum is bounded below by the φΥ,s,h(T )+M ·φΥ,s,h(Tv)
where Tv is an accessible term with φΥ,s,h(Tv) > 0 and M is the length of the path from v to the
leaf h(Tv).

Proof. Observe that we have φΥ,s,h(T/Tv) = φΥ,s,h(T ), since if h(T ) /∈ Tv then quotienting the
subtree Tv will not affect the head, and if h(T ) ∈ Tv then h(T ) = h(Tv), by the properties of
head functions, and we label the leaf of T/Tv with a trace carrying the semantic value that was
assigned to the leaf h(Tv), and similarly for the case of T/Fv. Note that here we take quotients as
contractions of each component of the subforest, as discussed in §1.2.1.

For simplicity we write out in full only the case where each Fvk consists of a single subtree Tvk
as the more general case of forests is analogous. In this case we are computing

φΥ,s,h,−(T ) = max{φΥ,s,h(T ), φΥ,s,h(T ) + φΥ,s,h(T1), · · · , φΥ,s,h(T ) + φΥ,s,h(T1) + · · ·+ φΥ,s,h(TN)}
where N is the longest chain of nested accessible terms in T . The maximum is achieved at
sequences Tk ⊂ · · · ⊂ T1 ⊂ T where all φΥ,s,h(Ti) > 0 and as large as possible, that is, at the
chains of nested accessible terms that achieve the combined maximal agreement with the probe.

For example, for a chain of length N = 1, that is, a single accessible term Tv ⊂ T , we are
comparing φΥ,s,h(T ) and φΥ,s,h(T ) + φΥ,s,h(Tv), hence we are checking whether φΥ,s,h(Tv) > 0 or
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φΥ,s,h(Tv) < 0, that is, whether individual accessible terms of T have heads h(Tv) that semantically
agree with the probe Υ of not. Clearly, among all subtrees Tv one can always find some for which
φΥ,s,h(T ) + φΥ,s,h(Tv) > φΥ,s,h(T ), namely subtrees for which h(Tv) = h(T ). The case of longer
chains is analogous.

It is then clear that a lower bound in the case φΥ,s,h(T ) > 0 is obtained by following the path from
the root of T to the head h(T ), while in the case φΥ,s,h(T ) < 0 one maximizes over collections
of accessible terms with positive values φΥ,s,h(Tvi) > 0 and one such collection is obtained by
following the head of any Tv that has φΥ,s,h(Tv) > 0. �

We compare this to taking the Birkhoff factorization with respect to the ReLU Rota–Baxter
operator R(x) = x+ = max{x, 0} of weight +1. This shows that using different Rota–Baxter
structures on the target semiring corresponds to performing different tests of semantic composi-
tionality.

Lemma 2.9. For the semiring homomorphism φΥ,s,h : V(FSO0)
semi → R = (R ∪ {∞},max,+),

consider the Birkhoff factorization with respect to the ReLU Rota–Baxter operator R(x) = x+ =
max{x, 0} of weight +1. In this case, the value of φΥ,s,h,−(T ) is computed as a maximum value
φΥ,s,h(FvN )+φΥ,s,h(FvN−1

)+· · ·+φΥ,s,h(Fv1)+φΥ,s,h(T ), over all nested sequences with the property
that all φΥ,s,h(Fvi) > 0 and, in the case where φΥ,s,h(T ) < 0, with

∑
i φΥ,s,h(Fvi) > |φΥ,s,h(T )|.

The maximum computing φΥ,s,h,−(T ) is bounded below by NφΥ,s,h(T ), with N the length of the path
from the root of T to the leaf h(T ), in the case with φΥ,s,h(T ) > 0 and by φΥ,s,h(T ) +M ·φΥ,s,h(Tv)
where Tv is any accessible term with φΥ,s,h(Tv) > |φΥ,s,h(T )| and M is the length of the path from
v to the leaf h(Tv), when φΥ,s,h(T ) < 0.

Proof. We obtain in this case

φΥ,s,h,−(T ) = max{φΥ,s,h(T ), (· · · (φΥ,s,h(FvN )++· · ·+φΥ,s,h(Fvi−1
/Fvi))

++· · ·+φΥ,s,h(T/Fv0))
+}+ ,

over all nested sequences of subforests of arbitrary length N ≥ 1 as above. By the same argument
as in Lemma 2.7 about heads of subtrees Tv and quotient trees T/Tv, in the case of chains of
subtrees TvN ⊂ TvN−1

⊂ · · · ⊂ Tv1 ⊂ T , this gives

(· · · ((φΥ,s,h(TvN )+ + φΥ,s,h(TvN−1
))+ · · ·+ φΥ,s,h(Tv1))

+ + φΥ,s,h(T ))+ ,

and similarly for forests (with sums over the component trees), and then ReLU is applied to the
maximum taken over all these sums.

For example, for a chain of length N = 1, one compares φΥ,s,h(T ) with φΥ,s,h(T ) + φΥ,s,h(T1),
so that max{φΥ,s,h(T ), (φΥ,s,h(T ) + φΥ,s,h(T1)+)+}+ has value φΥ,s,h(T ) if φΥ,s,h(T ) > 0 and
φΥ,s,h(T1) < 0, value φΥ,s,h(T ) + φΥ,s,h(T1) if φΥ,s,h(T ) > 0 and φΥ,s,h(T1) > 0, or if φΥ,s,h(T ) < 0
and φΥ,s,h(T1) > 0 with φΥ,s,h(T ) + φΥ,s,h(T1) > 0, and value 0 if φΥ,s,h(T ) < 0 and φΥ,s,h(T1) < 0,
or if φΥ,s,h(T ) < 0 and φΥ,s,h(T1) > 0 with φΥ,s,h(T ) + φΥ,s,h(T1) < 0.

Thus, we see that, when φΥ,s,h(T ) > 0, the value φΥ,s,h,−(T ) is bounded below by NφΥ,s,h(T ),
where N is the length of the path from the root of T to the leaf h(T ), as in Corollary 2.8.
However, when φΥ,s,h(T ) < 0 the Birkhoff factorization with respect to the ReLU gives a more
refined test than the Birkhoff factorization with respect to R = id of Lemma 2.7 and Corollary 2.8.
Indeed, in this case we not only search over nested sequences with φΥ,s,h(TvN ) +φΥ,s,h(TvN−1

) · · ·+
φΥ,s,h(Tv1) > 0 but also we further require that individual terms are positive and that φΥ,s,h(TvN )+
φΥ,s,h(TvN−1

) · · ·+ φΥ,s,h(Tv1) > |φΥ,s,h(T )| because of applying ReLU to the result of the sum. In
particular, one obtains such a lower bound by following the head of any accessible term Tv with
φΥ,s,h(Tv) > |φΥ,s,h(T )| as stated. �

A case where φΥ,s,h(T ) < 0 with the maximum realized by a sequence of postive terms with
φΥ,s,h(TvN ) + φΥ,s,h(TvN−1

) · · · + φΥ,s,h(Tv1) > |φΥ,s,h(T )| signifies a situation where the semantic
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value assigned to the head h(T ) is in disagreement with the semantic probe used, but there are
accessible terms in T that are individually in agreement with the semantic probe and whose
combined agreement is greater than the magnitude of the disagreement for h(T ).

Remark 2.10. The construction illustrated in Lemma 2.7, Corollary 2.8, and Lemma 2.9 above
can be seen as a way of extracting substructures where agreement/disagreement with a given
semantic value is concentrated.

As mentioned at the beginning of this section and in Remark 2.6, the example semiring homo-
morphism φΥ,s,h(T ) used in Lemma 2.7, Corollary 2.8, and Lemma 2.9 is unsatisfactory because
it only uses the semantic values assigned to the leaves of the syntactic objects T through the
map s : SO0 → S and does not create new semantic values assigned to the syntactic objects T
themselves that go beyond the value already assigned to its head h(T ) leaf. This is obviously not
how an assignment of semantic values to sentences should work, and was only discussed here as a
way to show, in the simplest possible form, how Birkhoff factorizations work. We now move on to
more realistic models. These will again be simplified toy models, but we will gradually introduce
more realistic features.

2.2. Head-driven interfaces and convexity. We now assume that our semantic space model
S is a geodesically convex region inside a Riemannian manifold (M, g). A region S ⊂ M is
geodesically convex if, for any given points s, s′ ∈ S minimal length geodesic arcs γ : [0, 1] → M
with γ(0) = s and γ(1) = s′ are contained in the region, γ(t) ∈M for all t ∈ [0, 1].

This includes in particular the cases where S is a vector space or a simplex. In these cases, we
write {λs+ (1−λ)s′ |λ ∈ [0, 1]} for the segment connecting s, s′ in S (the convex combinations of
s and s′). With a slight abuse of notation, in the more general case of geodesically convex regions
inside a Riemannian manifold, we will still write λs+ (1− λ)s′ to indicate the point γ(λ) along a
given minimal geodesic arc (γ(t))0≤t≤1 in S.

We assume, as above, that there is a map s : SO0 → S that assigns semantic values to the
lexical items and syntactic features.

2.2.1. Comparison functions. We assume that the semantic space S is endowed with one of the
following additional data:

(1) On the product S × S there is a function

(2.2) P : S × S → [0, 1]

that evaluates the probability that two points s, s′ are semantically associated (interpreted
as the frequency with which they are semantically associated within a specified context).
We assume that P is symmetric, P(s, s′) = P(s′, s), i.e. that it factors through the symmetric
product

P : Sym2(S)→ [0, 1] .

One can additionally assume that P is a probability measure on S×S, although this is not
strictly necessary in what follows. If the underlying space S is convex, we always assume
that P is a biconcave function.

(2) On the product S × S there is a function

(2.3) C : S × S → R
that evaluates the level of semantic agreement/disagreement between two points s, s′,
with |C(s, s′)| measuring the magnitude of agreement/disagreement and sign(C(s, s′)) =
C(s, s′)/|C(s, s′)| ∈ {±1} measuring whether there is agreement or disagreement. Again
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we assume that the function C is symmetric. In the case of a semantic vector space S one
can additionally assume that C is obtained from a symmetric bilinear form by

(2.4) C(s, s′) =
〈s, s′〉
‖s‖ ‖s′‖

,

which gives the usual cosine similarity, but in general it is not necessary for C(s, s′) to be
of the form (2.4).

This type of comparison functions P : S × S → [0, 1] as in (2.2) or C : S × S → R as in (2.3),
should really be thought of, more generally, as a collection P = {Pσ} or C = {Cσ}, where the index
σ runs over certain syntactic functions (in the sense of functional relations between constituents
in a clause). For example, suppose that one looks at the two sentences “dog bites man” and
“man bites dog.” In the first case the VP determines a point on the geodesic arc in S between
the points s(bite) and s(man) at a distance P(s(bite), s(man)) from the vertex s(bite). The value
P(s(bite), s(man)) ∈ [0, 1] evaluates the degree of “likelihood” of this association.

2.2.2. Threshold Rota-Baxter operators. As in the cases discussed in the previous section, we can
consider a semiring P endowed with a Rota–Baxter structure.

Lemma 2.11. Consider the semiring P = ([0, 1],max, ·, 0, 1). Then the threshold operators

cλ : P → P with λ ∈ [0, 1] ,

given by

(2.5) cλ(x) =

{
x x < λ
1 x ≥ λ

are Rota–Baxter operators of weight −1 that satisfy the property (1.12).

Proof. We can compare the values in the Rota–Baxter identity as follows:

x < λ, y < λ x ≥ λ, y < λ x < λ, y ≥ λ x ≥ λ, y ≥ λ

cλ(xy) xy xy xy

{
xy xy < λ
1 xy ≥ λ

cλ(x)cλ(y) xy y x 1
cλ(cλ(x)y) xy y xy 1
cλ(xcλ(y)) xy xy x 1

Indeed, we have x, y, λ ∈ [0, 1], hence if either x < λ or y < λ then xy < λ. The the maximum of
the first two rows is max{cλ(xy), cλ(x)cλ(y)} = cλ(x)cλ(y), which shows that the identity (1.12)
holds. Moreover, the maximum between the last two rows of the table above is also equal to
cλ(x)cλ(y) so that the Rota–Baxter identity of weight −1 holds. �

2.2.3. P-valued semiring character. We then consider constructions of a character. For our target
semiring P , we can consider characters φ : Hcone → P with domain a convex cone inside H, which
ensures that if generators F ∈ FSO0 are mapped to P , linear combinations that are in the cone
will also map to S.

Lemma 2.12. Suppose given a semantic space S that is geodesically convex, endowed with a
function s : SO0 → S and a function P : Sym2(S) → [0, 1] as above. Also assume given a head
function h defined on a domain Dom(h) ⊂ TSO0. The function s : SO0 → S extends to a map
s : Dom(h)→ S, and these data determine a character given by a map

φs,P,h : Hcone → P ,
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with Hcone the cone of convex linear combinations
∑

i aiFi with 0 ≤ ai and
∑

i ai = 1, and forests
Fi ∈ FSO0. The character is defined on the generators by φs,P,h(T ) = 0 for T /∈ Dom(h), while for
T ∈ Dom(h) the value φs,P,h(T ) is inductively determined by the description of T as iterations of
the Merge operation M in the magma (1.1). It is extended to Hcone by φs,P,h(F ) =

∏
k φs,P,h(Tk),

for F = tkTk, and φs,P,h(
∑

i aiFi) = maxi aiφs,P,h(Fi).

Proof. To an unordered pair M(α, β) = {α, β} of α, β ∈ SO0 we assign a value in P in the following
way. If the tree T = M(α, β) ∈ SO = TSO0 is not in Dom(h) we assign value φs,P,h(T ) = 0. If
T ∈ Dom(h), consider the value

pα,β := P(s(α), s(β))

and define s(T ) ∈ S as

(2.6) s(T ) = ps(α) + (1− p)s(β)

where p ∈ [0, 1] is

(2.7) p =

{
pα,β α = h(T )
1− pα,β β = h(T ) .

We then set

(2.8) φs,P,h(M(α, β)) = pα,β .

We then proceed inductively. If T = M(T1, T2) is not in Dom(h) we set φs,P,h(T ) = 0. If it is in
Dom(h), then by the properties of head functions, T1 and T2 are also in Dom(h). So we can assign
to T the point s(T ) ∈ S given by

s(T ) = p s(T1) + (1− p) s(T2)

where

(2.9) p =

{
ps(T1),s(T2) h(T ) = h(T1)
1− ps(T1),s(T2) h(T ) = h(T2) .

with

ps(T1),s(T2) = P(s(T1), s(T2)) .

We then set

φs,P,h(T ) = ps(T1),s(T2) .

It is clear that this determines a map

φs,P,h : Hcone → P ,

with φs,P,h(
∑

i aiFi) = maxi{aiφs,P,h(Fi)} and φs,P,h(F ) =
∏

k φs,P,h(Tk), for F = tkTk ∈ FSO0 . �

Remark 2.13. The semiring-valued character φs,P,h constructed in Lemma 2.12 improves on the
construction of the character φΥ,s,h of Lemma 2.5 in the sense that the values φs,P,h(T ) assigned
to syntactic object do not depend uniquely on the semantic values of the lexical items, but also
on other points of semantic space S, obtained as convex combinations of values assigned to lexical
items. However, it should still be regarded as a toy model case, as the way in which these
combinations are obtained and the corresponding value of φs,P,h(T ) is computed is still overly
simplistic. We show in §2.3 another similar simplified toy model example, with a choice of semiring-
valued character that combines properties of φs,P,h of Lemma 2.12 and φΥ,s,h of Lemma 2.5.
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Note that we have, in principle, two simple choices of how to extend inductively (2.7) from the
cherry tree case T = M(α, β) to the more general case T = M(T1, T2). One is to define ps(T1),s(T2)

as in (2.9), with ps(T1),s(T2) = P(s(T1), s(T2)), inductively using the previously constructed points
s(T1) and s(T2). Another possibility, more similar to our previous example φΥ,s,h of Lemma 2.5, is
to define it using the heads, P(h(T1), h(T2)). To see why the option of (2.9) is clearly preferable,
consider the following example. Take the three sentences “man bites dog”, “man bites apple”,
“dog bites man”. Denoting by M,B,D,A the respective points in S associated to these lexical
items, the points associated to the respective sentences are shown in the diagram in Figure 1.

Figure 1. Sketch of different semantic points constructed by geodesic arcs for the
three sentences “man bites dog”, “man bites apple”, “dog bites man”, and with the
two different choices of ps(T1),s(T2) = P(s(T1), s(T2)) (circled) or P(h(T1), h(T2)).

In the sentence “dog bites man”, the VP determines a point on the geodesic arc in S between
the points B and M at a distance Pσ(B,M) from the vertex B, where in this case σ is the
verb-object relation and the value Pσ(B,M)) ∈ [0, 1] expresses the degree of “likelihood” of this
association in the relation σ. One then considers, on the geodesic arc in S between this point
associated to the VP phrase and the point D, a new point. In the case of the choice ps(T1),s(T2) =
P(s(T1), s(T2)) as in (2.9), this point is located at a distance either Pσ′(D,BM), where we write
BM for the point s(M(B,M)) associated to the VP by the procedure just described and σ′ is
the subject-verb relation between D and h(M(B,M)). In the case where we use P(h(T1), h(T2)),
this point is located at a distance Pσ′(D,B) where σ′ the subject-verb relation. The cases of
the second and third sentences are analogous as sketched in Figure 1. One can see in a simple
example like this, why the choice ps(T1),s(T2) = P(s(T1), s(T2)) is preferable to P(h(T1), h(T2)) by
comparing the location of points in the first two cases in Figure 1. If one uses P(h(T1), h(T2))
the length of the arc of geodesic between M and the point BD, respectively BA is in both cases
determined by the same value Pσ′(M,B), while in the case of P(s(T1), s(T2)) one has different
lengths Pσ′(M,BD) << Pσ′(M,BA).
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2.2.4. Birkhoff factorization with threshold operators. The Birkhoff factorization of the character
φs,P,h with respect to the threshold Rota–Baxter operators provides a way of searching for sub-
structures with large semantic agreement between constituent parts. More precisely, we have the
following.

Proposition 2.1. The Birkhoff factorization of the character φs,P,h of Lemma 2.12 with respect
to the Rota–Baxter operators cλ of weight −1 identifies, as elements that achieve the maximum,
those accessible terms Tv ⊂ T with values φs,P,h(Tv) above a threshold λ, identifying substructures
within T that carry large semantic agreement between their constituent parts.

Proof. If we perform the Birkhoff factorization of the character φs,P,h using the Rota–Baxter op-
erator cλ of weight −1, we obtain

φs,P,h,−(T ) = cλ(φ̃s,P,h(T )) =

cλ(max{φs,P,h(T ), cλ(· · · cλ(φs,P,h(FvN ))φs,P,h(FvN−1
/FvN )) · · ·φs,P,h(T/Fv0)})

over nested chains of subforests of all possible lengthsN , as before. Again we can look for simplicity
at the case of subtrees, as the value on forests is the semiring product of the values on the tree
components. When we look at chains of length N = 1 with subtrees, we are comparing φs,P,h(T )
to the value cλ(φs,P,h(Tv)) · φs,P,h(T/Tv). Arguing as above, we have

cλ(max{φs,P,h(T ), cλ(φs,P,h(Tv)) · φs,P,h(T/Tv)}) =

cλ(max{ps(T1),s(T2), cλ(ps(Tv,1)s(Tv ,2)) · ps(T1),s(T2)}) = cλ(ps(T1),s(T2))

where this time the maximal value is realized by all the terms Tv ⊂ T that have ps(Tv,1)s(Tv ,2) ≥ λ
and ps(T1),s(T2) ≥ λ. Note that longer sequences will have products with intermediate terms
φs,P,h(Fvi−1

/Fvi) < 1 hence will not achieve the same maximum. Thus, the maximizers are acces-
sible terms that carry large semantic agreement between their constituent parts. �

For example, suppose that we consider again the two sentences “dog bites man” and “man bites
dog”. As shown above, the resulting semantic points associated to these two sentences are, as
they should be, in different locations in S. Moreover, the fact that one will have Pσ′(M,BD) <<
Pσ′(D,BM) when σ′ is the subject-verb relation, implies that the threshold operators cλ discussed
in the previous section will filter out the second sentence before the first.

2.2.5. From geodesic arcs to convex neighborhoods. The construction of the character φs,P,h of
Lemma 2.12 is also a toy model. It is better than the initial oversimplified toy model of Lemma 2.5
(see Remark 2.6), because it does not use only the points in the semantic space S associated to
the head leaf, but it still uses only geodesic arcs in the semantic space S. Passing from a zero-
dimensional to a one-dimensional representation of syntactic relations is an improvement, and
as we will discuss in §3 it is already sufficient to obtain an embedded image of syntax inside
semantics (in essence because the syntactic objects are themselves 1-dimensional tree structures).
However, this representation can be improved by considering, along with geodesic arcs, higher
dimensional convex structures like simplexes and geodesic neighborhoods of points. While we will
not expand this approach in the present paper, it is worth mentioning some ideas that relate to
some of what we will be discussing in the following sections. Given a syntactic object T ∈ SO with
T ∈ Dom(h), a geodesically convex semantic space S, and a mapping s : Dom(h)→ S constructed
as in Lemma 2.12, we can consider the points s(Tv) ∈ S associated to all the accessible terms of T .
(See §3 below, for the embedding properties of this map.) Now consider geodesic balls Bv(ε) in S
centered at the points s(Tv) with radius ε > 0. Here by geodesic ball we mean the image under the
exponential map of a ball in the tangent space. We assume the injectivity radius of S is larger than
the maximal distance between the points s(Tv) for all v ∈ V (T ). In terms of the semantic space,
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a geodesic neighborhood around a given point s ∈ S represents all the close semantic associations
to the semantic point s recorded in S. We can then vary the scale ε of the geodesic balls and form
simplicial complex (a Vietoris–Rips complex) associated to the intersections of these geodesic balls
(see Figure 2). As the scale ε > 0 varies, one obtains a filtered complex, according to the familiar
construction of persistent topology (see [28]). The scale ε provides another form of filtering that
generalizes what we previously described in terms of the threshold operators cλ. In this case, the
persistent structures that arise can be seen as detecting “collections of substructures that carry
higher semantic relatedness” inside the given hierarchical structure T .

Figure 2. Example of a Vietoris–Rips complex.

2.3. Head-driven interfaces and vector models. Consider now the case where the semantic
space S is modeled by a vector space, and assume that it is endowed with a function C : S×S → R
that describes the level of semantic agreement, as in §2.2.1. This may be based on cosine similarity
or on other methods: the detailed form of C is not important in what follows, beyond the basic
property described in §2.2.1.

2.3.1. Max-plus-valued semiring character. We discuss an example where we consider again the
max-plus semiring R = (R ∪ {−∞},max,+) and a semantic comparison function of the form
C : S × S → R as discussed in §2.2.1.

Lemma 2.14. Consider the semiring R = (R ∪ {−∞},max,+). The data of a function C : S ×
S → R as above, a function s : SO0 → S and a head function defined on a domain Dom(h) ⊂ TSO0

determine a semiring-valued character

φs,C,h : Hsemi → R ,

with Hsemi the semiring of linear combinations
∑

i aiFi with ai ≥ 0.

Proof. For any tree T /∈ Dom(h) we set φs,C,h(T ) = −∞. We then consider only trees that
are in Dom(h). As in Lemma 2.12 we start by considering the case of a tree of the form T =
M(α, β) = {α, β} with α, β ∈ SO0. We assign to this tree a value in R obtained by computing
C(s(α), s(β)) ∈ R and considering the line Lα,β, in the vector space S, through the points s(α)
and s(β),

Lα,β = {tα + (1− t)β = β + t(α− β) | t ∈ R} ,
if β = h(T ) (exchanging α and β if α = h(T ), that is, replacing t with 1− t). We then define

tα,β = C(α, β)

(2.10) s(T ) := β + tα,β(α− β) ∈ Lα,β .



SYNTAX-SEMANTICS INTERFACE: AN ALGEBRAIC MODEL 25

This has the effect of creating a new point s(T ) which moves the value s(h(T )) along the line Lα,β
in the direction α (or in the opposite direction) depending on the agreement/disagreement sign of
C(α, β). We then set

φs,C,h(M(α, β)) =

{
C(α, β) β = h(T )
1− C(α, β) α = h(T )

We can then proceed inductively, setting, for T = M(T1, T2) ∈ Dom(h)

tT =

{
C(s(T1), s(T2)) h(T ) = h(T2)
1− C(s(T1), s(T2)) h(T ) = h(T1)

s(T ) = tT s(T1) + (1− tT )s(T2)

=

{
s(T2) + tT (s(T1)− s(T2)) h(T ) = h(T2)
s(T1) + tT (s(T2)− s(T1)) h(T ) = h(T1)

φs,C,h(T = M(T1, T2)) = tT .

Setting φs,C,h(F ) =
∑

k φs,C,h(Tk) for F = tkTk and φs,C,h(
∑

i aiFi) = max{aiφs,C,h(Fi)} then
completely determines φs,C,h on Hsemi. �

2.3.2. Hyperplane arrangements. The following observation follows from Lemma 2.14, rephrased
in a more geometric way.

Lemma 2.15. Let SC denote the multiplicative subsemigroup of R∗ generated by the set of non-
zero elements in C(s(SO0)× s(SO0)). For T ∈ TSO0 in Dom(h), let L(T ) be the set of leaves of
the tree. We write, for simplicity of notation, s(L(T )) for the set of vectors s(λ(L(T ))) ⊂ S. Let
ST ⊂ SC ⊂ R∗ be the multiplicative semigroup generated by the set R∗ ∩ C(s(L(T )) × s(L(T ))).
The vector s(T ) of (2.10) is in the linear span of the set s(L(T )) with coefficients in ST .

Proof. Suppose given a binary rooted tree T ∈ Dom(h) ⊂ TSO0 , with L(T ) its set of leaves. By
the recursive procedure of Lemma 2.14, based on the construction of T by repeated application
of free symmetric Merge M, as an element in the magma (1.1), the resulting point s(T ) in the
vector space S is a linear combination of the vectors s(`) with ` ∈ L(T ) (where we write s(`) as a
shorthand notation for s(λ(`)),

s(T ) =
∑
`∈L(T )

a` s(`) ∈ span(L(T ))

with coefficients a` in the multiplicative subsemigroup ST ⊂ SC. �

Lemma 2.16. If C on the vector space S is given by a cosine similarity as in (2.4), then the set
of vectors s(SO0) ⊂ S determines an associated hyperplane arrangement HASO0 of hyperplanes

(2.11) HASO0 = {Hλ = {v ∈ S | 〈v, s(λ)〉 = 0} |λ ∈ SO0, s(λ) 6= 0} ,

where the hyperplane Hλ describes all semantic vectors that are neutral with respect to s(λ), namely
vectors v 6= 0 with C(v, s(λ)) = 0.

This is immediate, as the set of hyperplanes here is simply given by the normal hyperplanes to
the given set of vectors under the inner product that also defines the cosine similarity.

One can then see the construction of the character φs,C,h of Lemma 2.14 in the following way.
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Lemma 2.17. The vectors s(T ), for T ∈ Dom(h) ⊂ TSO0, give a refinement of the hyperplane
arrangement HASO0 of Lemma 2.16, with a resulting arrangement

(2.12) HASO = {HT = {v ∈ S | 〈v, s(T )〉 = 0} |T ∈ TSO0 , s(T ) 6= 0} ,
where the values tTv = φs,C,h(Tv), with v ∈ V (T ) determine which chambers of the complement of
the arrangement HASO0 the hyperplane HT crosses.

Proof. The inductive construction of φs,C,h in Lemma 2.14 shows that, for α, β ∈ SO0 the value
φs,C,h(M(α, β)) = tα,β determines which chambers of the complement of Hα ∪Hβ the hyperplane
HM(α,β) crosses, depending on the sign of tα,β and of 1 − tα,β. Inductively, the same applies to
the role of tT = φs,C,h(T ) in determining the position of HT with respect to HT1 and HT2 , hence
the role of the values tTv , for the accessible terms Tv ⊂ T , in determining the position of HT with
respect to HASO0 . �

2.3.3. ReLU Birkhoff factorization. We then consider, in this model, the effect of taking the
Birkhoff factorization with respect to the ReLU Rota-Baxter operator of weight +1. Note that
this gives an instance of a situation quite familiar from the theory of neural networks, where a
ReLU function is applied to certain linear combinations and an optimization is performed over
the result.

Proposition 2.2. The Birkhoff decomposition of the character φs,C,h of Lemma 2.14, with respect
to the ReLU Rota–Baxter operator of weight +1 selects, for a given tree T , chains TvN ⊂ TvN−1

⊂
· · · ⊂ Tv1 ⊂ T of accessible terms of T where each φs,C,h(Tvi) > 0 and of maximal values among all
accessible terms of Tvi−1

, that is, every Tvi optimizes the value of the character among the available
accessible terms.

Proof. As in Lemma 2.9, we consider

φs,C,h,−(T ) = max{φs,C,h(T ), (· · · (φs,C,h(FvN )+ + · · ·+φs,C,h(Fvi−1
/Fvi))

+ + · · · )+ +φs,C,h(T/Fv0)}
+ ,

over all nested sequences of subforests of arbitrary length N ≥ 1. For chains of length N = 1,
considering the case of subtrees Tv ⊂ T , we are comparing φs,C,h(T ) and φs,C,h(Tv)

+ +φs,C,h(T/Tv).
Again we have h((T/Tv)1) = h(T1) and h((T/Tv)2) = h(T2), with T/Tv = M((T/Tv)1, (T/Tv)2), so
that φs,P,h(T/Tv) = φs,P,h(T ). Thus, the maximum max{φs,C,h(T ), φs,C,h(Tv)

+ + φs,C,h(T/Tv)}+ =
(φs,C,h(Tv)

+ + φs,C,h(T/Tv))
+ is achieved at the largest positive value φs,C,h(Tv) over all accessible

terms Tv ⊂ T . The next step then compares this maximal value with the values (φs,C,h(Tw)+ +
φs,C,h(Tv))

+ +φs,C,h(T ) over all accessible terms Tw ⊂ Tv and the maximum is again realized at the
largest positive φs,C,h(Tw) among these. This shows that the overall maximum is achieved at the
longest chain TvN ⊂ TvN−1

⊂ · · · ⊂ Tv1 ⊂ T of accessible terms where each Tvi has φs,C,h(Tvi) > 0
and of maximal values among all accessible terms of Tvi−1

. �

2.4. Not a tensor-product model of semantic compositionality. While the examples of
characters, Rota–Baxter structures, and Birkhoff factorizations considered above are just a sim-
plified model, they are already good enough to illustrate some important points. Consider for
example the property, mentioned in Remark 1.7, that characters are not morphisms of coalgebras,
but only morphisms of algebras (or semirings). This has important consequences, such as the fact
that we are not dealing here with what is often referred to as “tensor product based” connectionist
models of computational semantics, such as [81]. The compositional structure of such tensor prod-
uct models has in our view been rightly criticized (see for instance [66]) for not being compatible
with human behavior. Indeed one can easily see the problem with such models: the idea of “tensor
product based” compositionality is that, given vectors s(α), s(β) ∈ S for lexical items α, β, one
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would assign to a planar tree T = Mnc(α, β) a vector s(α) ⊗ s(β) ∈ S ⊗ S and correspondingly
evaluate cosine similarity between T and another T ′ = Mnc(γ, δ) in the form C(α, γ) · C(β, δ).

There are several obvious problems with such a proposal. In a simple example with lexical items
α = γ =light and β =blue and δ =green, the planar trees T =light blue and T ′ =light green should
have closer semantic values s(T ) and s(T ′) than the values s(β) and s(δ) (since both colors share
the property of being light), but a measure of similarity of the product form C(α, γ) ·C(β, δ) would
just be equal to C(β, δ). A further issue with these tensor-models, from our perspective, is that
this type of model would require previous planarization of trees and cannot be defined at the level
of the products of free symmetric Merge.

In contrast, in the type of model we are discussing these issues do not arise. While we have
described in [61] and [62] the Merge operation on workspaces in terms of a coproduct on a Hopf
algebra of binary rooted forests, that maps to a tensor product ∆ : H → H⊗H (since comultipli-
cation has two outputs), the characters used for mapping to semantic spaces have no requirement
of compatibility with coproduct structure. Indeed, in our setting we would not assign to a tree
T = M(α, β) a tensor product of vectors and a product of cosine similarities, but a linear combi-
nation s(T ) = tT s(α) + (1− tT )s(β), that is indeed seemingly more directly compatible with the
empirically observed human behavior, as described in [66].

2.5. Boolean semiring. As a final example of a simple toy syntax-semantics interface model,
in preparation for the discussion of §2.2 we consider the simplest choice of semiring, namely the
Boolean semiring

(2.13) B = ({0, 1},∨,∧) = ({0, 1},max, ·) .
Assignments of values in the Boolean semiring can be regarded as a form of truth-valued semantics,
where one assigns a 0/1 (F/T) value to (parts of) sentences or to syntactic objects.

A map φ : TSO0 → B is an assignment of truth values, extended to φ : FSO0 → B by φ(F ) =∏
i φ(Ti) for F = tiTi. We use the identity as Rota–Baxter operator.

The Bogolyubov preparation φ̃ is then given by

(2.14) φ̃(T ) = max{φ(T ), φ(Fv)φ(T/Fv), . . . , φ(FvN )φ(FvN−1
/FvN ) · · ·φ(T/Fv1)} ,

with the maximum taken over all chains of nested forests of accessible terms. Thus, φ̃ detects,
in cases where the truth value assigned to T may be False (φ(T ) = 0), the longest chains of
decompositions into accessible terms and their complements which separately evaluate as True,
hence identifying where the truth value changes from T to F when substructures are combined
into the full structure.

While we will not include in this work a specific discussion of truth conditional semantics, we
can use the example above to illustrate some known difficulties with that model and possibly some
way of reconsidering some of the issues involved. We look at a simple example, mentioned in the
criticism of truth conditional semantics in Pietroski’s work [73], that consists of the observation
that, while the truth conditions of “France is a republic” and “France is hexagonal” are satisfied,
the sentence “France is a hexagonal republic” seems weird, due to the semantic mismatch in the
expression “hexagonal republic”.

We view this example in the light of an assignment φ : H → B and the corresponding Birkhoff
factorization with the identity Rota–Baxter operator as written above. We can assume that φ
assigns value φ(T ) = 1 when T has a well determined associated truth condition and φ(T ) = 0
when it does not. Thus, the trees corresponding to “France is a republic” and “France is hexagonal”
would have value 1, because a country can be a republic and can have a certain type of shape on
a map, while the tree corresponding to “hexagonal republic” would have value 0 if we agree that
a polygonal shape is not one of the attributes of a form of state governance. The tree T that
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corresponds to “France is a hexagonal republic” contains an accessible term Tv that corresponds
to “hexagonal republic” and accessible terms (in this case leaves) ` and `′ that correspond to the
lexical items “hexagonal” and “republic”. Each accessible term Tv has a corresponding quotient
T/Tv. The Bogolyubov preparation φ̃ of (2.14) then takes the form

φ̃(
a b c d

) = max{φ(
a b c d

), φ(a)φ(b c d
), φ(c)φ(

a b d
), φ(d)φ(

a b c
),

φ(b c d
)φ(a), φ(c d)φ(a b), . . .} ,

where the . . . stand for the remaining terms of the coproduct that involve a forest of accessible
terms rather than a single one, which can be treated similarly. Thus, while one would have
φ(T ) = 0, the value of φ̃(T ) = 1 detects the presence of substructures (the third and fourth among
the explicitly listed terms on the right-hand-side of the formula above) that do have well defined
truth conditions.

This more closely reflects the fact that, when parsing the original sentence for semantic as-
signments, one does indeed detect the presence of the two substructures that have unproblematic
truth conditions, and the fact that these do not combine to assign a truth condition to the full
tree T , causing a mismatch between the values of φ(T ) and φ̃(T ). This manifests itself in the
weird impression resulting from the parsing of the full sentence.

3. The image of syntax inside semantics

The examples illustrated above demonstrates one additional property of this model of syntax-
semantics interface: syntactic objects are mapped, together with their compositional structure
under Merge, inside semantic spaces and so are, at least in principle, reconstructible from this
syntactic “shadow” projected on the model used for the representation of semantic proximity
relations. This observation is in fact of direct relevance to the current controversy about the
relationship between large language models and generative linguistics, as we discuss more explicitly
below in §7 below. For now, let us add some additional detail to this picture.

Consider again the setting of Lemma 2.12 above.

Proposition 3.1. Let S be a semantic space that is a geodesically convex Riemannian manifold,
endowed with a semantic proximity function P : Sym2(S)→ [0, 1] with the property that, for s 6= s′

one has P(s, s′) ∈ (0, 1), and a map s : SO0 → S that assigns semantic values to lexical items and
syntactic features. Let h be a head function with domain Dom(h) ⊂ TSO0. These data determine
embeddings of trees T ∈ Dom(h) inside the semantic space S.

Proof. Arguing as in Lemma 2.12, we can use the convexity property of S and the function P to
extend s : SO0 → S to a function s : Dom(h) → S, inductively on the generation via Merge of
objects T ∈ TSO0 , by setting, for T ∈ Dom(h)

(3.1) s(T ) = p s(T1) + (1− p) s(T2) for T = T1 T2

(3.2) p =

{
ps(T1),s(T2) h(T ) = h(T1)
1− ps(T1),s(T2) h(T ) = h(T2)

with ps(T1),s(T2) = P(s(T1), s(T2)) .

We can then obtain an embedding I(T ) of T inside S in the following way. First the function
s : SO0 → S determines a position s(λ(`)) in S for every leaf of T , with λ(`) the label in SO0

assigned to the leaf ` ∈ L(T ). Note that the same lexical item λ ∈ SO0 may be assigned to more
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than one leaf in L(T ) so that this assignment ` 7→ s(λ(`)) is not always an embedding of L(T ) in
S. For each pair `, `′ ∈ L(T ) that are adjacent in T the syntactic object

Tv`,`′ = ` `′

with v`,`′ the vertex above the leaves `, `′, is in Dom(h), since T is, and (3.1) assigns to it a point
in S on the geodesic arc between s(λ(`)) and s(λ(`′)), where these two points are distinct since
Tv`,`′ ∈ Dom(h). We then obtain embeddings of all the subtrees Tv`,`′ in S by taking the image

I(Tv`,`′ ) to consist of the geodesic arc ts(λ(`)) + (1 − t)s(λ(`′)) with t ∈ [0, 1] with root at the

point s(Tv`,`′ ).
We proceed similarly for the subsequent steps of the construction of T in the SO magma, by

obtaining the image I(Tv) of a subtree Tv as the union of the images I(Tv,1) and I(Tv,2), where
Tv = M(Tv,1, Tv,2), and the geodesic arc between s(Tv,1) and s(Tv,2) with root vertex at s(Tv).
The images I(T ) of trees T ∈ Dom(h) constructed are in general immersions rather than simply
embeddings because of the possible coincidence of the points assigned to some of the leaves, as well
as because of possible intersections of the geodesic arcs at points that are not tree vertices. Both
of these issues can be readily resolved to obtain embeddings. Indeed, the semantic space S will be
in general high dimensional. As long as it is of dimension larger than two, crossings of strands of
a diagram can be eliminated by a very small perturbation. In the case of leaves carrying the same
lexical item, one can argue that the different context (in the sense of the different subtree) in which
the item appears will naturally slightly modify its semantic location in S. This can be modeled by
a small movement of the endpoints of the geodesic arc to the interior of the arc (which functions
as modifier of the semantic proximity relations). This deforms the immersions to embeddings. �

The assumption that the function P that measures semantic relatedness has values 0 < P(s, s′) <
1 whenever s 6= s′ means that we model a situation where different points in the semantic space
S are never completely semantically disjoint or entirely coincident. In such a semantic space
model, even an apparently “nonsensical” pair would not score 0 under the function P, so that,
for example, different locations in S would distinguish “colorless green” from “colorless red”, as
different (mental) images of (absence of) green rather than red color. The fact that the expression
is semantically awkward would correspond to a small (but non-zero) value of P(s, s′) that affects
the (metric) shape of the resulting image tree (that in the geometric setting we describe in §4
below will end up located very near a boundary stratum of the relevant moduli space).

On the other hand, if we allow for the possibility that P(s, s′) = 0 or P(s, s′) = 1, for some pairs
s 6= s′, the construction of Proposition 3.1 would no longer yield an embedding, since for lexical
items mapped to such pairs the root of the associated Merge tree would map to one or the other
leaf rather than to an intermediate point. Such models will result in certain syntactic trees being
mapped to degenerate image trees in S, that are located not just near, but on the boundary strata
of the moduli spaces we introduce in §4 below. Such cases should also be taken into consideration.
(We will see the relevance of this in the context of Pietroski’s semantics in §6 below.) Here we
focus on models where this situation can be avoided.

It is important to note that the image of the syntactic trees T ∈ Dom(h) ⊂ TSO0 inside the
semantic space S is like a static photographic image, rather than a dynamical computational
process. Indeed, all computational manipulations of syntactic objects are performed by Merge
on the syntax side of the interface, not inside the space S, which does not have on its own a
computational structure. The only property of S that is used to obtain an embedded copy of the
syntactic tree are proximity relations (here realized in the form of geodesic convexity).

In particular, given that the construction above determines an embedding of syntactic trees in
semantic spaces, one can consider the inverse problem of reconstructing syntactic objects and the



30 MATILDE MARCOLLI, ROBERT C. BERWICK, NOAM CHOMSKY

action of Merge from their image under this embedding. In other words, given enough measure-
ments of semantic proximities in text, can we reconstruct the underlying generative process of
syntax? Since the computational mechanism of syntax is not directly acting on semantic spaces,
and one is only able to see the embedding of the syntactic objects, it is reasonable to expect
that this inverse problem (reconstructing the map φ̃ of the syntax-semantics interface from the
embedding I) could be, and we suspect probably is, computationally hard. (See [58] for recent
work that in a certain sense attempts to solve this problem, but not within the explicit framework
we describe here.) We will return to discuss another instance of this problem, in the context of
large language models, in section §7. In the next section, we further discuss the image of syntax
inside semantics and its relation to the Externalization of free symmetric Merge.

4. Head functions, moduli spaces, associahedra, and Externalization

We now revisit the simple model of §2.2.3, with the recursive construction of semantic values
associated with trees in the domain of a head function. We view here the same construction in
terms of points in a moduli space of metric trees introduced in [25], related to moduli spaces
of real curves of genus zero with marked points. We will show that this viewpoint provides
further insight into the geometry of an Externalization process that introduces language-dependent
planarization of the syntactic trees, and the interaction between the core generative process of
free symmetric Merge and the Conceptual-Intentional system (the syntax-semantics interface),
and an Externalization mechanism that interfaces the same core computational process with the
Articulatory-Perceptual or Sensory-Motor system. This will provide a more careful and elaborate
explanation of the viewpoint we sketched in the Introduction regarding independence of the syntax-
semantics interface and Externalization. The relation between these two mechanisms can also be
approached in a geometric form.

4.1. Preliminary discussion. In the formulation of Minimalism in terms of the free symmetric
Merge as the core computational mechanism, as presented in [16] and formalized mathematically
in our previous work [61], [62], the generative process of syntax produces hierarchical structures
through syntatic objects and the action of Merge on workspaces (formalized in [61] in terms of
the Hopf algebra H of binary rooted forests with no assigned planar structure). A mechanism of
Externalization takes place after this generative process. This mechanism describes the connec-
tion to the Sensory-Motor system, that due to its physical and physiological nature externalizes
language in the form of a temporally ordered sequence of words, realized as sounds or signs or
writing (or, inversely, for parsing). The necessity of temporal ordering in the Externalization of
language requires a planarization of the binary rooted trees (syntactic objects), as the choice of a
planar structure is equivalent to the choice of an ordering of the leaves. This choice of planariza-
tion is subject to language-dependent constraints, through the syntactic parameters of languages.
In [61] we proposed a mathematical formalism for Externalization based on a suitable notion of
correspondences.

In the previous sections of this paper, we have analyzed possible models (some of them highly
simplified) of how the products of the free Merge generative process of syntax can be mapped to
semantic spaces, where the main property of semantic space we have used is a notion of topolog-
ical/metric proximity. This type of mapping of syntax to semantics is designed to directly apply
to the hierarchical structures produced by the free symmetric Merge, without having to first pass
through the choice of a planar structure as is done in the externalization process. This mapping to
semantic spaces represents the interaction between the core computational mechanism of Merge
with the Conceptual-Intentional system.
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These two mechanisms are illustrated as the two top arrows depicted in Figure 3. This part of
the picture corresponds to property (3) on the list in §1.1, that semantic interpretation is, to a
large extent, independent of Externalization. However, obviously the Externalization process and
the mapping to semantic spaces need to be compatibly combined, as figure Figure 3 suggests. The
goal of the rest of this section is to introduce the mathematical framework in which both processes
simultaneously coexist.

Figure 3. Free symmetric Merge, Externalization, and Semantic Spaces.

We proceed in the following way. First we introduce a framework designed for the comparison
of different planar structures on the same abstract binary rooted tree. Since the planarization
of Externalization is language dependent, we need a space where different planarization can be
cosidered. Such a space is well studied in mathematics and is called the associahedron. We recall
its properties in §4.2. At the same time, we want to keep track of the fact that the hierarchical
structures produced by the free symmetric Merge have also acquired a metric structure through its
mapping to semantic spaces, where this metric structure keeps track of information about semantic
relatedness, across substructures. This assignment of metric data on (non-planar) binary rooted
trees is also described by a well known mathematical object, the BHV moduli space, that we also
discuss in §4.2.

Thus, we present a formulation where, taken separately (as in the top arrows of Figure 3) the
Externalization and the mapping to semantic spaces result, respectively, in the assignment to a
given syntactic object T ∈ SO with n leaves of a vertex in the Kn associahedron, and of a point
in the BHVn moduli space.

These two geometric objects, the associahedron and the BHV moduli space, naturally combine
into another space, which accounts for what happens when we enrich the combinatorial associahe-
dron with metric data. This is again a geometric object that is very well known in mathematics,
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Figure 4. Free symmetric Merge, Externalization, and Semantics, and the respec-
tive moduli spaces.

where it is identified with a certain moduli space of curves, M̄ or
0,n(R). We review in §4.2 the relation

between these three fundamental spaces Kn, BHVn, and M̄ or
0,n(R), see Figure 4.

In the subsequent sections §4.3 and §4.4 we explain more in detail how the mapping to semantic
spaces and Externalization can be seen in this perspective. We include a discussion of how Kayne’s
LCA algorithm, Cinque’s sbtract functional lexicon, and constraints implemented by syntactic
parameters appear in this formulation.

4.2. Associahedra and moduli spaces of trees and curves. We recall here some general facts
about moduli spaces of abstract and planar binary trees, and their relation to the moduli space
of genus zero real curves with marked points. For a more detailed account we refer the reader to
[5], [7], and [25].

The Stasheff associahedron Kn is a convex polytope of dimension n− 2, where the vertices cor-
respond to all the balanced parentheses insertions on an ordered string of n symbols (equivalently,
all planar binary rooted trees on n leaves) and the edges are given by a single application of the
associativity rule. For example the 1-dimensional associahedron K3 is the graph with a single edge
and two vertices

((ab)c)←→ (a(bc)) .
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The 2-dimensional associahedronK4 is similarly a pentagon, while the 3-dimensional associahedron
K5 is illustrated in Figure 5. Faces of the associahedron Kn are products of lower dimensional
associahedra. These strata Kni correspond to the degeneration of a binary tree where some of the
internal vertices acquire higher valencies. The description in terms of planar binary rooted trees
has an equivalent formulation in terms of triangulations of an n+ 1-gon by drawing diagonals.

Figure 5. The Stasheff associahedron K5, front and back view.

Boardman and Vogt [7] showed that the associahedron Kn can be decomposed into Cn−1 cubes
of dimension n− 2, where Cn−1 is the Catalan number

Cn−1 =
1

n

(
2n− 2

n− 1

)
.

The decomposition of the associahedron K4 is illustrated in Figure 6.

Each vertex of the associahedron can be identified with a planar binary rooted tree. A way to
interpret the polytope points here is as metric structures on planar binary rooted trees that assign
weights in R≥0 to the internal edges of the tree, with degeneracies along the faces and vertices
of the cubic decomposition, see Figure 6 for K4. Each cube in the decomposition parameterizes
the (normalized) choices of weights for the internal edges for the planar tree structure associated
to that cube, and the faces are glued according to the transitions from one tree structure to an
adjacent one, as dictated by the associahedron structure.

It was further shown by Devadoss and Morava [25] that the parameterization of planar binary
rooted trees with weights on the internal edges in terms of the (open cells of the) associahedron
and its cubic decomposition can then be related to compactifications M0,n+1(R) of moduli spaces
of real curves of genus zero with (n + 1)-marked points. The key idea here is that the ordered
leaves of a planar binary rooted trees can be embedded as an ordered set of points in the real line,
where the coordinates of the points are obtained from the weights assigned at the internal edges
of the tree as a function e−W of the sum W of the weights along the path from the root to one
of the leaves (see the example in Figure 7). Note that, while the open cells of the associahedron
correspond to binary trees, the boundary strata of these cells contain trees with higher valences
(corresponding to the limits of binary trees when one or more of the edge lengths go to zero).
Since the trees coming from syntax are binary (see [61] for our discussion on why Merge operators
with higher arity are excluded) the image from syntax will lie inside the open cells. The boundary
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Figure 6. The Stasheff associahedron K4 with its cubic decomposition (a), and pa-
rameterization of planar metric binary rooted trees (b), figures by Satyan Devadoss
from [25].

structure is still important though, because boundaries of cells in the associahedron encode all the
possible structural changes to the underlying hierarchical structures (syntactic objects).

Figure 7. A planar binary rooted tree with weighted internal edges (a), and the as-
sociated ordered configuration of points on the real line, figures by Satyan Devadoss
from [25].

As shown by Devadoss in [24], the orientation double cover M
or

0,n+1(R) of M0,n+1(R) can be
decomposed into a collection of n! copies of the associahedron Kn, where the n!/2 associahedra
of M0,n+1(R) correspond to the permutations of the (n+ 1) points on the real line preserving the
cyclic order of {0, 1,∞}, with gluings corresponding to certain twist operations on the triangulated
(n + 1)-gons (see Figure 10 for the example of n = 3. Note that for n ≤ 3, the moduli space
M0,n+1(R) is orientable so one does not see the role of the orientation double cover; see [25] for a
more detailed discussion of the more general case).

One can also consider the moduli space BHVn of abstract binary rooted trees with n leaves
(with no assigned planar structure) along with weighted internal edges, and their one-point com-
pactification BHV+, constructed by Billera, Holmes, and Vogtmann, [5]. The moduli space BHVn

is obtained by considering all the (2n − 3)!! abstract binary rooted trees with n labeled leaves.
All these trees have n − 2 internal edges. For each tree, one considers an orthant Rn−2

≥0 , which
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Figure 8. The moduli space BHV3 of abstract binary rooted trees and its one-point
compactification BHV+

3 , figure by Satyan Devadoss from [25].

represents all the possible choices of a weight (length) for the internal edges. These orthants are
glued along the common faces (which correspond to shrinking one of the internal edges) and this
gives the space BHVn. The link Ln of the origin in BHVn is an (n − 3)-dimensional simplicial
complex. In the case n = 3 it consists of three points. For n = 4 it is the Peterson graph of
Figure 9. In general, there are (2n − 3)!! top (n − 3)-dimensional simplexes of Ln (e.g. 15 edges
in the case of L4) that correspond to the different trees, and two of them share a face when the
corresponding trees give rise to the same quotient tree when contracting an internal edge.

Figure 9. The Peterson graph is the link L4 of the origin in BHV4.

It is shown in [25] that there is a projection map between these moduli spaces,

(4.1) Πn : M
or

0,n+1(R) � BHV+
n ,

with a finite projection that is generically 2n−1-to-1, obtained by an origami folding of the cubes
of the cubical decomposition of the associahedra in M

or

0,n+1(R), according to the formula

n! · Cn−1 = 2n−1 · (2n− 3)!! ,

where the left-hand-side lists the Cn−1 cubes of the n! associahedra of M
or

0,n+1(R), and the right-

hand-side lists the (2n−3)!! simplexes of dimension (n−3) of Ln, and 2n−1 is the multiplicity of the
generic fibers of the projection map. Note that 2n−1 is the number of different planar structures
for a given abstract binary rooted tree on n leaves, since such a tree has n−1 non-leaf vertices and
the total number of planar embeddings can be obtained by choosing one of two possible planar
embeddings (left/right) for each pair of edges below a given non-leaf vertex. The origami folding
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quotient takes each (n− 2)-dimensional cube and folds it in half in each direction, obtaining 2n−2

foldings, with 2 copies of each cube in the orientation double cover, so that one obtains 2n−1 points
in each general fiber. We will see this more explicitly in §4.3, applied to our setting.

4.3. Head functions, convex semantic spaces, and metric trees. With these facts in hand,
now consider again the setting we discussed in our simple example of §2.2.3.

Consider the set of all (2n − 3)!! abstract binary rooted trees with n labeled leaves. Suppose
that the leaves are labeled by a given (multi)set {λi}ni=1 of lexical items and syntactic features in
SO0. If this is a multiset instead of a set, we still interpret the multiple copies of a given item
in SO0 as repetitions, not as copies, in the sense that they can play different roles in structure
formation via applications of Merge–hence we will still regard them as distinct labels. Thus, we
have the following geometric description of our data.

• For any choice of the lexical items associated to the leaves, we obtain a corresponding copy
of the moduli space BHVn.
• The link of the origin Ln ⊂ BHVn can be seen as an assignment of weights to the internal

edges that is normalized (for example by requiring that the total sum of weights is equal
to 1).
• We write BHVn(Λ) for Λ = {λi}ni=1 for the copy of BHVn that corresponds to the given

choice Λ of the lexical items assigned to the leaves.
• We similarly write Ln(Λ) for the associated copy of Ln.

Proposition 4.1. The choice of a head function h determines simplicial subcomplexes Ln(Λ, h) ⊂
Ln(Λ), BHVn(Λ, h) ⊂ BHVn(Λ), Mn(Λ, h) ⊂ M

or

0,n+1(R), compatible with the maps relating these
moduli spaces, and a lift of Ln(Λ, h) and BHVn(Λ, h) inside Mn(Λ, h), determined by the planar
structure πh associated to the head function.

Proof. The choice of the head function h selects, for each of these copies Ln(Λ) ⊂ BHVn(Λ), a
simplicial subcomplex Ln(Λ, h) ⊂ Ln(Λ) and the associated cone BHVn(Λ, h) ⊂ BHVn(Λ), where
the set of top (n − 3)-dimensional simplexes of Ln(Λ, h) corresponds to the subset of the given
(2n− 3)!! trees that belong to Dom(h).

Let Mn(Λ, h) ⊂M
or

0,n+1(R) denote the locus in M
or

0,n+1(R) obtained as a pre-image under the pro-
jection map of the image BHVn(Λ, h)+ of the cone BHVn(Λ, h) in the one-point compactification
BHV+

n ,

(4.2) Mn(Λ, h) := Π−1
n (BHVn(Λ, h)+) .

A point in BHVn(Λ, h) is a pair (T, `) of an abstract binary rooted tree on n leaves labeled by
the points of Λ together with a set ` = (`k)

n−2
k=1 of weights `i ∈ R≥0 assigned to the internal edges

of T . The 2n−1 points in the fiber Π−1
n (T, `) ⊂Mn(Λ, h) are given by the points (T π, `), where T π

ranges over all the possible planarizations π of T and the lengths of the internal edges stay the
same.

We have seen that the choice of a head function h determines an associated planar structure πh
for all trees T ∈ Dom(h). Thus, the choice of a head function determines a lift of the subcomplex
BHVn(Λ, h) (and in particular of Ln(Λ, h) ⊂ Ln(Λ)) to a subcomplex of Mn(Λ, h) ⊂ M

or

0,n+1(R).
�

Consider then, as in §2.2.3, a semantic space S that is a geodesically convex subspace of a
Riemannian manifold, together with a map s : SO0 → S. Assume that, for points in S, we
can evaluate the frequency of semantic relatedness in a specified context in terms of a biconcave
function P : Sym2(S)→ [0, 1].
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Proposition 4.2. Let T ∈ Dom(h) ⊂ TSO0 be a tree with n leaves. The data (s : SO0 → S,P)
determine a set ` = (`k)

n−2
k=1 ∈ Rn−2

≥0 of weights assigned to the internal edges of T . Thus the data

(s : SO0 → S,P) determine a point (T, `(h,s,P)) ∈ Ln(Λ, h) and a point in the corresponding fiber
of the projection from Mn(Λ, h).

Proof. To see this, we proceed as in §2.2.3. For each of the n− 2 vertices v of T that are neither
the root nor one of the leaves, consider the two subtrees Tv,1 and Tv2 that have root vertices v1, v2

immediately below v, and compute pv := P(s(Tv,1), s(Tv,2)), where h(Tv,i) is the head leaf of the
subtree Tv,i. We label the (n− 2) internal edges by the target vertex v (where the tree is oriented
away from the root) and we take `v = pv.

Thus, we have that, for a tree T ∈ Dom(h) ⊂ TSO0 on n leaves labeled by Λ, the choice
of a head function h, together with the choice of a map s : SO0 → S and of the function
P : Sym2(S)→ [0, 1] determines, after an overall normalization of the weights, a point (T, `(h,s,P)) ∈
Ln(Λ, h), and a corresponding point (T πh , `(h,s,P)) ∈ Ln(Λ, h) in the fiber above (T, `(h,s,P)) in
Mn(Λ, h) ⊂M

or

0,n+1(R). �

Remark 4.1. Note that in §2.2.3 we used the same coordinates P(s(Tv,1), s(Tv,2)) to assign points
s(Tv) = pvs(Tv,1) + (1− pv)s(Tv,2) or s(Tv) = pvs(Tv,2) + (1− pv)s(Tv,1) (according to whether the
head h(Tv) matches the head of either of the two subtrees). Thus, according to this construction,
the weight of an internal edges of T obtained as in Proposition 4.2 reflects the positions in the
semantic space S of the accessible term below that edge.

As a result, we can view the construction of the character φs,P,h of §2.2.3 equivalently as the
construction of a section.

Corollary 4.2. The construction of the character φs,P,h of §2.2.3 is equivalent to the construction
of a partially defined section

(4.3) σs,P,h,n : BHVn →M
or

0,n+1(R)

which is defined over

Dom(σs,P,h,n) = BHVn(Λ, h) ,

and a partially defined map

(4.4) sP,h : TSO0 → ∪nLn(Λ, h)

with Dom(sP,h) = Dom(h). The construction of the character φs,P,h of §2.2.3 is equivalent to the
construction of the composite map σs,P,h ◦ sP,h.

For the case n = 3, the projection maps are illustrated in Figure 10.
We have described the construction here in terms of the simple model of assignment of semantic

values to syntactic objects described in §2.2.3. This can be adapted to other models, so that we
can incorporate, as part of the modeling of the syntax-semantics interface, the construction of a
partially defined section

(4.5) σS,n : Dom(σS) ⊂ BHVn →M
or

0,n+1(R)

which depends on the model of semantic space S used and on its properties. Similarly, the map
(4.4) can be generalized as a map

(4.6) sS,h,n : TSO0 → Ln ∩Dom(σS,n) .
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Figure 10. The projections from three associahedra K3 to the moduli space
M0,4(R) and to the BHV+

3 moduli space and the embedding map I of syntactic
trees to semantic space S seen from the point of view of moduli spaces.

4.4. Origami folding and Externalization. In [61] we gave an account of Externalization as a
section of the projection from planar to abstract binary rooted trees, where the section is language
dependent and is chosen so that the resulting planar structure is compatible with certain syntactic
parameters, through the effect these have on word order.

In terms of the geometry of moduli spaces described here, one can similarly view Externalization
as the choice of a section (depending on a specified language L through its syntactic parameters)

(4.7) σL,n : BHVn →M
or

0,n+1(R) .

This section is defined at the level of the combinatorial trees, as a choice of a section σL,n :

TSO0,n → TplSO0,n
that assigns a planar structure, as discussed in [61], and extended to metric trees

as the identity on the metric datum `, since Externalization is decoupled from the metric structure,
reflecting our initial assumption on independence of semantic values from Externalization. This
independence assumption only affects this independence of σL,n on the metric structure. It does
not mean that there would be no interaction with the semantics channel. One way to model such
interaction is by comparing the two sections σL,n and σS,n on the subdomain Dom(σS,n) ⊂ BHVn

where both are defined and in particular on the target of the map sS,h,n of (4.6).

4.5. An example. All the above discussion on the relation between Externalization and the
syntax-semantics interface in terms of moduli spaces is quite abstract, so let us illustrate what is
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happening with a very simple example. Consider a sentence such as

yellow flowers bloom early

=
α β γ δ

= ((α β) (γ δ))

In the form depicted, this is represented by a planar binary rooted tree on four leaves labeled by
the lexical items in the set Λ = {α, β, γ, δ}. The tree does not contain exocentric constructions
and has a well defined syntactic head. Thus, we have the associated data (Λ, h) as above. The
underlying syntactic object, as produced by a free symmetric Merge. is the non-planar abstract
binary rooted tree

α β γ δ
=
β α γ δ

=
α β δ γ

=
γ δ α β

= {{α, β}, {γ, δ}} .

The planar tree ((α β) (γ δ)) corresponds to a vertex of the associahedron K4, as in Figure 11. The
associahedron considered is one of the 4! = 24 associahedra that correspond to the 4! permutations
of the leaves’ labels. This assignment of a vertex on one of the 24 associahedra corresponds to left
arrow (free symmetric Merge to Externalization) in the top part of Figure 4, for this example.

Figure 11. The selected vertex of the associahedron K4 corresponding to the pla-
nar tree ((α β) (γ δ)) (modified figure by Satyan Devadoss from [25]).

The abstract tree {{α, β}, {γ, δ}} produced by the free symmetric Merge, on the other hand, is
one of the 15 = (2n− 3)!!, for n = 4, possible abstract binary rooted trees on four labeled leaves.
These 15 possible trees correspond to the 15 edges of the link L4 of the origin in the moduli space
BHV4. Thus, the syntactic object {{α, β}, {γ, δ}} selects one of these edges, see Figure 12.

Figure 12. The selected edge in the link L4 of the origin in the moduli space BHV4

corresponding to the abstract tree {{α, β}, {γ, δ}}.
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Now suppose we have chosen a semantic space S (for simplicity of discussion, consider using a
vector space model, though it is not necessary for S to be of this kind). Each of the four lexical
items has a representation s(α), s(β), s(γ), s(δ) ∈ S. The two semantic relatedness measures
u1 = P(s(α), s(β)) (relating “yellow” and “flower”) and u2 = P(s(γ), s(δ)) (relating “blooming”
and “early”) in S provide two real coordinates associated with the accessible terms {α, β} and
{γ, δ}, respectively. These two coordinates fix a point (u1, u2) ∈ [0, 1]2 in a square (see Figure 13).
The selected edge of Figure 12 corresponds to the diagonal of the square given by u1 + u2 = 1.
Thus, the mapping of the result of the free symmetric Merge to semantic space determines a point
in the moduli space BHV +

4 . This completes the right arrow (free symmetric Merge to Semantic
Spaces) in the top part of Figure 4, for the example of this simple sentence.

Figure 13. The square and the selected edge in the link L4 for corresponding to
the abstract tree T = {{α, β}, {γ, δ}}: the mapping of T to semantic space selects
a point in this square.

We next see in this example the bottom part of Figure 4, that describes the compatibility
between Externalization and the syntax-semantics interface. First note that the associahedra K4

are tiled with squares (quadrangles), as in Figure 14. The two vertices of the square adjacent to
the marked vertex of the pentagon corresponds to degenerate trees where one or the other of the
internal edges as shrunk to zero length, while the other has normalized length one. Thus, we see
that we can map this square to the square of Figure 13 through the same coordinates (u1, u2)
describing the lengths of the two internal edges (compare with Figure 10 for the case n = 3).

Figure 14. The associahedron K4 tiled with squares (quadrangles), with the se-
lected vertex associated to ((α β) (γ δ)) (modified figure by Satyan Devadoss from
[25]).

This lifting of the point associated to T in the square of Figure 13 to a corresponding point in the
square of Figure 13 is the effect of the section σL,4 described in (4.7). To see this, we need to take
into consideration the fact that the 24 associahedra combine together into a single geometric space,
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obtained by gluing them along their boundaries. This is done in two steps: first 12 associahedra
are glued along their boundaries as in the left-hand-side of Figure 15, forming the space M̄0,5(R).
Then the orientation double cover is formed: in a self-intersecting 3-dimensional visualization,
this resulting space M̄ or

0,5(R) can be identified with the great dodecahedron in the right-hand-side
of Figure 15. It is not easy to see from its 3D representation as great dodecahedron, but the
space M̄ or

0,5(R) is a genus 4 hyperbolic surface, and can be seen more directly from its description
in terms of fundamental domain given in [1], as in Figure 16 below.

Figure 15. Twelve associahedra K4 assemble into the space M̄0,5(R) and its orien-
tation double cover gives 24 associahedra assembled into the space M̄ or

0,5(R) identified
with the great dodecahedron (figure by Satyan Devadoss from [25]).

Figure 16. The great dodecahedron M̄ or
0,5(R) as a hyperbolic genus 4 surface, and

the two different forms of the 24 associahedron tiles (figure from [1]).

The projection map Π4 : M
or

0,5(R) � BHV+
4 of (4.1) folds together and identifies 8 squares in

M
or

0,5(R) to each square in BHV+
4 . Thus, when we lift to M

or

0,5(R) the point assigned to the tree

T in one of the squares of BHV+
4 by the mapping of T to semantic space, the lifted point lies on

one of the 8 preimages of the given square of BHV+
4 . This choice of one ut of the 8 preimages is

the choice of planar structure of the syntactic object determined by externalization and this gives
indeed the section σL,4 described in (4.7), where here L = English.

One can then see in this same simple example, that if instead of taking the planarization
T πL = ((α β) (γ δ)) of the syntactic object T = {{α, β}, {γ, δ}}, one would take the planarization
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Figure 17. Four squares in adjacent associahedra K4 are folded together (origami
folding) in the projection to BHV+

4 so that 8 squares in the double cover M
or

0,5(R)

are identified in the projection Π4 : M
or

0,5(R) � BHV+
4 (figure by Satyan Devadoss

from [25]).

T πh determined by the head function, one would end up with the different planar tree

T πh =
γ δ β α

= ((γδ)(βα)) .

This means that one ends up on a different one of the 24 associahedra and a square inside that
associahedron, that is still one of the 8 squares that project to the same (unchanged) square in
BHV+

4 . The same point in this square in BHV+
4 determined by mapping T to semantic space is

then lifted to a corresponding point in a different square inside M
or

0,5(R). This means that we are
considering a different section of the projection Π4. This is the section σS,4 described in (4.5). The
difference between these two sections is measured by a transformation γL,4 ◦ σL,4 = σS,4, where
applied to our syntactic object T this gives the permutation γL,4(T ) = (3421). As in (4.8), this
transformation γL,4 is Kayne’s LCA algorithm for this very simple example.

We have considered a very simple example with n = 4 where the geometry is straightforward to
visualize. The spaces M

or

0,n+1(R) and BHV+
n grow significantly in combinatorial complexity as n

becomes larger, but they are still very well understood and widely studied geometric spaces. Other
more complicated geometries are likely to arise if the mapping of syntactic objects to semantic
spaces is done in a more sophisticated and informative way than the very simple type of mappings
we considered in this paper as illustrative examples.

4.6. Geometric view of some planarization questions. We conclude this section by briefly
commenting on how certain frameworks where the question of planarization of syntactic objects
arises can be also seen in terms of the geometry described above. We discuss briefly Kayne’s Linear
Correspondence Axiom and Cinque’s Abstract Functional Lexicon, and we also outline how one
can describe the role of syntactic parameters in this geometric setting.

4.6.1. Kayne’s LCA algorithm. When the planar structure assigned by the section σS,n is the
planar structure πh determined by a head function, as in the case of (4.3), this means comparing
the planar structure πh, for h defined on Dom(h) ⊂ TSO0 , with the planar structure πL defined
by the section σL,n through the constraints imposed by the syntactic parameters of the language
L. This comparison can be seen as a version of Richard Kayne’s LCA (Linear Correspondence
Axiom), [48], [49]. As we observed in [62], Kayne’s LCA cannot be defined globally on TSO0 , but is
only partially defined on the domain Dom(h) of a head function (the syntactic head), hence it does
not play the same role as Externalization, which is a choice of a globally defined (non-canonical)
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section σL,n. However, on the domain Range(sS,h,n) ⊂ Ln ∩Dom(h) where both σL,n and σS,n are
defined there exists a covering transformation γL,n of the projection map

M
or

0,n+1(R)→ BHV+
n

that satisfies

(4.8) γL,n ◦ σL,n = σS,n

at all points in Range(sS,h,n). This covering transformation γL,n plays the role of the (partially
defined) LCA algorithm.

4.6.2. Cinque’s abstract functional lexicon. There are other constructions that one can fit into
this geometric picture with the projection map M

or

0,n+1(R) → BHV+
n –partially defined sections,

and covering transformations permuting the 2n−1 points of the fibers of the projection map. For
example, one can view this as the abstract functional lexicon described by Cinque [19].

In [19], Cinque considers the problem of comparing word order relations imposed on individual
languages by particular syntactic parameters, with a certain base ordering relation of proximity
to the verbal properties of different morphemes (in a structural sense, rather than in terms of
linear ordering), such as mood, tense, modality aspect, and voice. In [19], a general hierarchy of
functional morphemes and of adverbial classes is identified (see (6) and (7) of [19]). As observed in
[19], with verbal morphemes as heads and corresponding classes of adverbs as phrases in so-called
specifier position, this hierarchy determines a planar embedding (in the way that it appears in (6)
and (7) of [19]). Syntactic parameters, on the other hand, also determine a planar embedding.
While this could be a priori arbitrary, the variability across languages is far less than the space
of combinatorial possibilities would allow. Also, different word order constraints appear not to
be independent, but to exhibit a significant degree of relatedness. This can be seen both at the
theoretical level (see [37]) and at the level of database analysis of syntactic parameters (see [70],
[72], [75]).

In terms of the geometry of moduli spaces described above, one can describe the difference
between the ordering (planar structure) described by Cinque in [19] and the deviation from it in
the word order of specific languages in terms of covering tranformations γL,n of the projection map

M
or

0,n+1(R)→ BHV+
n that act as permutations of the planar structures, and are language specific.

The degree to which word order constraints deviate from the base structural hierarchy described
in Cinque can then be measured in terms of how far the γL,n are from the identity in the group of
covering transformations of the projection map.

4.6.3. A geometric view of syntactic parameters. Syntactic parameters fix constraints on the planar
structure of Externalization. For an extensive recent account of syntactic parameters see [77]. In
[61] we interpreted the role of syntactic parameters as constraints on the choice of a language-
dependent section σL,n for the Externalization of free symmetric Merge.

The discussion above shows that in our setting we can also interpret the role of syntactic
parameters in a geometric way, as the choice, for a given language L, of a collection L 7→ {γL,n}n
of covering transformations of the projections M

or

0,n+1(R) → BHV+
n , as in (4.8). Comparison of

syntactic parameters across languages can be formulated in various computational forms. This
includes the difficult problem of understanding the relation among parameters, as well as the much
lower dimensional space occupied by actual languages inside the high-dimensional space of possible
values of the hundreds of parameters currently studied (see for example [41], [53], [59], [50], [75],
[80]). In particular, one can focus on the effect of syntactic parameters on word order constraints.
In this case, using the framework we consider here, one can view this comparison across languages
as the comparison between sections σL,n for different languages L, or equivalently as the properties
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of the collection of elements γL,nγ
−1
L′,n, for L 6= L′ in the group of covering transformations of

M
or

0,n+1(R)→ BHV+
n .

5. Birkhoff factorization and (semi)ring parsing

We now extend the setting introduced above to more refined descriptions of the characters and
factorization, that incorporate more detailed properties of semantic parsing and compositionality.
We first focus on semiring parsing, as in [36], while in §6 we analyze how our model relates to
Pietroski’s theory of minimalist meaning, [73]. These two settings represent very different models,
where semiring semantics incorporates the idea of truth-values and generalizes it to values in
arbitrary (semi)rings, not necessarily Boolean, while Pietroski’s approach provides an alternative
that bypasses the idea of truth-values entirely and is based on a compositional structure modeled
on the Minimalism’s Merge operation.

In this section we analyze (semi)ring parsing, introducing a version that is adapted to Minimal-
ism formulated in terms of free symmetric Merge.

Since this is the most mathematically-heavy section in this paper, we provide a preliminary out-
line of the content and a more heuristic explanation of what is covered in the various subsections,
before starting to discuss the more precise details.

5.1. Preliminary discussion. The relation between grammars and semirings was first observed
by Chomsky–Schützenberger in [17]. Semiring parsing (see for instance [36]), when formulated in
the setting of context-free grammars, considers deduction rules of the form

A1 . . . Ak
B

C1 . . . C` ,

where the terms Ai (main conditions) are rules R of the grammar or input nonterminals and
the Ci are (non-probabilistic) Boolean side conditions and the fraction notation means that if
the numerator terms hold then the denominator term also does. To the main condition terms
one assigns values in a semiring, combined with the semiring operations, to obtain a value for
the deduced output. The target semiring varies according to the parsing algorithm considered.
The main choices include the Boolean semiring, the tropical semiring, the probability semiring
(that is, the familiar case of Viterbi parsing), as well as the non-commutative derivation forest
semiring, that collects all the possible derivations, with concatenation as multiplication and union
as semiring addition. Often, parsing with values in other semirings factor through the derivations
semiring. This setting is specifically constructed in the formal language context, and specifically
for context-free grammars, though some generalizations exist in mildly context-sensitive classes
like those produced by tree-adjoining grammars (TAGs).

A natural question arises about what type of algebraic structure replaces this form of semiring
parsing in the setting of Minimalism, and more specifically the form of Minimalism based on free
symmetric Merge.

The main goal of this section is to provide an answer to this question, in a form that is again
based on the Birkhoff factorization procedure, that we present throughout this paper as a natural
formalism for different forms of assignments of semantic values in the context of a free symmetric
Merge model of syntax.

Developing this form of “semiring parsing” (where semirings will in fact be replaced by more
general algebraic objects) requires several steps, that we now briefly summarize.

In §5.2 we introduce a ring of Merge derivations, formed by considering chains of Merge oper-
ations, given by the action of Merge on workspaces. These are assembled into a ring structure,
where the linear structure is obtained by taking the vector space spanned by the derivations (that
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is, including formal linear combinations) and the multiplication operation is the union of the
workspaces with the corresponding Merge actions. These are the same operations on the algebra
part of the Hopf algebra of workspaces that we introduced in [61] and used earlier in this paper.
We only consider the product structure on this ring and not the coproduct, as we have on the
Hopf algebra of workspaces. However, this does not lead to a loss of structure in this case, because
the coproduct is built into the Merge operation on workspaces, so it it still encoded into the data
of this ring of Merge derivations.

In order to illustrate more clearly the properties of this ring of Merge derivations, in §5.2 we
return to discuss the notion of Minimal Search in the Merge model of syntax. In [61] we gave an
account of how Minimal Search is implemented as extraction of leading order term in the action
of Merge on workspaces. This leading order term contains Internal and External Merge, while it
excludes other presumptively unwanted forms of Merge (Sideward and Countercyclic). The idea
of extraction of the leading order term is closely related to Birkhoff factorization, as originally
observed in the context of the renormalization in physics.

Here we show that in fact, after extending the ring of Merge derivations to a ring of Laurent
series with coefficients in this ring, one can indeed show that Minimal Search is exactly a Birkhoff
factorization in this ring–for a character from the Hopf algebra of workspaces that assigns to a
workspace its Merge derivation and a power that counts the effect of that derivation on the size
of the workspace. The Birkhoff factorization separates out, on one side, the unwanted forms of
Merge, while retaining on the other side only fundamental ones, namely External and Internal
Merge. This case of Birkhoff factorization happens to be the one that is closest to the original
form used in physics.

This result on Minimal Search as Birkhoff factorization in §5.2 is not required for the following
parts of this section, and is included to provide some more direct understanding of the ring of
Merge derivations and to connect it to our original formulation in [61]. This section can be skipped
(except for Definition 5.1) by the readers interested in directly accessing the discussion of how to
extend the semiring parsing framework.

The main construction for the generalization of semiring parsing starts in §5.3. The main view-
point here is that, in order to formulate semiring parsing for Merge derivations based on the action
of Merge on workspaces, one needs to replace the setting of Hopf algebras and semirings, that we
used in the previous sections of this paper to describe simple models of syntax-semantics interface,
with a slightly more flexible form, where the algebraic structures of Hopf algebra and semiring
are replaced by their “categorified” form, which we refer to, respectively, as Hopf algebroids and
semiringoids. The reason for this extension is very simple. Merge derivations given by actions of
Merge on workspaces only compose when the target workspace of one derivation agrees with the
source workspace of the next. This differs from the situation we considered in the previous sections
where we only considered the Hopf algebra of workspaces, where the product is the disjoint union
(combination of workspaces) which is always defined without source/target matching conditions.

Thus, just as in passing from the multiplication in a group to the multiplication in a groupoid,
that precisely accounts for the fact that arrows compose only when the target of the first is the
source of the second, one can obtain similar generalizations of the structures of Hopf algebra and
Rota–Baxter algebra (or semiring) that we used in the formulation of mapping from syntax to
semantics as Birkhoff factorization in the previous sections.

An extension of the notion of Hopf algebra that accommodates for the need for source/target
matching conditions in the product was developed in the context of algebraic topology with the
notion of (commutative) Hopf algebroid and bialgebroid. We take that as the starting point in
§5.3, by constructing a bialgebroid associated to the ring of Merge derivations introduced in §5.2.
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This bialgebroid replaces the Hopf algebra of workspaces on the syntax side, by encoding the
Merge derivations in syntax.

In §5.4 we then consider the other side of the Birkhoff factorization, namely the semantics side,
where we wish to replace the algebraic datum of a Rota-Baxter algebra or Rota-Baxter semiring
with an analogous categorified version. We use a notion of algebroid that is compatible with
the notion of Hopf algebroids and bialgebroids introduced in §5.3 and we show that the notion
of algebroid we consider is dual to directed graphs, with the cases of bialgebroids being dual to
directed graphs that are reflexive and transitive (small categories) and Hopf algebroids being dual
to groupoids.

We also extend the generalization of algebras to algeboids to an analogous generalization of
semirings to a similar categorified structure of semiringoid. (Note that other different notions of
algebroids and semiringoids exist in the mathematical literature that should not be confused with
the version adopted here.)

In §5.4.2 we describe how the notion of Rota–Baxter operator of weight −1 on an algebra can be
generalized to the case of an algebroids and similarly in §5.4.3 we show the analogous generalization
of Rota–Baxter semirings of weight ±1 to semiringoids.

With this, we have both sides of the mapping ready for the case of Merge derivations with their
composition structure. We prove in §5.4.4 the existence of Birkhoff factorizations of characters from
Hopf algebroids to Rota–Baxter algebroids and from bialgebroids to Rota–Baxter semiringoids.
The characters and the factorization can here be described dually in terms of maps of directed
graphs.

We conclude in §5.5 by showing that, with the algebraic setting constructed in the previous
subsections, one obtains a form of semiring(oid) parsing that simultaneously generalizes the various
semiring parsings of [36] and the Birkhoff factorizations that we described in §2.

5.2. Minimal Search as Birkhoff factorization. In [61] we presented a way to implement
Minimal Search and eliminate unwanted forms of Merge (Sideward and Countercyclic Merge) and
retain only the Internal and External forms of Merge. In the formulation we presented in [61],
Minimal Search is implemented by extracting the leading order term with respect to a specific
grading function imposed on the terms of the coproduct of the Hopf algebra. We show here that
there is another natural way of thinking about Minimal Search, by formulating it as a Birkhoff
factorization, very similar in form to the one used in quantum field theory, with respect to a
character with values in a Laurent series.

5.2.1. Effect of Merge on workspaces. For consistency with [61], and since here it is not important
to keep track of traces in the effect of Internal Merge, we consider the quotients T/Fv in the
coproduct as in [61] rather than as in §1.2.1. As a result, we have the same counting of the effect
of Merge on the various measures of workspace size (number of components, number of accessible
terms, number of vertices, etc). as described in [61].

The different cases of Merge are given by External Merge (EM), Internal Merge (IM), Sideward
Merge (SM), and Countercyclic Merge (CM):

EM: F = T t T ′ t F̂ 7→ F ′ = M(T, T ′) t F̂
IM: F = T t F̂ 7→ F ′ = M(Tv, T/Tv) t F̂

SM(i): F = T t T ′ t F̂ 7→ F ′ = M(Tv, T
′
w) t T/Tv t T ′/T ′w t F̂

SM(ii): F = T t T ′ t F̂ 7→ F ′ = M(T, T ′w) t T ′/T ′w t F̂
CM(i): F = T t F̂ 7→ F ′ = M(Tv, Tw) t T/Tv t F̂
CM(ii): F = T t F̂ 7→ F ′ = M(Tv, Tw) t T/Tw t F̂
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CM(iii): F = T t F̂ 7→ F ′ = M(Tv, Tw) t T/(Tv t Tw) t F̂
where F̂ denotes the part of the workspace that is not affected, and

M(T, T ′) = T T’ .

The effect of these Merge operations on size counting is summarized in the following table from [61],
with b0(F ) the number of connected components of a workspace F ∈ FSO0 (number of syntactic
objects), α(F ) the number of accessible terms in F (the total number of non-root vertices), σ(F ) =
b0(F ) + α(F ) = #V (F ) the total number of vertices, and σ̂(F ) = b0(F ) + σ(F ). We introduce
here a combined variable

δ = −∆(3b0 + α) = −∆(2b0 + #V ) ,

as this will be used in the construction of §5.2.2 below.

∆b0 ∆α ∆σ ∆σ̂ δ
EM −1 +2 +1 0 1
IM 0 0 0 0 0
SM(i) +1 0 +1 +2 −3
SM(ii) 0 +1 +1 +1 −1
CM(i) +1 #Acc(Ta,wa) σ(Ta,wa) σ(Ta,wa) + 1 ≤ −2
CM(ii) +1 #Acc(Ta,va) σ(Ta,va) σ(Ta,va) + 1 ≤ −2
CM(iii) +1 −2 −1 0 ≤ −1

Note that values of δ ≥ 0 eliminate all the “undesirable” forms of Merge (Sideward and Counter-
cyclic), leaving only Internal and External Merge. (We put aside here the question as to whether
these excluded forms of Merge are indeed undesirable, and simply assume that this is so.)

We show here that the elimination of the forms of Merge, described in terms of Minimal Search,
can also be formulated as a Birkhoff factorization where one eliminates divergences as in the
physical setting.

5.2.2. Laurent series ring of Merge derivations. We introduce a ring that organizes derivations in
the Minimalist generative grammar defined by free symmetric Merge, weighted by their effect on
the workspace.

Definition 5.1. The algebra of free Merge derivations DM is the commutative associative Q-
algebra with the underlying Q-vector space spanned by elements of the form ϕA where A ⊂
SO × SO is a set of pairs (S, S ′) of syntactic objects, and

(5.1) ϕA = (F
MA→ F ′)

consists of all possible chains of Merge operations

(5.2) F
MS1,S

′
1→ F1 → · · ·FN−1

MSN ,S
′
N→ F ′

with (Si, S
′
i) ∈ A. Since the source and target workspaces are assigned, there are finitely many

such possible chains. The algebra multiplication is given by the operation

(5.3) ϕA t ϕB = (F t F̃ MAtB→ F ′ t F̃ ′) ,

for ϕA = (F
MA→ F ′) and ϕB = (F̃

MB→ F̃ ′), with unit given by the empty forest mapped to
itself. Let DM[t−1][[t]] denote the associative commutative Q-algebra of Laurent power series
with coefficients in DM.



48 MATILDE MARCOLLI, ROBERT C. BERWICK, NOAM CHOMSKY

The meaning of the product (5.3) is to perform in parallel different Merge operations that affect
different parts of a workspace. Such operations, if conducted sequentially, would commute with
each other hence would be independent of the order of execution (unlike operations that affect the
same components of the workspace), so that composition can be regarded as simultaneous and
parallel rather than sequential, and can be grouped together as a single operation.

The following fact is well known (see [20], [21], [26], [27]).

Proposition 5.1. Given a commutative associative algebra A and the algebra of Laurent series
A[t−1][[t]], the linear operator R : A[t−1][[t]]→ A[t−1][[t]] that projects onto the polar part,

(5.4) R(
∞∑

i=−N

ait
i) =

−1∑
i=−N

ait
i ,

makes (A[t−1][[t]], R) a Rota–Baxter algebra of weight −1.

Proposition 5.2. Consider the map φ : H → DM,

(5.5) φ(F ) = (L(F )
MA(L(F ),F )−→ F ) ,

that assigns to a forest F the set A(L(F ), F ) of all Merge derivations from the (multi)set of
individual lexical items and syntactic features that form the set of leaves L(F ), to the forest F
(the generative process for F ). This defines a character (a morphism of commutative algebras)
from the Merge Hopf algebra H of non-planar binary rooted forests to the algebra of free Merge
derivations DM. The assignment

(5.6) φt(F ) = (L(F )
MA(L(F ),F )−→ F ) tδ(MA(L(F ),F )) ,

then defines a morphism of commutative algebras φt : H → DM[t−1][[t]].

Proof. It suffices to check that φ(F t F ′) = φ(F ) t φ(F ′), namely that

(L(F ) t L(F ′)
MA(L(F )tL(F ′),FtF ′)−→ F t F ′) = (L(F ) t L(F ′)

MA(L(F ),F )tA(L(F ′),F ′)−→ F t F ′) .
This is the case since, if the end result of a chain of Merge operations contains a disjoint union
F tF ′ of two trees, then all the individual Merge operations MTv ,Tw in the chain will use syntactic
objects Tv Tw where both sets of leaves L(Tv) and L(Tw) are subsets of L(F ) or where both are
subsets of L(F ′) as otherwise MTv ,Tw would create a connected component T with L(T )∩L(F ) 6= ∅
and T ∩ L(F ′) 6= ∅ so that the end result would not contain F t F ′. Moreover,

δ(F
MA−→ F ′) = (3b0 + α)(F )− (3b0 + α)(F ′)

and (3b0 +α)(F t F̃ ) = (3b0 +α)(F )+(3b0 +α)(F̃ ) so that (5.6) is also an algebra homomorphism.
�

As we will see in Lemma 5.3, the character φt : H → DM[t−1][[t]] of Proposition 5.2 is not good
enough to detect the difference between Internal/External Merge and Sideward/Countercyclic
Merge. However, one can consider similar characters more suitable for this purpose. A simple
modification of φt that works can be obtained in the following way, where the statement follows
as in Proposition 5.2.

Corollary 5.2. For T ∈ TSO0 let FT ⊂ FSO0 × FSO0 denote the set of pairs (F, F ′) of forests F
with L(F ) = L(F ′) = L(T ) that are intermediate derivations for T , namely such that there exists
a chain of free symmetric Merge derivations

L(T )
MS1,S

′
1−→ · · ·

MSi,S
′
i−→ F

MSi+1,S
′
i+1−→ · · ·

MSj,S
′
j−→ F ′

MSj+1,S
′
j+1−→ · · ·

MSm,S
′
m−→ T ,
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for some m ≥ 1, including the case with F = L(T ) and F ′ = T . Consider the assignment

(5.7) ψt(T ) =
∑

(F,F ′)∈FT

(F
MA(F,F ′)−→ F ′) tδ(MA(F,F ′)) ,

where MA(F,F ′) is the set of all possible Merge derivations from F to F ′. This determines a
morphism of commutative algebras ψt : H → DM[t−1][[t]].

The reason why the choice of the character ψt of (5.7) is preferable to the choice of φt of (5.6)
is explained by the following simple property.

Lemma 5.3. The character φt : H → DM[t−1][[t]] takes values in the subring

DM[[t]] = (1−R)DM[t−1][[t]]

of formal power series.

Proof. Consider the case of a tree T ∈ TSO0 . The value

φt(T ) = (L(T )
MA(L(T ),T )−→ T ) tδ(T )

represents the complete set of all possible chains of free symmetric Merge derivations that construct
the syntactic object T starting from a (multi)set L = L(T ) of lexical items and syntactic features. If
#L = ` then #V (T ) = 2`−1 so we have δ(T ) = (2b0+#V )(L)−(2b0+#V )(T ) = 3`−2−(2`−1) =
`−1 ≥ 0. Thus, notice that φt(T ) is always in the non-polar part DM[[t]] for any tree T , regardless
of whether some Sideward or Countercyclic Merge operations have been used along the chain of
derivations. This means that (1−R)φt(T ) = φt(T ) for all T . The case of forests is then immediate
since φt(F ) =

∏
a φt(Ta), for F = taTa and δ(F ) =

∑
a δ(Ta) ≥ 0 �

Thus, the character φt does not suffice to separate Internal/External Merge from Sideward
and Countercyclic Merge operations on the basis of the counting given by δ. On the other
hand, the character ψt, that also considers all the intermediate derivations from L(T ) to T , each
weighted according to the corresponding value of δ will have a non-trivial polar part, when Side-
ward/Countercyclic Merge operations are present somewhere in the chain of derivations.

However, even when using the character ψt that detects the presence of the so-called undesirable
forms of Merge in a derivation, simply applying the projection onto the regular part

ψt(F ) 7→ (1−R)ψt(F )

does not suffice to eliminate those Sideward/Countercyclic Merge operations and only retain In-
ternal/External Merge. This is a consequence of the fact that the projection R onto the polar part
is not an algebra homomorphism but a Rota–Baxter operator. The failure of the Rota–Baxter
operator R of (5.4) to be an algebra homomorphism

R((
∞∑

i=−N

ait
i)(

∞∑
j=−M

bjt
j)) = R(

∞∑
n=−(N+M)

∑
i+j=n

aibj t
n) =

−1∑
n=−(N+M)

∑
i+j=n

aibj t
n

6= R(
∞∑

i=−N

ait
i)R(

∞∑
j=−M

bjt
j) =

−1∑
n=−(N+M)

∑
i+j=n,i<0,j<0

aibj t
n

reflects the fact that terms in a product of series can end up in the polar (respectively, non-polar)
part of the product without being in the polar (respectively, non-polar) part of the individual
factor, because of the sum ti+j of the exponents. This means that simply applying (1−R) to φ(F )
will not suffice to get rid of the free Merge derivations that contain Sideward and Countercyclic
Merge. However, Birkhoff factorization achieves that result.
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Theorem 5.4. The inductively constructed Birkhoff factorization (1.9) of the character ψt of
(5.7) implements Minimal Search, in the sense that it inductively eliminates all Sideward and
Countercyclic Merge forms from the derivations and only retains compositions of Internal and
External Merge.

Proof. This is a direct consequence of Proposition 1.1. Taking ψt,+(T ) = (1 − R)ψ̃t(T ), with ψ̃t
the Bogolyubov preparation of ψt(T ) gives an algebra homomorphism

ψt,+ : H → DM[[t]] ,

where in the inductive construction of

ψ̃t(T ) = ψt(T ) +
∑

ψt,−(Fv)ψt(T/Fv)

one analyzes in parallel the Merge derivations of accessible terms of T , ensuring that the so-called
undesirable forms of Merge are progressively removed from all the accessible terms of T and only
derivations containing Internal and External Merge (that is, with δ ≥ 0) are retained at each
step. More precisely, if there is a term in ψt(T ) of the form (F → F ′)tδ where the derivation is a
Sideward or Countercyclic Merge, the forest F ′ will occur as a collection of accessible terms F ′ = Fv
in T , hence in ψ̃t(T ) the term ψt,−(Fv)ψt(T/Fv) will contain a term R(ψt(F

′))ψt(T/Fv) which will
contain a summand equal to −(F → F ′)tδ that has the effect of removing the unwanted derivation,
while any term (F → F ′)tδ in ψt(T ) that only contains derivations using Internal/External Merge
is not cancelled by anything coming from the terms ψt,−(Fv)ψt(T/Fv), because such terms are
eliminated when applying R in the inductive construction of ψt,−(Fv). �

5.3. Birkhoff factorization in algebroids. The construction of the ring (algebra)DM of Merge
derivations in the previous sections can be seen as an adaptation to the case of the free symmetric
Merge (in the form presented in [61]) of the idea of the derivation forest semirings of [36], where the
original case treated in [36] is based on derivations in context-free grammars. We now show how
to extend this notion from the setting of context-free semiring parsing to the Minimalist account.
To see the analogy more directly, instead of the algebra we used in §5.2.2, one can construct a
slightly different algebraic object encoding the same set of free symmetric Merge derivations. This
will include the data of the Hopf algebra H, while incorporating not just the workspaces but also
the explicit Merge derivations acting on them.

We recall the notion of commutative bialgebroid and Hopf algebroid, originally introduced in
the context to algebraic topology (see Appendix A1 of [76]). We will assume here that all algebras
and vector spaces are over the field Q of rational numbers, unless otherwise stated.

Definition 5.5. A commutative Hopf algebroid is a semigroupoid scheme, namely a pair of com-
mutative algebras A(0) and H(1) with the property that, for any other commutative algebra R,
the sets G(0)(R) = Hom(A(0),R) and G(1)(R) = Hom(H(1),R) are the objects and morphisms
of a groupoid G. Equivalently, the pair of algebras (A(0),H(1)) is endowed with homomorphisms
ηs, ηt : A(0) → H(1) that give H(1) the structure of a A(0)-bimodule (dual to source and target
maps of the groupoid), a coproduct (dual to composition of arrows in the groupoid) given by a
morphism of A(0-bimodules

∆ : H(1) → H(1) ⊗A(0) H(1) ,

a counit ε : H(1) → A(0), which is also a morphism of A(0-bimodules (dual to the inclusion of
identity morphisms), and a conjugation S : H(1) → H(1) (dual to the inverse of morphisms in the
groupoid). These maps satisfy εηs = εηt = 1 (identity morphisms have same source and target),
(1 ⊗ ε)∆ = (ε ⊗ 1)∆ = 1 (composition with the identity morphism), (1 ⊗ ∆)∆ = (∆ ⊗ 1)∆
(associativity of composition of morphisms), S2 = 1 and Sηs = ηt (inversion is an involution and
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exchanges source and target of morphisms), and the property that composition of a morphism
with its inverse gives the identity morphism, namely that

ηtε = µ(S ⊗ 1)∆ and ηsε = µ(1⊗ S)∆,

with µ : H(1) ⊗A(0) H(1) → H(1) extending the algebra multiplication µ : H(1) ⊗Q H(1) → H(1).
Also one has ∆ηs = 1 ⊗ ηs, ∆ηt = ηt ⊗ 1 (the source of the composition of arrows is the source
of the first and the target of the composition is the target of the second). A morphism of Hopf
algebroids

f : (A(0)
1 ,H(1)

1 )→ (A(0)
2 ,H(1)

2 )

is a pair of algebra homomorphisms f (0) : A(0)
1 → A

(0)
2 and f (1) : H(1)

1 → H
(1)
2 with f (0)◦ε1 = ε2◦f (1),

f (1) ◦ ηs,1 = ηs,2 ◦ f (0), f (1) ◦ ηt,1 = ηt,2 ◦ f (0), f (1) ◦ S1 = S2 ◦ f (1), ∆2 ◦ f (1) = (f (1) ⊗ f (1)) ◦∆1.
A commutative bialgebroid is a structure as above, where one does not assume invertibiliy of

morphisms, namely where C(0)(R) = Hom(A(0),R) and C(1)(R) = Hom(H(1),R) are the objects
and morphisms of a (small) category C (a semigroupoid) instead of a groupoid, so that one has
the same structure above but without the conjugation map S.

Examples of Hopf algebroids arise, for instance, when the field of definition of a Hopf algebra
H is replaced by the ring of functions A of some underlying space. In our setting, the natural
modification of the Hopf algebra H of workspaces is a version where arrows corresponding to the
action of Merge are also incorporated as part of the same algebraic structure. Since these will in
general not necessarily be invertible arrows, the resulting structure will be a bialgebroid rather
than a Hopf algebroid.

Remark 5.6. We assign a grading to a bialgebroid (A(0),H(1)) by defining, for an arrow γ in the
semigroupoid the degree as the maximal length of a factorization of γ, deg(γ) = max{n ≥ 1 | ∃γ =
γ1 ◦ · · · ◦ γn}. In the dual algebra we assign deg(δγ) = deg(γ), with δγ the Kronecker delta, and
deg(

∏
i δγi) =

∑
i deg(δγi). The coproduct ∆(δγ) = δγ ⊗ 1 + 1 ⊗ δγ +

∑
γ=γ1◦γ2 δγ1 ⊗ δγ2 has the

terms δγ1 , δγ2 of lower degrees. So we set H(1) = ⊕n≥0H(1)
n with H(1)

0 = Q and H(1)
n spanned by

the elements of degree n, compatibly with product and coproduct operations.

Lemma 5.7. The data A(0) = (V(FSO0),t) and H(1) = (DM,t), define a bialgebroid.

Proof. The algebra H(1) = (DM,t) dual to the arrows C(1) is the same algebra of Merge deriva-
tions introduced in Definition 5.1. We can identify elements X =

∑
i aiϕAi in DM with finitely

supported functions X =
∑

i aiδϕAi on the set of derivations of the form (5.1), (5.2), with δϕAi
the Kronecker delta. The left and right A(0)-module structures that correspond to the source and
target maps are determined by

ηs(F )ϕA =

{
ϕA s(ϕA) = F
0 otherwise

ηt(F )ϕA =

{
ϕA t(ϕA) = F
0 otherwise

The coproduct ∆ : H(1) → H(1) ⊗A(0) H(1) is given by

∆(δφA) = δφA ⊗ 1 + 1⊗ δφA +
∑

φA=φA1
◦φA2

δφA1
⊗ δφA2

,

where for φA2 = (F
MA2→ F ′) and φA1 = (F ′

MA1→ F ′′) the composition is given by

φA1 ◦ φA2 = (F
MA1◦A2→ F ′′) ,

where MA1◦A2 = MA1 ◦MA2 denotes the set of all compositions of a chain of Merge derivations in
the set A2 followed by one in A1. �
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Remark 5.8. Note that the bialgebroid of Lemma 5.7 only uses the multiplication (V(FSO0),t) of
the Hopf algebra H of workspaces, and the comultiplication of H does not appear in the expression
for the coproduct on H(1). The coproduct of H, however, is also encoded in the bialgebroid, as it
is built into the arrows of H(1), since the Merge operations MS,S′ that occur in the arrows are of
the form (1.3), so that terms of the coproduct of H will contribute to arrows.

5.4. Bialgeroids and Rota-Baxter algebroids. In order to simultaneously extend our setting
with Rota–Baxter algebras (and semirings) and Birkhoff factorization of maps from Hopf algebras,
and the setting of semiring parsing in semantics, we introduce a version of Birkhoff factorization
for algebroids.

5.4.1. Algebroids and directed graph schemes. In our setting, we will take a different viewpoint
on the notion of algebroid than what is more commonly used in mathematics. The common
definition of an algebroid (over a field K) is just a K-linear category, where the operation of
morphism composition is the multiplication part of the algebroid and the linear structure on the
spaces of morphisms provides the addition part. However, in view of our use above of the notions of
Hopf algebroid and bialgebroid, of Definition 5.5, it is natural to think of a commutative algebroid
simply in the following way.

Definition 5.9. An algebroid is a pair of commutative algebras (A, E) with two morphisms
ηs, ηt : A → E that give E the structure of bimodule over A and a morphism of A-bimodules
ε : E → A with εηs = εηt = 1A. A morphism f : (A1, E1) → (A2, E2) is a pair of morphisms of
commutative algebras fV : A1 → A2 and fE : E1 → E2 with ηs,2 ◦fV = fE ◦ηs,1, ηt,2 ◦fV = fE ◦ηt,1
and fV ◦ ε1 = ε2 ◦ fE.

A way of thinking of this notion of algebroid is as the notion of a dual to directed graphs. In
other words our algebroids are directed graph schemes, as can be seen immediately in the following
way.

Lemma 5.10. Let (A, E) be a commutative algebroid in the sense of Definition 5.9. Then for every
other commutative algebra R the sets V (R) = Hom(A,R) and E(R) = Hom(E ,R) are the sets
of vertices and edges of a directed graph G(R) with source and target maps s, t : E(R) → V (R)
determined by the morphisms ηs, ηt : A → E, and where each vertex v ∈ V (R) has a looping edge
ev ∈ E(R) with s(ev) = t(ev) = v. A morphism of algebroids induces a morphism of directed
graphs.

Proof. A directed graph G is a functor from the category 2 to Sets, with two objects V,E and
two non-identity morphisms s, t : E → V . The assignment G(R) : V 7→ Hom(A,R) and G(R) :
E 7→ Hom(E ,R) and G(R) : s 7→ η∗s G(R) : t 7→ η∗t , with η∗i (φ) = φ ◦ ηi, for φ ∈ Hom(E ,R),
determine such a functor. The inclusion of the looping edges ev in Hom(E ,R) is given by ev = v◦ε,
with v ∈ Hom(A,R). A morphism of directed graph α : G2 → G1 is a natural transformation
of the functors from 2 to Sets, that is a pair of maps αV : Hom(A2,R) → Hom(A1,R) and
αE : Hom(E2,R) → Hom(E1,R) such that s ◦ αE = αV ◦ s and t ◦ αE = αV ◦ t. A morphism
f : (A1, E1)→ (A2, E2) of algebroids determines such a natural transformation with αV = f ∗V and
αE = f ∗E. The additional property fV ◦ ε1 = ε2 ◦ fE ensures that a looping edge ev in Hom(E2,R)
is mapped to αE(ev) = eαV (v) in Hom(E1,R). �

Corollary 5.11. A bialgebroid (A, E) is a commutative algebroid with the property that the graphs
G(R) are categories (that is, they are directed graphs satisfying reflexivity and transitivity).
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Proof. A directed graph G is a category (with objects the vertices and morphisms the directed
edges) if and only if it is the directed graph of a preorder, namely if it satisfies reflexivity and
transitivity. In other word, a directed graph where every vertex has a looping edge attached to it,
and if there is a pair of edges e, e′ with s(e) = v, t(e) = s(e′) and t(e′) = v′ then there exists an edge
ẽ with s(ẽ) = v and t(ẽ) = v′. The coproduct of the bialgebroid ensures that the graphs G(R) are
transitive, while reflexivity is already a property of directed graphs determined by algebroids. �

5.4.2. Rota–Baxter algebroids. The notion generalizing the Rota–Baxter algebra structure in this
setting is given by the following.

Definition 5.12. A commutative Rota–Baxter algebroid of weight −1 is a commutative algebroid
(A, E) as in Definition 5.9, together with a pair of maps R = (RV , RE) with RV ∈ End(A) an
algebra homomorphism and RE : E → E a linear map that satisfies

(5.8) RE(ηs(a) · ξ) = ηs(RV (a)) ·RE(ξ) RE(ηt(a) · ξ) = ηt(RV (a)) ·RE(ξ) ,

for all a ∈ A and ξ ∈ E , with · the algebra product in E , and ε ◦ RE = RE ◦ ε, and that satisfies
the Rota–Baxter relation of weight −1,

(5.9) RE(ξ) ·RE(ζ) = RE(RE(ξ) · ζ) +RE(ξ ·RE(ζ))−RE(ξ · ζ) .

We moreover require a normalization condition, that RE(1E) = 0 or RE(1E) = 1E , for 1E the unit
of the algebra E .

Lemma 5.13. The Rota–Baxter structure of Definition 5.12 has the following properties.

(1) The condition (5.8) replaces the conditions ηsRV = REηs and ηtRV = REηt and is implies
by these conditions in the case where RE is an algebra homomorphism.

(2) The normalization condition that RE(1) ∈ {0, 1} together with the conditions (5.8) and
(5.9) imply that RE also satisfies

(5.10) RE(RV (ηs(a)) · ξ) = RV (ηs(a)) ·RE(ξ) RE(RV (ηt(a)) · ξ) = RV (ηt(a)) ·RE(ξ) ,

for all a ∈ A and ξ ∈ E, that is, RE is a bimodule homomorphism when E is viewed as a
bimodule over the subalgebra RV (A).

(3) If RV ∈ Aut(A) is an algebra automorphism, then (5.8) and (5.9) with RE(1E) ∈ {0, 1}
imply that RE is a bimodule homomorphism of E as a A-bimodule.

Proof. (1) If RE is an algebra homomorphism then the conditions ηsRV = REηs and ηtRV = REηt
imply that

RE(ηs(a) · ξ) = RE(ηs(a)) ·RE(ξ) = ηs(RV (a)) ·RE(ξ)

and similarly for ηt.
(2) If RE satisfies (5.9), then the subspaces RE(E) and (1−RE)(E) of E are (possibly non-unital)

subalgebras. If RE(1) ∈ {0, 1} then either RE(E) ⊂ E is unital and (1−RE)(E) is not, or viceversa.
If, moreover, RE also satisfies (5.8), then (A, RE(E)) and (A, (1 − RE)(E)) are subalgebroids of
(A, E) with the induced maps ηs, ηt, ε. Indeed, the Rota–Baxter identity (5.8) ensures that the
product RE(ξ) · RE(ζ) is in the range RE(E) for all ξ, ζ ∈ E , hence RE(E) ⊂ E is a (possibly
non-unital) subalgebra, and similarly for (1 − RE)E . If RE(1) = 0 then (1 − RE)E is unital and
RE(E) is not and vice-versa if RE(1) = 1. Note then that conditions RE(1E) ∈ {0, 1} and (5.9)
imply that the linear map RE is a projector, namely R2

E = RE. In fact by (5.9) we have

RE(RE(ξ)) = RE(RE(ξ) · 1)) = RE(ξ) ·RE(1) +RE(ξ · 1)−RE(ξ ·RE(1))

= RE(ξ) · (1 +RE(1))−RE(ξ ·RE(1)) ,
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where if RE(1) = 0 or RE(1) = 1 we get R2
E(ξ) = RE(ξ). Applying condition (5.9) to a pair with

ξ = ηs(a) gives (using condition (5.8) )

RE(ηs(a)) ·RE(ζ) = RE(RE(ηs(a)) · ζ) +RE(ηs(a) ·RE(ζ))−RE(ηs(a) · ζ)

which gives

ηs(RV (a)) ·RE(ζ) = RE(ηs(RV (a)) · ζ) + ηs(RV (a))R2
E(ζ)− ηs(RV (a))RE(ζ) .

Since we are also assuming that RE(1E) ∈ {0, 1}, we have R2
E(ζ) = RE(ζ) so we obtain

ηs(RV (a)) ·RE(ζ) = RE(ηs(RV (a)) · ζ) ,

and similarly with ηt, so that (5.10) holds, for all a ∈ A and ζ ∈ E .
(4) If RV is an automorphism of A rather than just an endomorphism, then this also implies

(5.11) RE(ηs(a) · ξ) = ηs(a) ·RE(ξ) RE(ηt(a) · ξ) = ηt(a) ·RE(ξ) ,

for all a ∈ A and ζ ∈ E . �

A simple source of examples of Rota–Baxter algebroids is obtained by considering functions on
the edges of a directed graph, with values in a Rota–Baxter algebra. This means that, in these
examples, the Rota–Baxter operator is acting only on the coefficients of functions. The following
is a direct consequence of the definition of Rota–Baxter algebroids.

Lemma 5.14. Let G be a directed graph and let (R, R) be a Rota–Baxter algebra of weight −1.
Consider pair of algebras (A, E) with A = Q[VG] (finitely supported Q-valued functions on the set
VG of vertices of G) and E = Q[VG]⊗QR, with morphisms ηs, ηt : A → E given by precomposition
with source and target maps s, t : EG → VG. The maps RV = id on A and RE = 1⊗R give (A, E)
the structure of a Rota–Baxter algebroid of weight −1.

5.4.3. Rota–Baxter semiringoids. There is a direct generalization of this notion of Rota–Baxter
algebroids, and the class of examples of Lemma 5.14 to the case where algebras are replaced by
semirings. We will refer to those as Rota–Baxter semiringoids. The definition and properties
are analogous to the algebroid case, in the same way in which we generalized from Rota–Baxter
algebras to Rota–Baxter semirings in §1.4. We will focus in particular on the analog of the
examples of Lemma 5.14.

The category of commutative semirings, with initial object the semiring Z≥0 of non-negative
integers, is dual to the category of semiring schemes, that is, affine schemes over Spec(Z≥0). The
full subcategory of idempotent commutative semirings, with initial object B, the Boolean semiring
of (2.13), is dual to the category of affine schemes over Spec(B).

Definition 5.15. A semiringoid is the datum (A, E) of two commutative semirings with semiring
homomorphisms ηs, ηt : A → E that give E the structure of bi-semimodule over the semiring
A and with a bi-semimodule homomorphism ε : E → A with εηs = εηt = 1A. A morphism
(A1, E1) → (A2, E2) of semiringoids is a pair of semiring homomorphisms fV : A1 → A2 and
fE : E1 → E2 with ηs,2 ◦ fV = fE ◦ ηs,1, ηt,2 ◦ fV = fE ◦ ηt,1 and fV ◦ ε1 = ε2 ◦ fE. A Rota–
Baxter semiringoid of weight +1 is a semiringoid (A, E) endowed with a semiring endomorphism
RV : A → A and an RE : E → E a Z≥0-linear map (morphism of Z≥0-semimodules) satisfying

(5.12) RE(ηs(a)� ξ) = ηs(RV (a))�RE(ξ) RE(ηt(a)� ξ) = ηt(RV (a))�RE(ξ) ,

for all a ∈ A and ξ ∈ E , with � the semiring product in E , and ε ◦RE = RE ◦ ε, and that satisfies
the Rota–Baxter relation of weight +1,

(5.13) RE(ξ)�RE(ζ) = RE(RE(ξ)� ζ) �RE(ξ �RE(ζ)) �RE(ξ � ζ) ,
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with � and � the semiring sum and product in E . The case of a Rota–Baxter structure of weight
−1 is similar, with (5.13) replaced by

(5.14) RE(ξ)�RE(ζ) �RE(ξ � ζ) = RE(RE(ξ)� ζ) �RE(ξ �RE(ζ)) .

We moreover require the normalization condition, that RE(1E) = 0E or RE(1E) = 1E , for 1E the
unit of the multiplicative monoid and 0E the unit of the additive monoid of E .

When considering semiringoids with commutative idempotent semirings, one can drop the Z≥0-
linearity requirement for RE and only require that RE is a morphism of B-semimodules (Boolean
semimodules).

Remark 5.16. Note the the notion of semiringoid we use in Definition 5.15 differs from an-
other commonly used notion, where a semiringoid is a small category C where all the Hom-sets
HomC(X, Y ), for X, Y ∈ Obj(C), are commutative monoids with bilinear composition of mor-
phisms, and all the End-sets EndC(X) = HomC(X,X) are semirings.

We have then an analog for semiringoids of the class of Rota–Baxter algebroids of Lemma 5.14.
Again this follows directly from Definition 5.15.

Lemma 5.17. Let G be a directed graph and let (R, R) be a Rota–Baxter semiring of weight +1
(or −1). Consider the pair of semirings (A, E) with A = Z≥0[VG] (finitely supported Z≥0-valued
functions on the set VG of vertices of G) and E = Z≥0[VG]⊗Z≥0

R, with morphisms ηs, ηt : A → E
given by precomposition with source and target maps s, t : EG → VG. The maps RV = id on A
and RE = 1 ⊗ R give (A, E) the structure of a Rota–Baxter semiringoid of weight +1 (or −1).
In the case where R is a commutative idempotent semiring, we can replace this construction with
A = B[VG] (Boolean functions on VG) and E = B[VG] ⊗B R, to obtain a Boolean Rota–Baxter
semiringoid (a semiringoid over commutative idempotent semirings).

5.4.4. Birkhoff factorization in algebroids and semiringoids. We then consider morphisms of al-
gebroids Φ : (A(0),H(1)) → (A, E) from a Hopf algebroid to an an algebroid with a Rota–Baxter
structure (RV , RE) of weight −1. The target algebroid (A, E) does not have a compositional struc-
ture, in the sense that the directed graph (graph scheme) G dual to the algebroid does not have,
in general, the transitive property: given two directed edges where the target of the first is the
source of the second it is not necessarily the case that there is also a edge from the source of the
first to the target of the second. The source (A(0),H(1)) has the compositional structure, which is
encoded in the coproduct as bialgebroid, which is the convolution product of the groupoid algebra
H(1). As in the case of algebras, the convolution structure on H(1) together with the Rota–Baxter
structure on (A, E) will perform the factorization of Φ : (A(0),H(1)) → (A, E) which accounts for
the induced compositional structure on the image.

Lemma 5.18. Let (A0),H(1)) be a Hopf algebroid and let (A, E) be an algebroid with a Rota–Baxter
structure (RV , RE) of weight −1. Given a morphism Φ : (A(0),H(1))→ (A, E) of algebroids, there
is a pair Φ± with Φ±,V = ΦV and Φ+,E(f) = (Φ−,E ?ΦE)(f) = (Φ−,E ⊗ΦE)(∆f) for all f ∈ H(1),
where we have

Φ−,E(f) = −RE(Φ̃E(f)) with Φ̃E(f) = ΦE(f) +
∑

Φ−,E(f ′)ΦE(f ′′) ,

for ∆(f) = f ⊗ 1 + 1⊗ f +
∑
f ′ ⊗ f ′′, and with Φ+,E(f) = (1−RE)(Φ̃E(f)).

Proof. The argument for showing that the maps Φ±,E : (A0),H(1)) → (A, E±) with E+ = (1 −
RE)(E) and E− = RE(E) are algebroid homomorphisms follows closely the same argument for
Rota–Baxter algebras of weight −1, as in Theorem 1.39 of [21]. The factorization identity Φ+,E =
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Φ−,E ? ΦE follows from Φ+,E = (1 − RE)Φ̃E and Φ−,E = −REΦ̃E and the expression for Φ̃E in
terms of the coproduct ∆. �

We consider in particular the case where the Rota–Baxter algebroids are as in Lemma 5.14.

Lemma 5.19. The Birkhoff factorization of an algebroid homorphism Φ : (A(0),H(1)) → (A, E),
with (A, E) a Rota–Baxter algebroid as in Lemma 5.14 and (A(0),H(1)) a bialgebroid, consists
of a map of directed graphs (graph schemes) α : G → G, with G dual to (A, E) and G dual to
(A(0),H(1)), so that ΦE(f) = f ◦ α for f ∈ H(1), with the factorization ΦE,− mapping f = δγ for
γ an arrow in G to the function ΦE,−(δγ) that acts on a combination

∑
i aiei with ei ∈ EG as

ΦE,−(δγ)(
∑
i

aiei) = −(
∑
α(e)=γ

RE(ae) +
∑

α(e1)◦α(e2)=γ

RE(RE(ae1)ae2) + · · ·

(5.15) +
∑

α(e1)◦···◦α(en)=γ

RE(· · · (RE(ae1) · · · )aen)) .

Proof. The algebroid (A, E) is associated to a directed graph (graph scheme) G and the bialgebroid
(A0),H(1)) is associated to a semigroupoid G (equivalently a graph that is reflexive, symmetric,
and transitive). A morphism Φ : (A(0),H(1))→ (A, E) of algebroids is equivalent to the datum of
a map of directed graphs α : G→ G. The map ΦE : H(1) → E then is given by ΦE(f) = f ◦ α. It
suffices to consider the case of f = δγ for some γ ∈ G(1), as in general f ∈ Q[G] will be a product
of linear combinations of delta functions δγ. In the case where the Rota Baxter operator of weight
−1 is the identity, the Bogolyubov preparation is of the form

Φ̃E(δγ) = δγ ◦ α +
∑

γ=γ1◦γ2

δγ1 ◦ α · δγ2 ◦ α + · · ·+
∑

γ=γ1◦···◦γn

δγ1 ◦ α · · · δγn ◦ α ,

with n = deg(γ), which is then equal to

(5.16) Φ̃E(δγ) =
∑

e∈EG :α(e)=γ

δe + · · ·+
∑

e1,...,en∈EG : γ=α(e1)◦···◦α(en)

δe1 · · · δen ,

so that we have, for a collection of edges ei ∈ EG,

Φ̃E(δγ)(
∑
i

aiei) =
∑
α(e)=γ

ae +
∑

α(e1)◦α(e2)=γ

ae1ae2 + · · ·+
∑

α(e1)◦···◦α(en)=γ

ae1 · · · aen .

In the case of a Rota Baxter operator RE of weight −1 that is not the identity, we similarly get
(5.15). �

In the case of the bialgebroid (A0) = V(FSO0),H(1) = DM) of Merge derivations as in Lemma 5.7,
with G the associated semigroupoid, we can regard the choice of a map of directed graphs
α : G→ G from some graph G as a chosen diagram of Merge derivations modeled on G. The alge-
broid homomorphism ΦE(f) = f ◦α describes all the ways of obtaining a certain Merge derivation
γ in DM as an arrow in G, ΦE(δγ) =

∑
e :α(e)=γ δe. The Bogolyubov preparation with the identity

Rota-Baxter operator lists all the possible ways of obtaining γ as a composition of Merge deriva-
tions through arrows in G, as in (5.16). Consider an element

∑
i λiei as a weighted combination of

edges in the diagram G. For example, if the coefficients Λ = (λe)e∈E are a probability distribution
on the edges of G, the value (using the identity as Rota–Baxter operator)

Φ̃E(δγ)(
∑
e

λe e) =
∑
α(e)=γ

λe + · · ·+
∑

α(e1)◦···◦α(en)=γ

λe1 · · ·λen
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is the total probability of realizing γ through the diagram E, as a sum of the probabilities of all
the possible ways of obtaining γ as a composition of arrows in the image of edges of E drawn the
assigned probabilities λe.

The setting for algebroids generalizes to semiringoids as in the case of the generalization from
Rota–Baxter algebras to Rota–Baxter semirings.

Corollary 5.20. The Birkhoff factorization of Lemma 5.18 extends to the case of Rota–Baxter
semiringoids of weight +1, with a morphism of semiringoids Φ : (A(0),H(1))semi → (A, E) from a
subdomain of a bialgebroid (A(0),H(1)) that has semiringoid structure and is closed under coproduct
∆. The terms of the factorization are as in the case of semirings (Proposition 1.2) with ΦE,−(f) =

R(Φ̃E(f)) = R(ΦE(f) � φ−(f ′)� φ(f ′′)) with ∆(f) = f ⊗ 1 + 1⊗ f +
∑
f ′ ⊗ f ′′.

5.5. Parsing semirings and Merge derivations. After this preparatory work, we can now
formulate the analog of parsing semirings in the setting of Merge derivations, replacing the usual
formulation for context-free grammars, as in [36].

Here we consider a map Φ : (A(0),H(1))semi → (A, E), where (A, E) is a Rota–Baxter semiringoid
and (A(0),H(1))semi is a subdomain of the bialgebroid (A(0) = V(FSO0),H(1) = DM) of Merge
derivations that has a semiringoid structure, so that Φ is a morphism of semiringoids. We assume
that the target (A, E) is of the form as in Lemma 5.17, with (R, R) a Rota–Baxter semiring, such
as the max-plus semiring (R∪{−∞},max,+) with R given by the ReLU operator, or the semiring
([0, 1],max, ·) with the threshold Rota–Baxter operators cλ that we considered before. Then the
map Φ may be viewed as assigning a diagram of Merge derivations, through a map α : G→ G as
above, and checking all the possible ways of realizing some chain of Merge derivations γ through
compositions coming from the chosen diagram, weighted by elements in the given semiring and
filtered by the Rota–Baxter operator that acts as a threshold.

Thus, as above, we start with a chosen a diagram α : G → G of Merge derivations where we
have assigned weights λe ∈ R with values in the parsing semiring R, for each edge e ∈ EG. For
example, if R = ([0, 1],max, ·), we can think of λe as a probability (or frequency counting) of
occurrence of e in the diagram of derivations. If R = (R ∪ {−∞},max,+) we can think of λe as
being real weights assigned to the edges e of the diagram G. Then the resulting factorization

ΦE,−(δγ)(
∑
e

λe e) =
∑
α(e)=γ

RE(ae) +
∑

α(e1)◦α(e2)=γ

RE(RE(ae1)ae2) + · · ·

(5.17) +
∑

α(e1)◦···◦α(en)=γ

RE(· · · (RE(ae1) · · · )aen)

measures all the possible ways of obtaining the Merge derivation γ via compositions in the chosen
diagram with combined weights filtered by R.

• In the case of R = (R ∪ {−∞},max,+) with R =ReLU, (5.17) lists all the possibilities
with weights of the substructures involved that are above the ReLU threshold.
• In the case of R = ([0, 1],max, ·) with the threshold R = cλ, (5.17) lists all the possible

realizations of the derivation γ in the diagram that have probabilities above the threshold
λ in the substructures involved.
• In the case of the Boolean semiring B = ({0, 1},max, ·) with R = id, the factorization (5.17)

evaluates the truth value (truth conditions) for the realization of a derivation γ through
the diagram G given that the arrows of G have assigned truth values (truth conditions),
in such a way that the composition of arrows in the derivation corresponds to the AND
operation on the respective truth values and the choices of different paths of derivations
to obtain the same γ correspond to the OR operation on the respective truth values.



58 MATILDE MARCOLLI, ROBERT C. BERWICK, NOAM CHOMSKY

With this we have shown that we can obtain in this way a form of semiring parsing for Merge
derivations that simultaneously generalizes the semiring parsings of [36], for example with values
in the Boolean or the Viterbi semiring, and also the Birkhoff factorizations of our initial toy models
of syntax-semantics interface discussed in §2.

6. Pietroski’s compositional semantics

Among the different proposed models of semantics, Pietroski’s compositional model (see for
instance [73], [74]) is closely linked to the structure of syntax as described by Merge. We discuss
how this approach relates to our model of the syntax-semantics interface. Our main observation
here is that, in our model, it is not necessary to assume an independent existence within semantics
of what Pietroski refers to in [73] as the Combine binary operation that mimics the functioning of
Merge in syntax. The type of compositional structure postulated by Pietroski in [73] for semantics
follows in our case from Merge itself acting on the syntax side of the interface, along with the map
φ : H → R together with its Birkhoff factorization.

To see this, we recall briefly the setting of [73], focusing in particular on the discussion of
the Combine operation, that is the aspect more directly connected to our setting. The general
principles for the compositional structure of semantics articulated in [73] include the basic idea
that “meanings are instructions to build concepts,” that can be articulated in the following way,
adapting the arguments of [73] to the terminology we have been using in this paper. Lexical
items are seen as “instructions to fetch concepts.” This corresponds to the assumption we made in
various examples discussed in the previous sections, of the existence of a map s : SO0 → S from
lexical items to a semantic space S. One then considers i-expressions, generated by I-language, as
building instructions for the construction of i-concepts, with principles that govern the combination
of i-expressions.

This fits nicely with our proposal of a syntax-driven syntax-semantics interface, where the i-
expressions are provided, in our setting, by the syntactic objects T ∈ Dom(h) ⊂ TSO0 . The
corresponding i-concepts are provided in our setting by and their images s(T ) ∈ S, under an
extension of the map s : SO0 → S from SO0 to Dom(h) ⊂ SO as discussed in previous sections,
together with the corresponding φ(T ) ∈ R, where R is an algebraic structure of Rota-Baxter type
associated to the (topological/metric) space S.

On the side of syntax, the free commutative non-associative magma SO = Magmanc,c(SO0,M)
of (1.1) is the main computational structure, with Merge M as the main binary operation of
structure formation. The resulting hierarchical structures are the syntactic objects T ∈ SO =
TSO0 , identified with abstract (non-planar) binary rooted trees with leaves labeled by lexical
items in SO0. In Pietroski’s formulation of [73] one considers a parallel form of binary structure
formation operation, acting on the side of semantics.

The compositional rules for the building of i-concepts via i-expressions are described in [73]
in terms of one basic non-commutative binary operation, Combine. This in turn consists of the
composition of two operations, Combine = Label ◦ Concatenate, where, given two i-concepts α, β
that can be combined in the I-language, one first forms a concatenation

Concatenate(α, β) = {α, β} = α β

of the two and then labels the resulting expression by one of the constituents α or β that plays
the role of the head h(α, β) of the combined expression

(6.1) Combine(α, β) = Label ◦ Concatenate(α, β) = Label(α β) =
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h(α, β)

α β

The binary operation Combine is not symmetric because of the head label. Note that this operation
is closely modeled on the Merge operation where, given two syntactic objects T1 and T2, with the
property that

T = M(T1, T2) = T1 T2
∈ Dom(h) ⊂ SO = TSO0 ,

where M is the free symmetric Merge and h is a head function, one can assign to the abstract tree
T a planar structure T πh determined by the head function, resulting in a planar tree

T πh = Mnc(Th(T ), T
′) ∈ Tplanar

SO0
,

where T ′ ∈ {T1, T2} is the one that does not contain h(T ).

In [73], the operation (6.1) is presented, in principle, as a compositional operation that takes
place in the semantic space S, hence requiring this space to be endowed with its own computational
system (at least partially defined), analogous to the Merge operation in syntax. As a result, we
would have two systems that each have a “Merge” type operation, one for syntax and one for
semantics. Besides an issue here with parsimony (we can get by, given the model presented here,
with just one), this would be different from the case of other types of conceptual spaces, such as
the perceptual manifolds associated to vision (see for instance [18]).

The most widely studied conceptual spaces and perceptual manifolds are in the context of vision.
It should be noted that there have been significant attempts by mathematicians at formulating
a compositional computational model for vision: among these in particular Pattern Theory, as
developed by Grenander, Mumford, et al. (see for instance [38], [39], [69]), that has found various
applications, especially in computer vision. The original approach to Pattern Theory was based
on importing ideas from the theory of formal languages, especially from the case of probabilistic
context-free grammars. This was further articulated in a proposed “mathematical theory of se-
mantics” in [40]. We will not be discussing this viewpoint in the present paper, but it is important
to stress here that it is still topological and geometric properties of the relevant “semantic spaces”
that play a fundamental role in that setting and that there are serious limitation to the extent to
which a generative model can be adapted to vision in comparison to language.

6.1. The Combine operation in Pietroski’s semantics. In terms of the syntax-semantics
interface, using the terminology in this paper, a setting such as that proposed by Pietroski in [73]
would seem to correspond to φ : Hnc → HS , that maps a non-commutative version of the Hopf
algebra structure of H (responsible for the action of Merge on syntax) to a (possibly partially
defined) non-commutative Hopf algebra structure HS on the side of the semantic space S, at least
if one desires a Combine operation that fully mimics the Merge operation, including the Internal
Merge action. This would be a much stronger requirement than what is needed for the desired
type of compositionality of i-concepts to take place.

Indeed, one can view the construction of i-concepts postulated by [73] not as the result of a
compositional structure on the semantic space S itself, but simply as the extension of the map
s : SO0 → S to a map s : Dom(h)→ S, built along the lines of what we discussed in Lemma 2.12.
In other words, in this formulation, the i-concept Concatenate(α, β) where α = s(T1) and β = s(T2)
is well defined if T = M(T1, T2) ∈ Dom(h) and in that case is simply the image

(6.2) Combine(α, β) := s(M(T1, T2)) ∈ S ,
where the construction of the point s(T ) depends on s(T1), s(T2), and on whether the head function
satisfies h(T ) = h(T1) or h(T ) = h(T2). In other words, it depends on S only through the existence
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of a geodesically convex Riemannian structure and a semantic proximity function P, without having
to require any Merge-like computational mechanism on S itself. It suffices that syntax has such an
operation and that S has a topological proximity relation (expressed in the case of the construction
we presented in Lemma 2.12 in terms of a more specific metric property of convexity).

6.1.1. The role of idempotents. One may worry here that the Combine operation of Pietroski
appears to behave differently from Merge itself. A simple way in which this difference mani-
fests itself is in the possible presence of idempotent structures. For example, one expects that
Combine(α, α) = α, while at the level of Merge

M(T, T ) = T T 6= T .

This in itself may not constitute an example because we also need a head function and a structure
of the form M(T, T ) might not admit a head function. However, by the same principle, one expects
cases where Combine(α, β) = α (or β), where the head function is not an issue, and again this
seems to be at odds with the fact that at the level of Merge this never happens since SO is a free
magma, so that for all T, T ′ one has M(T, T ′) 6= T and M(T, T ′) 6= T ′. This, however, does not
constitute a problem, as it is taken care of in (6.2) by the structure of the map s : Dom(h) → S
from s : SO0 → S, other than the one described in Lemma 2.12.

In the construction of Lemma 2.12 we have assumed that the semantic space we work with
has the structure of a geodesically convex Riemannian manifold and that, for a syntactic object
M(T, T ′) the image s(M(T, T ′)) is obtained as a form of convex interpolation between the images
s(T ) and s(T ′). In this setting, the location of the point s(M(T, T ′)) on the geodesic arc between
s(T ) and s(T ′) depends on a function P(s(T ), s(T ′)) measuring syntactic relatedness. Depending
on the nature of this function P, one expects that there will be points s, s′ ∈ S for which P(s, s′) = 0
or P(s, s′) = 1, so that the point s(M(T, T ′)) coincides with one of the endpoints s(T ) and s(T ′).
This gives rise precisely to the type of situation where one obtains

Combine(α, β) = α or Combine(α, β) = β ,

even though M(T, T ′) 6= T and M(T, T ′) 6= T ′. Note that the function P, that is responsible for this
difference in behavior between Merge and Combine, does not implement any computational process
itself, but is only an evaluator of topological proximity in semantics. The only computational
process is implemented by syntactic Merge.

This case illustrates the situation where, contrary to the case described in §3 (or the possible
situation discussed in §7 below), the image of syntax inside semantics is not an embedding. This
non-embedding situation is generally expected when one maps to a semantic model that has a
discrete topology (a Boolean assignment for example). In the case we describe here, where the
function s : Dom(h) → S is based on geodesic convexity, one could in principle entirely avoid
idempotent cases and assume as in in §3 that the semantic relatedness P(s(T ), s(T ′)) may be very
close to either 0 or 1 but not exactly equal to either (see the discussion in §3).

6.1.2. An example. Pietroski’s Combine operation is designed to rule out improper inferences. We
consider here an example to show how it fits with the formulation we give above.3

Given the sentences “John ate a sandwich in the basement” and “John ate a sandwich at noon”,
these two sentences clearly do not imply that “John ate a sandwich in the basement at noon”.

In our setting, consider a sentence with a series of adjuncts to a verb, such as “John ate a
sandwich in the basement with a spoon at noon.” We have a Merge-based inductive construction

3We thank Norbert Hornstein for this example.



SYNTAX-SEMANTICS INTERFACE: AN ALGEBRAIC MODEL 61

of the map s : Dom(h)→ S from s : SO0 → S, of the type discussed in §3. This means that, if T̃
is the syntactic object associated to the full sentence, we can view it as a structure of the form

T ′
T T1,...,k

where a VP T is modified by a series of adjuncts T1,...,k = {T1, . . . , Tk} (for simplicity, we do not
draw the full tree structure).

Figure 18. Example: adjuncts to verbs and semantic points.

With the construction of §2.2 and §3 of the extension s : Dom(h)→ S of the map s : SO0 → S
we obtain points s(T ) ∈ S and s(Ti) ∈ S for each i = 1, . . . , k. When we consider each individual
adjunct, the corresponding point

si := s(T Ti
)

lies on the geodesic arc in S between s(T ) and s(Ti), at a distance pi = Pσ(s(T ), s(Ti)) from s(T ),
where σ is the adjunct syntactic relation. In particular, there is a convex geodesic neighborhood
of the point s(T ) in S that contains all the points si. When we consider the combinations Ti1,...,ir
of the adjuncts Ti, this further determines points

si1...ir = s(
T Ti1...ir

) .

These points are contained in the same neighborhood of s(T ) and they are also contained in the
intersection of neighborhoods around the points si with i ∈ {i1, . . . , ik}. A sketch of this relation
is illustrated in Figure 18, with

T̃ := T T12
.

Dropping the more refined metric/convexity structure, and the fact that the more precise loca-
tion of this point depends on syntactic heads and evaluation of semantic proximity of the lexical
items involved, if we only retain the Boolean relations of these neighborhoods and their intersec-
tions, we obtain a map to the Boolean semiring that checks the fact that “John ate a sandwich in
the basement at noon” implies that “John ate a sandwich in the basement” and that “John ate a
sandwich at noon”, while the opposite implications do not hold, as desired.

Here we can see, however, that the construction of the map s : Dom(h) → S that we used in
§2.2 and §3 is only an oversimplified model, and that it should be refined by directly including
coverings by neighborhoods related by intersections; see the discussion in §2.2.5.
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6.2. Predicate saturation in Pietroski’s semantics and operadic structure. Other impor-
tant parts of Pietroski’s semantics, in addition to the Combine operation discussed above, consists
of predicate saturation and existential closure, see [73]. We propose here a way to fit these aspects
in our model, compatibly with the form of the Combine operation that we just described, using
the formulation of the magma SO of syntactic objects in terms of operads (which we mentioned
briefly in §1.2.2).

We recall briefly the mathematical notion of an operad, introduced in [68], and we describe how
to view syntactic objects as an algebra over an operad.

6.2.1. Syntactic objects and operads. An operad (in Sets) is a collection O = {O(n)}n≥1 of sets of
n-ary operations (with n inputs and one output), with composition laws

(6.3) γ : O(n)×O(k1)× · · · × O(kn)→ O(k1 + · · ·+ kn)

that plug the output of an operation in O(ki) into the i-th input of an operation in O(n). The
composition of these operations γ is subjects to requirements of associativity and unitarity, which
we do not write out explicitly here. An algebra A over an operad O (in Sets) is a set A on which
the operations of O act, namely there are maps

(6.4) γA : O(n)×An → A

that satisfy compatibility with the operad composition,

(6.5)
γA(γO(T, T1, . . . , Tm), a1,1, . . . , a1,n1 , . . . , am,1, . . . , am,nm) =

γA(T, γA(T1, a1,1, . . . , a1,n1), . . . , γA(Tm, am,1, . . . , am,nm)) .

for T ∈ O(m), Ti ∈ O(ni) and {ai,j}nij=1 ⊂ A, and with γO the composition in the operad and γA
the operad action. This notion means that elements of the set A can be used as inputs for the
operations in O, resulting in an output that is again an element in A. The category of Sets can
be replaced by more general symmetric monoidal categories. In particular we can consider cases
where A is a topological space, or a vector space, which are suitable for the setting of semantic
spaces. The description of the operadic composition laws that we mentioned in §1.2.2, in terms
of the compositions ◦i : O(n)×O(m) → O(n + m− 1) is equivalent, for unitary operads, to the
description in terms of the compositions (6.3).

In particular, we are interested here in the operadM freely generated by a single commutative
binary operation M, where we have M(1) = {id}, M(2) = {M}, M(3) = {M ◦ (id ×M),M ◦
(M × id)}, etc. Consider again the set of syntactic objects SO. The magma structure of (1.1)
can be reformulated as the structure of algebra over this operad.

Lemma 6.1. The set SO of syntactic objects is an algebra over the operad M freely generated by
the single commutative binary operation M.

Proof. We can identify the elements in M(n) with the abstract binary rooted trees with n leaves
(with no labels on the leaves), where each internal (non-leaf) vertex is labelled by an M operation.
The maps (6.8) are simply given by taking γ(T, T1, . . . , Tn) with T ∈ M(n) and Ti ∈ SO for
i = 1, . . . , n to be the abstract binary rooted tree in TSO0 = SO obtained by grafting the root of
the syntactic object Ti to the i-th leaf of T ∈ M(n). If the syntactic objects Ti have ni leaves,
then the syntactic object γ(T, T1, . . . , Tn) obtained in this way has n1 + · · ·+nk leaves. Note that
this operad action is just a repeated application of the product operation M in the magma SO,
hence the description as algebra over M and as magma as in (1.1) are equivalent. �
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6.2.2. Semantic spaces and operads. The additional structure that we want to consider here, on
the side of semantic spaces, is that of a partial algebra over the operad M.

Definition 6.2. LetM be the operad freely generated by a single commutative binary operation
M. A semantic space S is a compositional semantic space if it has the following properties:

(1) There is a map s : Dom(h)→ S extending s : SO0 → S.
(2) There is an action of the operad M on S

(6.6) γS :M(n)× Sn → S .

(3) For T ∈M(n) and for T1, . . . , Tn ∈ Dom(h) ⊂ SO such that

γSO(T, T1, . . . , Tn) ∈ Dom(h)

we have

(6.7) γS(T, s(T1), . . . , s(Tn)) = s(γSO(T, T1, . . . , Tn)) .

The last condition ensures that the structure of SO as an algebra over the operad M and the
structure of S as a partial algebra over the same operad M are compatible through the map
s : Dom(h)→ S from syntax to semantics.

One can more generally consider partial actions of an operad and a corresponding notion of
partial algebra over an operad (introduced in [52]), where the operad action (6.8) is defined on a
subdomain A0 ⊂ A,

(6.8) γA : O(n)×An0 → A .

For a compositional semantic space as in Definition 6.2 the predicate saturation operation of
Pietroski’s semantics, in a form compatible with syntactic Merge, can be can be interpreted as the
operad action (6.6) that saturates the arguments of an n-ary operation by inputs in S0 (a concept
of adicity n combined with n semantic arguments). The partial compositions ◦i correspondingly
give the combinations of a concept of adicity n with one semantic argument that give a concept
of adicity n − 1. Note, however, that there is an important difference here. In this model the
operations of adicity n in M(n) are part of the syntax core computational mechanism. They are
not on the semantic side, so they cannot directly be identified with the “concept of adicity n”
described in [73]. It is only through the relation (6.7) that they acquire that role.

6.2.3. Syntax-driven compositional semantics. The notion of compositional semantic space that
we described in Definition 6.2 is based on two operad actions, one (that we called γSO) on the
side of syntax and one (that we called γS) on the side of semantics, with the compatibility (6.7).
This is similar to the formulation of Pietroski’s semantics in [73]. However, we show now that in
fact the operad action γSO on syntax suffices to completely determine its counterpart γS .

Proposition 6.1. Let S+ = S ∪ {s∞} be the Alexandrov one-point compactification of S, where
we denote the added point with the symbol s∞. The action of the operad M on syntactic objects,
described in Lemma 6.1, together with a function s : Dom(h) → S uniquely determine an action
of the operad M on S by setting
(6.9)

γS(T, s1, . . . , sn) :=

{
s(γSO(T, T1, . . . , Tn)) if si = s(Ti) and γSO(T, T1, . . . , Tn) ∈ Dom(h)

s∞ otherwise.

for T ∈M(n) and s1, . . . , sm ∈ S+.
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Proof. We construct γS using γSO and the compatibility relation (6.7) using (6.9), In order to
show that (6.9) does indeed define an operad action on S, we need to check the compatibility of
γS with the operad composition γ inM, given by the condition (6.5). The left-hand-side of (6.5)
gives

(6.10) γS(γM(T, T1, . . . , Tm), s1,1, . . . , s1,n1 , . . . , sm,1, . . . , sm,nm) .

This is equal to s∞ unless both of the two conditions

• all the si,j = s(Ti,j) for some Ti,j in Dom(h) ⊂ SO;
• the syntactic object

(6.11) γSO(γM(T, T1, . . . , Tm), T1,1, . . . , T1,n1 , . . . , Tm,1, . . . , Tm,nm)

is in Dom(h)

are satisfied, in which case (6.10) is equal to

(6.12) s(γSO(γM(T, T1, . . . , Tm), T1,1, . . . , T1,n1 , . . . , Tm,1, . . . , Tm,nm)) .

The compatibility of the action γSO with the operad composition implies that (6.11) is equal to

(6.13) γSO(T, γSO(T1, T1,1, . . . , T1,n1), . . . , γSO(Tm, Tm,1, . . . , Tm,nm)) .

Note that if the full composition in (6.11) is in Dom(h) by the properties of abstract head functions
all the substructures γM(Ti, Ti,1, . . . , Ti,ni), i = 1, . . . ,m, are also in Dom(h). Thus, the point (6.12)
in S is the same as the point

s(γSO(T, γSO(T1, T1,1, . . . , T1,n1), . . . , γSO(Tm, Tm,1, . . . , Tm,nm))) =

γS(T, s(γSO(T1, T1,1, . . . , T1,n1)), . . . , s(γSO(Tm, Tm,1, . . . , Tm,nm))) =

γS(T, γS(T1, s1,1, . . . , s1,n1), . . . , γS(Tm, sm,1, . . . , sm,nm)) ,

which gives the right-hand-side of (6.5). �

The structure of algebra over the operad M on S+ makes S a partial algebra over M.

Note that we are everywhere somewhat simplifying the picture, as we do not include the possi-
bility that different syntactic objects in Dom(h) ⊂ SO may sometime map to the same value in
S under s : Dom(h) → S and also the possibilities of ambiguities of semantic assignment where
s : Dom(h)→ S may sometimes be multivalued. These possibilities would affect the construction
(6.9) of γS and would require a modified argument.

6.3. Adjunction, embedded constructions, and the Pair-Merge problem. Our model of
the map s : Dom(h) → S, that extends the assignment s : SO0 → S of semantic values defined
on lexical items, is a very simple model built using only the head function and proximity relations
(and geodesic distance) in semantic space S. In particular, since we start with the syntactic
objects produced by the free symmetric Merge, the only factor that introduces asymmetry in this
construction is coming from the head function.

We discuss here briefly how one can try, within the limits of such an oversimplified model, to
address the question of misalignments between hierarchical syntax and compositional semantics
that occur as a consequence of the particular behavior of adjunction, and in particular what is
sometimes referred to as the invisibility of adjuncts to syntax. This question was posed to us by
Riny Huijbregts.

A proposal for handling this type of problem is to postulate the existence of an asymmetrical
Pair-Merge operation accounting for argument-adjunct asymmetry (see [10]), in addition to the
free symmetric Merge. This proposal has undesirable features, as it requires the introduction of
an additional form of asymmetric Merge dealing with the peculiar behavior of adjunction, while
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one expects that the computational mechanism of syntax should just rely entirely on the free
symmetric Merge. An alternative proposal (see for instance [71]) involves the use of “two-peaked”
structures (see Figure 19) with {XP, Y P} an adjunction. This proposal has the drawback that,
if one considers such “two-peaked” structures as part of syntax, then one needs to justify them
in terms of the free Merge generative process, and this is problematic because the elements of the
magma SO = TSO0 do not contain such structures, nor does the action of Merge on workspaces
(as can be also seen in the formalization given in our paper [61]). The proposal of “two-peaked”
structures in [71] is based on [29], but is not formulable within the generative process of a free
symmetric Merge. We are going to discuss briefly what this means in terms of our model.

The reason why adjunction appears problematic in our setting is that adjunction can be seen as
an instance of syntactic objects {XP, Y P} which do not have a well defined head function in the
sense we have been using above, {XP, Y P} /∈ Dom(h). This creates a problem with our simple
model of mapping to semantics, which is defined only on Dom(h). We want to argue here that this
problem can be to some extent bypassed without the need to significantly alter the construction
of the mapping s : Dom(h)→ S, although, of course we expect that the naive model for this map
based on the datum of the head function may be replaced by some more elaborate versions.

Suppose given a syntactic object of the form {XP, Y P} /∈ Dom(h), where both XP and Y P are
in Dom(h). In terms of our construction, the fact that the head function is not well defined on the
object {XP, Y P} implies that we do not have a choice of orientation on the geodesic arc between
s(XP ) and s(Y P ) in S and a corresponding point along this arc at a distance P(s(XP ), s(Y P ))
from the image of the head. We do still have the geodesic arc, though, and the measurement
P(s(XP ), s(Y P )) of syntactic relatedness between its endpoints. So in terms of this construction,
all that a hypothetical asymmetric Pair-Merge would provide is a choice of orientation on the
geodesic arc. Such a datum is a geometric datum in S and does not necessarily require the
existence of Pair-Merge as an additional part of the computational structure of syntax. One
can extend s : Dom(h) → S to a slightly larger domain that includes adjunctions just by the
requirements that geodesic arcs in S whose endpoints are the two terms of an adjunction come
with a preferred choice of orientation. This choice has the same effect of a Pair-Merge 〈XP, Y P 〉
signifying that the first element should be taken to be the “head” while the second element is to
be seen as an “adjunct”. Such choice of orientation then ensures that we can extend the same
construction of s : Dom(h)→ S also to adjunctions {XP, Y P} /∈ Dom(h). In general one does not
expect that this orientation requirement should be extendable to other types of syntactic objects
{XP, Y P} /∈ Dom(h) that are not adjunctions. The fact that this mechanism does not require
any modification of the syntactic generative process and only involves a metric property in S is
consistent with the idea that adjuncts are on a “separate plane” (see [10]).

While this approach can be accommodated within our setting, it leaves open the question of
assigning general criteria for orientations of geodesic arcs in S that generalize the choice resulting
from a had function, incorporating the case of adjunctions, but not the case of arbitrary {XP, Y P}
objects.

Thinking in terms of “two-peaked” structures, on the other hand, presents another possibility
for treating this problem of adjunctions in our geometric setting. Given a syntactic object of the
form {XP, Y P} /∈ Dom(h), where both XP and Y P are in Dom(h), consider in S the points
s(XP ) and s(Y P ) and the geodesic arc between them (now without any preferred assignment of
orientation). Suppose given also a syntactic object T = {Z,XP} ∈ Dom(h). Since this is in the
domain of the head function, it defines a point s(T ) on the geodesic arc between s(Z) and s(XP ),
where the geodesic arc is oriented from the end that corresponds to the head to the other. Thus,
we do indeed obtain a “two-peaked” structure, as in Figure 19. Note that, while the geodesic arc
between s(XP ) and s(Y P ) does not have an a priori choice of orientation, the orientation induced
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by the head on the geodesic arc between s(Z) and s(XP ) induces a unique consistent orientation
on the arc between s(XP ) and s(Y P ).

Figure 19. “Two-peaked” structures inside S.

It is important to stress here the difference between the type of “two-peaked” structures we
are describing and the proposed “two-peaked” structures in the syntactic setting, as in [71]. Here
this structure does not exist in the magma SO, it only exists in the image of syntax under the
map to semantic space S. In other word, these “two-peaked” structures are not part of the
computational process of syntax and do not need to be justified by any additional form of Merge.
They exist because the images of syntactic objects inside S can intersect, even though the resulting
configuration (like the one in Figure 19) is not itself the image of a syntactic object.

7. No, they don’t: transformers as characters

Recently, it has become fashionable to claim that the so-called transformer architectures un-
derlying the functioning of many current large language models (LLMs) somehow “disprove” or
undermine the theory of generative linguistics. They don’t. Such claims are vacuous: not only on
account that they lack any accurate description of what is allegedly being disproved, but also more
specifically because one can show, as we will discuss in this section, that the functioning of the
attention modules of transformer architectures fits remarkably well within the same general for-
malism we have been illustrating in the previous sections, and is consequently fully compatible with
a generative model of syntax based on Merge and Minimalism. While this can be discussed more
at length elsewhere, we will show here briefly that the weights of attention modules in transformer
architectures can be regarded as another (distinct from human) way of embedding an image of
syntax inside semantics, with formal properties similar to other examples we talked about earlier
in this paper.

This does not mean, of course, that LLMs based on such architectures necessarily mimic the
interaction between syntax and semantics as it occurs in human brains. In fact, most certainly that
is not the case in anything close to their present form, given well known considerations regarding
the “poverty of the stimulus,” in human language acquisition (see [4]), compared to what one may
call the “overwhelming richness of the stimulus” in the training of LLMs. Some have attempted
to deal with this issue by limiting the amount of training data to something argued to align more
with the data available to children (e.g., as in [83] and [47], among others, including an upcoming
2023CoNLL/CMCL “Baby LMChallenge” [2]). However, at least so far there are still problems
with such approaches with regard to both performance on certain test-bed datasets, and accurately
mirroring the developmental trajectory of human language acquisition, with respect to training
data sample sizes. This matter is discussed in more detail in [85].

This is not the main point of the discussion here, however, since several examples we analyzed in
the previous sections are also not meant to model how syntax and semantics realistically interact
in the human brain, but are presented simply as illustrations of the general formal algebraic
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properties of the mathematical model. The point we intend to make here is that attention modules
of transformer architectures can function as another choice of a Hopf algebra character that fits
within the same very general algebraic formalism we illustrated in the previous sections of this
paper. Therefore, transformer architectures have no intrinsic incompatibility, at this fundamental
algebraic level, with generative syntax. Note also that we are not going to include here any
discussion with regard to the efficiency of computational algorithms, as we are interested only
in analyzing their algebraic structure. We will only make some general comments at the end of
this section, in relation to the “inverse problem” of reconstructing syntax from its image inside
semantics, that we already discussed in §3.

For our purposes, it suffices to consider the basic fundamental functioning of attention modules
in transformers, that we recall schematically as follows.

We assume, as in our previous setting in §2, a given function s : SO0 → S from lexical items and
syntactic features to a semantic space S that is here assumed to be a vector space model. Thus,
we can view elements ` ∈ SO0 as vectors s(`) ∈ S. In attention modules, in the case of so-called
self-attention that we focus on here, one considers three linear transformations: Q (queries), K
(keys), and V (values), Q,K ∈ Hom(S,S ′) and V ∈ Hom(S,S ′′), where S ′ and S ′′ are themselves
vector spaces of semantic vectors (in general of dimensions not necessarily equal to that of S).

One usually assumes given identifications S ' Rn, S ′ ' Rm, S ′′ ' Rd with Euclidean vector
spaces, with assigned bases, and one works with the corresponding matrix representations of
Q,K ∈ Hom(Rn,Rm) and V ∈ Hom(Rn,Rd). The target Euclidean space S ′ is endowed with an
inner product 〈·, ·〉, that can be used to estimate semantic similarity.

The query vector Q(s(`)), for ` ∈ SO0, can be thought of performing a role analogous to the
semantic probes discussed in our toy models of §2. As in that case, we think of queries (or probes in
our previous terminology) as elements q ∈ S∨ where S∨ is the dual vector space S∨ = Hom(S,R),
so that a query matrix can be identified with an element in S∨ ⊗ Rm ' S∨ ⊗ S ′ = Hom(S,S ′),
that we can regard as an m-fold probe Q evaluated on the given semantic vector s(`).

In a similar way, we can think of the key vector K(s(`)), for ` ∈ SO0, also as an element
K ∈ Hom(S,S ′), that we interpret in this case as a way of creating an m-fold probe out of the
given vector s(`). Thus, the space S ′ of (m-fold) probes plays a dual role here, as given probes to
be evaluated on an input semantic vector s(`), and as new probes generated by the semantic vector
s(`). This dual interpretation explains the use of the terminology “query” and “key” for the two
given linear transformations. The values vector V (s(`)) can be viewed as a representation of the
semantic vectors s(`) inside S ′′, such as, for example, an embedding of the set s(L), for a given
subset L ⊂ SO0, into a vector space S ′′, of dimension lower than S. One refers to d = dimS ′′ as
the embedding dimension.

Next, one considers a set L ⊂ SO0. Usually, this is regarded as an ordered set, a list (also
called a string), that would correspond to an input sentence. However, in our setting, it is more
convenient to consider L as an unordered set. In terms of transformer models, one then focuses
on bi-directional architectures like BERT. To an element ` ∈ L one assigns an attention operator
A` : L ⊂ S → S ′, given by

A`(s(`
′)) = σ(〈Q(s(`)), K(s(`′))〉) ,

where σ is the softmax function σ(x)i = exp(xi)/
∑

j exp(xj), for x = (xi).
Note that for simplicity of notation, we are ignoring here the usual rescaling factor that divides

by the square root of the embedding dimension, since that has no influence on the algebraic
structure of the model, even through it has computational significance. We write A`,`′ := A`(s(`

′))
and refer to it as the attention matrix. The matrix entries A`,`′ are regarded as a probability
measure of how the attention from position ` is distributed towards the other positions `′ in the set
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L. One then assigns an output (in S ′′) to the input s(L) ⊂ S, as the vectors y` =
∑

`′ A`,`′V (s(`′)),
where for each ` ∈ L, we have y` = (y`)

d
i=1 ∈ S ′′ ' Rd.

Observe that in writing A as a matrix one uses a choice of ordering of the set L, but the linear
operator A` itself is defined independently of such an ordering. Compatibly with the fact that we
want to use free symmetric Merge as generator of syntactic objects, we indeed focus here on the
case of bidirectional, non-causal attention, where the non-trivial entries of the attention matrix
are not limited to items occurring in a specified linear order (i.e. the matrix is not necessarily
lower or upper diagonal in a chosen basis/ordering). The resulting y` is symmetric in the ordering
of L, so linear ordering also does not play a role in the output.

7.0.1. Heads and heads. In transformer architectures, one usually has several such attention mod-
ules running in parallel, and one refers to this setting as multi-head attention. In this case, the
vectors Q(s(`)) = ⊕iQ(s(`))i, K(s(`)) = ⊕iK(s(`))i, and V (s(`)) = ⊕jV (s(`))j are split into
blocks, that correspond to a decomposition S ′ = ⊕Ni=1S ′i, and similarly for S ′′, with the inner
product of S ′ compatible with the direct sum decomposition, inducing inner products 〈·, ·〉S′i . One
can then compute attention matrices, for i = 1, . . . , N ,

A
(i)
`,`′ = σ(〈Q(s(`))i, K(s(`))i〉S′i)

that one refers to as attention distribution with attention head i.

It is important to keep in mind that there is an unfortunate clash of notation here, between this
meaning of “head” as “attention head” versus the usual syntactic meaning of “syntactic head”,
represented in the present paper by the notion of “head function” in Definition 1.1.

For simplicity, and to avoid confusing notation, we will not consider here multiple attention
heads, and work only with a single attention matrix, that suffices for our illustrative purposes,
while we will be referring to the term head only in its syntactic meaning as a head function.

7.1. Maximizing attention. Since for fixed ` ∈ L the values A`,`′ give a probability measure
on L, we can consider characters with values in the semiring R = ([0, 1],max, ·). For example, it
is natural to look for where the attention from position ` is maximized. Thus, we can define a
character on a subdomain

φA : Hsemi → R
by setting

φA(T ) = max
`∈L(T )

Ah(T ),` ,

if T ∈ Dom(h) and zero otherwise.

Remark 7.1. Note that, in order to make φ well defined for all T ∈ TSO0 , we need a uniform
choice of the operator A` for an ` ∈ L(T ), that is to say, we need a consistent way of extracting
the choice of a leaf from each tree. This corresponds to the choice of a head function h in the
sense of Definition 1.1.

Once a head function h is chosen, the attention matrix determines an associated attention
vector Ah(T ),` for ` ∈ L(T ). In particular, we can choose the head function to be the same as the
syntactic head, although this is not necessary and any choice of a head function will work for this
purpose. Note that head functions are not everywhere defined on TSO0 . This implies that the
choice of attention vector cannot be made compatibly with substructures simultaneously across
all trees T ∈ TSO0 . There is some maximal domain Dom(h) ⊂ TSO0 over which such a consistent
choice can be made. This issue does not arise in the construction of attention matrices from text,
as sentences in text will always have a syntactic head, but it can be relevant when sentences are
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stochastically generated from a template (such as those used in tests of linguistic capacities of
LLMs, as in [83], [47]).

7.2. Attention-detectable syntactic relations. Recent investigation of attention modules and
syntactic relations (like c-command, see [58]) indicate that syntactic trees and examples of specific
syntactic relations such as syntactic head, prepositional object, possessive noun, and the like,
are embedded and detectable from the attention matrix data. We show that this result is to be
expected, given our model.

We consider the problem of detection of syntactic relations in the following form.

Definition 7.2. Suppose given a syntactic relation ρ, which we write as a collection ρ = ρT of
relations ρT ⊂ L(T ) × L(T ), with ρT (`, `′) = 1 is `, `′ ∈ L(T ) are in the chosen relation and
ρT (`, `′) = 0 otherwise. We say that ρ is exactly attention-detectable if there exist query/key linear
maps Qρ, Kρ ∈ Hom(S,S ′) and there exists a head function hρ as in Definition 1.1 such that

ρT (hρ(T ), `max,hρ) = 1

for all T ∈ Dom(hρ), where
`max,hρ = argmax`∈L(T )Ahρ(T ),` ,

with A the attention matrix built from Qρ, Kρ.
The relation ρ is approximately attention-detectable if there exist query/key linear maps Qρ, Kρ ∈

Hom(S,S ′) and there exists a head function hρ as in Definition 1.1 such that

1

#D
∑
T∈D

ρ(hρ(T ), `max,hρ) ∼ 1

for some sufficiently large set D ⊂ Dom(hρ) of trees.

Here the existence of query/key linear maps Qρ, Kρ as above is relative to a specified context,
such as a corpus, a dataset.

In the case of approximately attention-detectable syntactic relations, we think of the subset
D as being, for instance, a sufficiently large syntactic treebank corpus, or a corpus of annotated
syntactic dependencies (for size estimates see [58]). Cases where the existence of query/key linear
maps Qρ, Kρ and a head function hρ with the properties required above can be ensured can be
extracted from the experiments in [58].

7.3. Threshold Rota-Baxter structures and attention. Using a threshold Rota-Baxter op-
erator cλ of weight +1, we obtain

φA,−(T ) = cλ(max{φA(T ), cλ(φA(Fv))·φA(T/Fv), . . . , cλ(φA(FvN ))·φA(FvN−1
/FvN ) · · ·φA(T/Fv1)}) .

As above, for simplicity we focus on the case of chains of subtrees TvN ⊂ TvN−1
⊂ · · · ⊂ Tv1 ⊂

T rather than more general subforests. Note that h(T/Tv) = h(T ) for the quotient given by
contraction of the subtree, hence

max
`∈L(T/Tv)

Ah(T ),` ≤ max
`∈L(T )

Ah(T ),` .

The value φ−(T ) corresponds then to the chains of nested accessible terms of the syntactic object
T for which all the values

φA(Tvi) = max
`∈L(Tvi )

Ah(Tvi ),`

are above the chosen threshold λ and all the complementary quotients Tvi−1
/Tvi have

φA(Tvi−1
/Tvi) = max

`∈L(Tvi−1/Tvi )
Ah(Tvi−1),`

= max
`∈L(Tvi−1 )

Ah(Tvi−1 ),` = φA(Tvi−1
) .
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The first condition implies that one is selecting only chains of accessible terms inside the syntactic
object T where the maximal attention from the head of each subtree in the chain is sufficiently
large, while the second condition means that, among these chains one is selecting only those for
which the recipient of maximal attention from the head of the given subtree is located outside of
the next subtree. This second condition guarantees that when considering the next nested subtree
and trying to maximize for its attention value, one does not spoil the optimizations achieved at
the previous steps for the larger subtrees.

A similar procedure can be obtained by additionally introducing direct implementation of some
syntactic constraints. We can see this in the following way.

A syntactic relation ρ determines a character φρ on trees T ∈ Dom(h) ⊂ TSO0 with values in
the Boolean ring B = ({0, 1},max, ·) where

φρ(T ) = max
`∈L(T )

ρ(h(T ), `) .

This Boolean character detects whether the syntactic relation ρ is realized in the tree T or not.
Using a character

φA,ρ(T ) = max
`∈L(T )

ρ(h(T ), `) · Ah(T ),` ,

with values in P = ([0, 1],max, ·), one maximizes the attention from the tree head over the set of
` ∈ L(T ) that already satisfy the chosen syntactic relation with respect to the head of the tree. The
corresponding Birkhoff factorization with threshold Rota-Baxter operators again identifies chains
of subtrees that maximize the attention (above a fixed threshold), in a way that is recursively
compatible with the larger trees as before, but where now maximization is done only on the set
where the relation is implemented. Subtrees with φρ(Tv) = 0 do not contribute even if their value
of max`Ah(T ),` is sufficiently large.

Thus, comparison between the case with character φA and with character φA,ρ identify attention-
detectability of the syntactic property considered and, if detectability fails, at which level in the
tree (in terms of chains of nested subtrees) the attention matrix maximum happens outside of
where the syntactic relation holds.

As shown in [85], the current performance on syntactic capacities of LLMs trained on small
scale data modeling falls significantly short of the human performance, when tested on LI-Adger
datasets that include sufficiently diverse syntactic phenomena. This suggests a good testing ground
for syntactic recoverability as outlined above and a possible experimental testing for aspects of
the inverse problem of the syntax-semantics interface.

7.3.1. Syntax as an inverse problem: physics as metaphor. The question of reconstructing the
computational process of syntax, in LLMs based on transformer architectures, can be seen in the
same light as the situation we illustrated in a simpler example in §3, where one views the image of
syntax embedded inside a semantic space, and considers the inverse problem of extracting syntax
as a computational process working from these images, which live in a semantic space that is
not itself endowed with the same type of computational structure. Here, the image of syntax is
encoded in the key/query vectors that live in vector spaces that organize semantic proximity data,
and in the resulting attention matrices. Inverse problems of this kind are usually expected to be
computationally hard. This does not mean that the computational mechanism of syntax cannot
be reconstructible, but that a significant cost in complexity, growing rapidly with the depth of the
trees, may be involved.

Early results showed that RNN language models performed poorly on tests of grammaticality
aimed at capturing syntactic structures, on a testbed dataset of pairs of sentences that differ only
in their grammaticality, [67], while [42] showed that language models based on RNNs can perform
well on predicting long-distance number agreement even in the absence of semantic clues (that is,



SYNTAX-SEMANTICS INTERFACE: AN ALGEBRAIC MODEL 71

when tested on nonsensical but grammatical sentences). Results like this appear to indicate that
syntax can, in principle, be extracted and disentangled from its image inside semantics. It was
shown in [79] that Syntactic Ordered Memory (SOM) syntax-aware language models outperform
the Chat-GPT2 LLM in syntactic generalization tests. However, this entire area remains a matter
of contention, dependent in part on the testbed dataset used, as described more fully in [84] and
[85].

A more systematic comparison of different language model architectures and their performance
on syntactic tests in [46] revealed substantial differences in syntactic generalization performance
by model architecture, more than by size of the dataset. One can suggest that the indicators
of poor performance on syntactic tests, along with any other difficulties, might also reflect the
computational difficulty involved in extracting syntax as an inverse problem from its image through
the semantic interface, stored across values of the weights of attention matrices, rather than in a
direct syntax-first mapping.

In this paper we have used physics as a guideline for identifying mathematical structures that
can be useful in modelling the relation between syntax and semantics. We conclude here by using
physics again, this time only as a metaphor, for describing the relation of syntax as a generative
process and the functioning of LLMs.

The generative structure underlying particle physics is given by the Feynman diagrams of quan-
tum field theory. Disregarding epistemological issues surrounding the interpretation of such di-
agrams as events of particle creation and decay, we can roughly say that, in a particle physics
experiment, what one detects is an image of such objects embedded into the set of data collected
by detectors. Detecting a particle, say the Higgs boson (the most famous recent particle physics
discovery), means solving an inverse problem that identifies inside this enormous set of data the
traces of the correct diagrams/processes involving the creation of a Higgs particle from an inter-
action of other particles (such as gluon fusion or vector-boson fusion) and its subsequent decay
into other particles (such as vector-boson pairs or photons). The enormous computational dif-
ficulty implicit in this task arises from the need to solve this type of inverse problem, involving
the identification of events structure (for example a Higgs decay into photons involving top quark
loop diagrams) from the measurable data, and a search for the desired structure in a background
involving a huge number of other simultaneous events. The direct map from quantum field theory
consists of the Higgs boson production cross sections, which are calculated from perturbative ex-
pansions in the Feynman diagrams of quantum chromodynamics and quantum electrodynamics,
involving significant higher-order quantum corrections. Such perturbative QFT computations are
where the algebraic formalism recalled at the beginning of this paper plays a role. The inverse
problem, instead, consists of measuring, for various possible decay channels, mass and kinematic
information like decay angles of detectable particles of the expected type, produced either by the
expected decay event or by the background of productions of the same particle types due to other
events, and searching for an actual signal in this background.

We can use this story as a metaphor, and imagine the generative process of syntax embedded
inside LLMs in a conceptually similar way, its image scattered across a probabilistic smear over
a large number of weights and vectors, trained over large data sets. This view of LLMs as
the technological “particle accelerators” of linguistics, where signals of linguistic structures are
detectable against a background of probabilistic noise, suggests that such models do not invalidate
generative syntax any more than particle detectors would “invalidate” quantum field theory; quite
the contrary in fact.

While LLMs do not constitute a model of language in the human brain, they can still, in the
sense described here, provide an apparatus for the experimental study of inverse problems in
the syntax-semantic interface. Here however it is essential to recall again the physics metaphor.
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Data and technology without theory do not constitute science, understood as a model of the
fundamental laws of nature that has both strong predictive capacity and a high level of concise
conceptual clarity in its explanatory power. The relation between the computational process of
syntax and the topological relational nature of semantics is a problem of a conceptual nature.
In this sense, the large language models may contribute a technological experimental laboratory
for the analysis of some aspects of this problem, rather than a replacement for the necessary
theoretical understanding of fundamental laws in the structure of language.
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