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Welcome to the section of our LATEX course where we will talk about using numbered examples
with morpheme-by-morpheme glosses, drawing syntactic trees, and indicating syntactic transfor-
mations on both of those. There are two important parts to the philosophy here: the code should
be pretty, and so should its output. Elegant code is more than just aesthetically satisfying to the
programmer: it becomes quick to write with practice, and it saves you time by being easier to spot
bugs in. After all, we’re here to do linguistic analysis, not spend all day fighting LATEX. I will
address some common issues with achieving these aims, and show you the packages that I think
are most reliable and efficient: gb4e, movement-arrows, and forest.

I will start by showing you numbered examples and glosses. We’ll also talk about drawing arrows
on an example sentence rather than a tree. Then, I will show you some basic trees and how to draw
arrows marking transformations and how to indicate domains with arcs. Lastly, we’ll talk about
the nuts and bolts of alignment (skippable), and end with some more interesting things you can do,
like multidominance trees.

1 Numbered examples
I will use gb4e to show you do numbered examples like (1).

(1) This is a numbered example.

gb4e is very easy to use and fairly powerful. Here is what I wrote above.

\begin{exe}

\ex This is a numbered example.

\end{exe}

Warning! gb4e redefines some important keys like and ˆ. This can mean it does not play nicely
with other packages, including bibliographies. This is easily rectified by adding \noautomath

immediately after \usepackage{gb4e}. Phew!

1

https://malshah.com
mailto:mpshah@umd.edu


1.1 Referencing examples and multiple examples
If you want to reference an example, standard LATEX commands will work. These are \label{}

and \ref{}.

\begin{exe}

\ex \label{example} Using \ref{example} will

insert the number of this example.

\end{exe}

It can be important to embed multiple examples within one another. gb4e allows this with xlist.

(2) a. This is example (2a).
b. This is example (2b).

(3) This is example (3).

(4) a. Another example.

To generate the above examples, I wrote the following code.

\begin{exe}

\ex \begin{xlist}

\ex \label{subexample1}

This is example (\ref{subexample1 }).

\ex \label{subexample2}

This is example (\ref{subexample2 }).

\end{xlist}

\ex \label{nextexample}

This is example (\ref{nextexample }).

\ex

\begin{xlist}

\ex Another example.

\end{xlist}

\end{exe}

To make the example numbers clickable links, you need \usepackage{hyperref}. To make the
clickable links have a color, you can add this to your preamble for the deep blue I use:

\hypersetup{

colorlinks=true ,

linkcolor =[RGB]{0,69,149} ,

}

\ex is not the only way of introducing an example sentence.

\exi{id} will mean id is used as the example’s number.

(Hello) This is another example sentence.
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\begin{exe}

\exi{( Hello)} This is another example sentence.

\end{exe}

This can be very neat when repeating examples. Have a look. Here is (1) repeated:

(1) This is a numbered example.

\begin{exe}

\exi{(\ref{numbered1 })} This is a numbered example.

\end{exe}

In fact, gb4e abbreviates what I have just done as \exr{}. It also allows the repetition of a number
with a prime mark with \exp{}.

(1′) Here is a prime-numbered example.

When referring to examples inline, I never use 2b but always (2b). I find it annoying to have to
type (\ref{}) every time. Instead, I define a macro in my preamble.

\newcommand {\eg }[1]{(\ ref {#1})}

Don’t ask what I do with all the time this saves me.

1.2 Glossing
Thankfully, not all linguistics is done about English by English speakers.

gb4e allows glossing easily, but you have to be a little careful as errors can easily creep in.

(5) Čia
here

yra
be.3

anotuot-as
annotated-NOM.SG

pavyzd-ys.
example-M.NOM.SG

‘Here is an annotated example.’

There are two important ingredients in the code for (5). After \ex, you need \gll for the first two
lines of the gloss, broken up by \\. and then \glt for the idiomatic translation. Make sure you
use \\ and not just a line break!

\begin{exe}

\ex \gll

\v{C}ia yra anotuot -as pavyzd -ys. \\

here be.3 annotated -{\sc nom.sg} example -{\sc m.nom.sg} \\

\glt ‘Here is an annotated example.’

\end{exe}

I like to use SMALL CAPS in my glosses. \textsc{} is fine, but if you have places to be, I
recommend {\sc } and placing the text to be capitalized within the braces.

Notice how gb4e automatically lines up the data and the gloss at word boundaries. If you do
anything that monkeys around with how LATEX sees units, it will not work.
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\begin{exe}

\ex \gll

Atsarg -iai su {\it pa -svir -uo -ju \v{s}rift -u} \\

careful -adv with prf -tilted -m.instr -def script -m.instr \\

\glt ‘Careful with italicized text!’

\end{exe}

(6) Atsarg-iai
careful-ADV

su
with

pa-sviruoj-u šrift-u
PRF-tilted-DEF-M.INSTR script-M.INSTR

‘Careful with italicized text!’

Notice how šrift-u and its gloss (script-M.INSTR) are not aligned. Disgusting! LATEX treats every-
thing in the scope of {\it } as one thing. So, italicize each word separately.

\begin{exe}

\ex \gll

Atsarg -iai su {\it pa -svir -uo -ju} {\it \v{s}rift -u} \\

careful -adv with prf -tilted -m.instr -def script -m.instr \\

\glt ‘Careful with italicized text!’

\end{exe}

(7) Atsarg-iai
careful-ADV

su
with

pa-sviruoj-u
PRF-tilted-DEF-M.INSTR

šrift-u
script-M.INSTR

‘Careful with italicized text!’

This applies also to boldface and strikeout text. (This fact is particularly annoying with strikeout,
as it means you get ugly gaps in the struck-through text.)

1.3 Empty elements and annotation
Most of what is interesting goes unheard. Silent elements can sometimes be important in a gloss.
Adding a trace to a sentence can mess up alignment with a gloss, of course.

(8) [kaun-sii
which-F

kitaab]1
book

ek
one

prasiddh
famous

bhaashaavid-ne
linguist-ERG

t1
write.PST-FEM

likh-ii

‘Which book did a famous linguist write?’

Just add a {} in the gloss-line where the trace is.

\begin{exe}

\ex \gll $[$kaun -sii kitaab$]_1$ ek prasiddh

bhaashaavid -ne $t_1$ likh -ii \\

which -f book one famous

linguist -erg {} write.pst -fem \\

\glt ‘Which book did a famous linguist write?’

\end{exe}
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(9) [kaun-sii
which-F

kitaab]1
book

ek
one

prasiddh
famous

bhaashaavid-ne
linguist-ERG

t1 likh-ii
write.PST-FEM

‘Which book did a famous linguist write?’

Annotate an example with \hfill [annotation] in the \glt section.

(10) [kaun-sii
which-F

kitaab]1
book

ek
one

prasiddh
famous

bhaashaavid-ne
linguist-ERG

t1 likh-ii
write.PST-FEM

‘Which book did a famous linguist write?’ (Hindi)

... \\

\glt ‘Which book did a famous linguist write?’

\hfill (Hindi)

\end{exe}

This is easy but (in my opinion) ugly. I like to have comments in the top-right, in the gloss-
line, not the bottom-right. This requires another package called cgloss (loaded after gb4e). For
this to work, you’ll need to add Alexis Dimitriadis’s cgloss.sty to your project, available from
http://staticweb.hum.uu.nl/medewerkers/alexis.dimitriadis/latex/cgloss.sty.

(11) [kaun-sii
which-F

kitaab]1
book

ek
one

prasiddh
famous

bhaashaavid-ne
linguist-ERG

t1 likh-ii
write.PST-FEM

(Hindi)

‘Which book did a famous linguist write?’

To do this, add \hfill (Hindi) before \glt but after \\.

A quick note about brackets! In (10), I used a bracked expression. For some reason, gb4e hates
[ being the first thing after \gll. Just enclosing the bracket in $ fixes this.

You can add a grammaticality judgment after \ex by enclosing it in square brackets and putting
braces around the rest of the sentence.

\begin{exe}

\ex[*]{ This a bad sentence .}

\end{exe}

(12) * This a bad sentence.

With glossed examples, put braces around the whole thing.

(13) * yeh
this

kharaab
bad

vaaky.
sentence

(Hindi)

Intended: ‘This is a bad sentence.’

Doing it another way will mean the judgment marker * will screw up the alignment and will need
a {} in the gloss.
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\begin{exe}

\ex[*]{

\gll yeh kharaab vaaky. \\

this bad sentence \\

\hfill (Hindi)

\glt Intended: ‘This is a bad sentence.’}

\end{exe}

1.4 Arrows in examples
Sometimes, you don’t want to draw a whole tree. (Or you don’t know how because we haven’t
got there yet.) All the same, you might want to show a syntactic transformation. gb4e allows this
natively but it’s a pain in the neck.

We’ll look at a package by Alan Munn (UMD *93; amunn.github.io) called movement-arrows

(don’t forget the -). This defines some helpful macros that allow annotating examples with arrows.

(14) What did a famous linguist write t ?

\begin{exe}

\ex \mkword{What} did a famous linguist write \mkword{t}?

\mvarrow{t}{What}

\end{exe}

Rather than repeating the word itself, you can label the nodes with square brackets. This is partic-
ularly helpful in representing ‘unpronounced copies’.

\begin{exe}

\ex \mkword[target ]{What} did a famous linguist

write \mkword[source ]{\ sout{what }}?

\mvarrow{source }{ target}

\end{exe}

(15) What did a famous linguist write what ?

If you want the arrow to appear above the example, use \mvarrow*.

(16) What did a famous linguist write what ?

I am not sure why but you may need to adjust spacing of the text above or below using \arrowstrut.

Add labels with square brackets like [above = label] or [below = label].

(17) What did a famous linguist write what ?

wh-movement
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You can have multiple arrows in a single example.

(18) What is John likely t to win t ?

A-movement

wh-movement

\begin{exe}

\ex \arrowstrut

\mkword[wh]{What} is \mkword[subj]{John} likely

\mkword[npt]{$t$} to win \mkword[wht]{$t$}?
\mvarrow *[ above = A-movement ]{npt}{subj}

\mvarrow[below = $wh$ -movement ]{wht}{wh}
\end{exe}

Suppose you wanted both arrows to be below. Disaster looms.

(19) What is John likely t to win t ?

A-movementwh-movement

Oh dear.

Adjust the height of an arrow with \setlength{\arrowheight}{}, and the position of the label
with xshift= in the square brackets.

\begin{exe}

\ex \mkword[wh]{What} is \mkword[subj]{John} likely

\mkword[npt]{$t$} to win \mkword[wht]{$t$}?

\mvarrow[below = A-movement , xshift =2em]{npt}{subj}

\setlength {\ arrowheight }{3em}

\mvarrow[below = $wh$ -movement , xshift=-2em]{wht}{wh}

\end{exe}

(20) What is John likely t to win t ?

A-movement

wh-movement

The package also includes an alternative to arrows in \mvlink. This is useful for representing,
e.g., agreement dependencies.

(21) John believed [S him a genius ].

ECM
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In a glossed example, just include \arrowgloss after \ex, and put braces around the whole thing.

\begin{exe}

\ex

{

\arrowgloss

\gll ... \\

... \\

\glt ...

}

\end{exe}

2 Syntactic trees
Everyone loves a good syntactic tree. No one likes an ugly one.

My favorite package for drawing trees is forest. Some old hands prefer packages like qtree.
Here is a side-by-side comparison of the default trees in each.

(22) a. forest

S

NP

Det

some

N

linguists

VP

V

like

NP

N

typesetting

b. qtree

S

NP

Det

some

N

linguists

VP

V

like

NP

N

typesetting

Here is also a comparison of the code required to generate them.

(22′) a. \begin{forest}

[S [NP [Det [some]] [N [linguists ]]]

[VP [V[like]] [NP [N [typesetting ]]]]]

\end{forest}

b. \Tree [.S [.NP [.Det [.some ] ] [.N [. linguists ] ] ]

[.VP [.V [.like ] ] [.NP [.N [. typesetting ] ] ] ] ]

The spacing on a forest tree is extremely customizable. Many find the qtree trees outmoded. In
fact, the width of the qtree diagrams was what led to the birth of forest. It is worth noting that
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qtree is very finnicky about the code - including whitespaces. This means the code and the trees
are uglier.

So, I vastly prefer forest. It comes with a default [linguistics] option, so be sure to type
\usepackage[linguistics]{forest}. Your trees will look really ugly if you don’t.

2.1 Basic trees and triangles
In forest, \begin{forest} will create an environment that allows syntactic bracket notation
to be read as instructions to draw a tree. If you find the notation confusing, it can help to use
line-breaks and indentation to make things a little more readable.

\begin{forest}

[S

[NP

[Det

[some]

]

[N

[linguists]

]

]

[VP

[V

[like]

]

[NP

[N

[typesetting]

]

]

]

]

\end{forest}

Basically, sharing a level of indentation means sharing a level of embedding. I personally don’t
care much for this way of formatting things.

Sometimes syntacticians are in a foul mood and simply do not want to draw a tree. Or, on a very
very rare occasion, we feel a little lazy. Use ‘, roof’.

\begin{forest}

[S [NP [Det [some]] [N [linguists ]]]

[VP [like typesetting , roof ]]]

\end{forest}
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(23) S

NP

Det

some

N

linguists

VP

like typesetting

You can still embed after roof.

(24) S

NP

John

VP

V

believes

S

that Mary thinks ...
S

that Bill hopes ...

\begin{forest}

... [S [that Mary thinks ... \\ S, roof

[that Bill hopes ..., roof ]]] ...

\end{forest}

Notice how the S dominating the most embedded sentence is actually not part of that bracket. If
you want to get rid of the lines between the non-terminal and terminal nodes (and this can be
theoretically important), use \\ instead of [].

\begin{forest}

[S [NP [Det \\ some] [N \\ linguists ]]

[VP [like typesetting , roof ]]]

\end{forest}

(25) S

NP

Det
some

N
linguists

VP

like typesetting
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Labelling a tree works fine with \hfill (Label) after the tree.

\begin{exe}

\ex \begin{forest}

[S [NP [Det \\ the][N [Adj \\ slithy ][N \\ toves ]]]

[VP [V \\ did] [VP [VP [V \\ gyre]] [Conj \\ and]

[VP [V \\ gimble ]]]]]

\end{forest}

\hfill (English , allegedly)

\end{exe}

Note that this works without the cgloss.sty package.

(26) S

NP

Det
the

N

Adj
slithy

N
toves

VP

V
did

VP

VP

V
gyre

Conj
and

VP

V
gimble

(English, allegedly)

Adjust the size of a tree with \scalebox{n}{} where n is the scaling factor.

(27) S

NP

Det
the

N

Adj
slithy

N
toves

VP

V
did

VP

VP

V
gyre

Conj
and

VP

V
gimble

\scalebox {0.7}{

\begin{forest}

[S [NP ...

\end{forest}

}
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Syntacticians will often like to leave nodes unlabelled to reduce clutter. Sadly, by default, the
[linguistics] style for forest does not produce the beautiful tree in (28a), but the yucky tree
in (28b).

(28) a. FP

YP

F XP

b. FP

YP

F XP

However, it does come with an option called, aptly, nice empty nodes. Just typing it in at the
start of the forest environment will put it into use.

begin{forest}

nice empty nodes

[FP [YP] [[F] [XP]]]

\end{forest}

You can define a style using \forestset{}.

\forestset{

style_name /.style ={

for tree{

...

}

}

}

To change the default style for all your trees, use \forestset{default preamble = { ... }},
and insert your preferred style. There is more at the end about editing styles.

2.2 Drawing on trees: movement and phase-boundaries
Syntacticians can’t say ‘movement’ without making a corresponding hand-gesture on an imaginary
tree in front of them. Let’s get that on the .pdf too.
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(29) S

NP

The coffee

VP

V
was

AP

A
spilled

NP
t

\begin{forest}

[S [NP [The coffee , roof , name=subj]]

[VP [V \\ was] [AP [A \\ spilled]

[NP \\ $t$ , name=trace ]]]]

\draw[->] (trace) to[in=-90, out =235] (subj);

\end{forest}

Here are the relevant ingredients: I named the nodes involved in the movement with , name= ....
After the tree was done, I used \draw[->]. This is from TikZ. Learning to use that is a course in
itself.

It is worth dwelling on the anatomy of \draw.

• It ends with a semi-colon!

• It needs a source and a target - much like a syntactic transformation. These are indicated by
the (trace) and (subj) which flank to.

• It needs to know what kind of arrow to draw: [->], [<->], [<-] are all valid, but for
raising transformations, you’ll want [->].

• It can (but need not) be told the angles of its journey. These are the in and out options for
to. That is, this is perfectly valid code.

\draw[->] (trace) to (subj);

But this will draw an arrow ‘as the crow flies’, or as the ant dead-reckons.
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(30) S

NP

The coffee

VP

V
was

AP

A
spilled

NP
t

Angles are fine as the options for to - that is what I have used in my code above - as are
compass directions, as in to[in=south, out=south west].

Some people prefer blockier lines for movement.

(31) S

NP

The coffee

VP

V
was

AP

A
spilled

NP
t

Instead of to, I used the following code.

\draw[->] (trace) |- +(0, -2em) -| (subj);

The +(0, -2em) means the arrow will be offset downwards by 2em, leading to the slight vertical
line below t. The |- and -| mean there is a vertical line (possibly of length=0) at the start and
end points of the arrow.

You can label the arrow with node.

\begin{forest}

[S [NP [The coffee , roof , name=subj]]

[VP [V \\ was] [AP [A \\ spilled]

[NP \\ $t$ , name=trace ]]]]

\draw[->] (trace) to[in=-90, out =235] (subj);

\end{forest}
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(32) S

NP

The coffee

VP

V
was

AP

A
spilled

NP
tA-movement

\draw[->] (trace) to[in=-90, out= -125]

node[pos =0.75, fill=white , font=\ small]{A-movement}

(subj);

pos ranges from 0 (start of path) to 1 (end of path). fill means there is a background to the text.
If you want the label to float near the arrow rather than sit on it, you can use xshift and yshift.

(33) S

NP

The coffee

VP

V
was

AP

A
spilled

NP
t

A-movement

\draw[->] (trace) to[in=-90, out= -125]

node[pos=0.3, font=\small , yshift =-0.8em]{A-movement}

(subj);

If you want more arrow styles, you may need \usetikzlibrary{arrows}. This allows you to
use, e.g., [o-o], which I quite like for Agreement dependencies.
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(34) S

NP

NP

Det
the

N
linguist

S

who I met yesterday

VP

AdvP

Adv
often

VP

V
walks

NP

her dog
SUBJECT-VERB AGREEMENT

\draw[o-o, dashed , rounded corners] (subj) |- +(0, -3em) -|

node[pos =0.25, font=\small , fill=white

{\ textsc{subject -verb agreement }}

(verb);

You can see some additional options like dashed and rounded corners but you should now be
in a position to understand this.

We can also use \draw to help with boundaries, or marking domains of the syntax as important.
For example, if I want to mark the edge of an NP as a ‘cyclic domain’, I can.

(35) S

NP

Det
the

N
dog

VP

V
barked

NP

Det
the

N
mailman

\draw[dashed] ([ xshift=-3em]NP_edge)

arc[start angle =140, end angle=70, radius =5em];

NP_edge was the name for the object NP node. This draws an arc that leaves the start point (x=-3em
from the object NP node) at 140◦ and ends up reaching the end, 5em away, at 70◦.

We can add a label to this arc in the usual way.

\draw[dashed] ([ xshift=-3em]NP_edge)

arc[start angle =140,end angle=70, radius =5em]

node[pos=1.3, xshift =1em , font=\ small]{ cyclic domain };

16



(36) VP

V
barked

NP

Det
the

N
mailman

cyclic domain

One last cool thing about drawing on trees.

forest allows you to just use the current node without labelling it. Rather than naming the NP
node, I can add the \draw command, enclosed in some braces, just after the square bracket that
closes the relevant node. The source is an empty bracket (here with [xshift]).

\begin{forest}

[VP [V \\ barked]

[NP [Det \\ the] [N \\ mailman ]]

{\draw[dashed] ([ xshift=-3em])

arc[start angle =140,end angle=70, radius =5em]

node[pos=1.3, xshift =1em , font=\ small]{ cyclic domain };}

]

\end{forest}

This produces exactly the same diagram as (36). So, you should pretty much never need to label a
trace of movement. Just input the \draw[->] () to[ ... immediately after its closing bracket.

2.3 Mathmode in trees: features and semantics
Non-terminal nodes often have features, and it is often important to talk about their features. Here’s
(34) repeated with some features for the subject NP.

(34′) S

NP

NP

Det
the

N
linguist Case: NOM

Person: 3
Number: SG



S

who I met yesterday

VP

AdvP

Adv
often

VP

V
walks

NP

her dog

SUBJECT-VERB AGREEMENT
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Here’s the code.

\begin{forest}

[S [NP [NP [Det \\ the]

[N \\ linguist \\

{$\begin{bmatrix}
\text{Case:} & \textsc{nom} \\

\text{Person :} & \text {3} \\

\text{Number :} & \textsc{sg} \\

\end{bmatrix}$}
, name=subj]]

[S [who I met yesterday , roof ]]]

[VP [AdvP [Adv \\ often]]

[VP

[V \\ walks \\]

{\draw[o-o, dashed , rounded corners]

([ yshift =-1.5em]) |- +(0, -5em) -|

node[pos =0.25, font=\small , fill=white]

{\ textsc{subject -verb agreement }}

(subj );}

[NP [her dog , roof ]]]]]

\end{forest}

Do you see that I did the trick where I didn’t name the V node but just added \draw after its closing
bracket? Neat, right? I also needed to add yshift to get it to work right, but that was easy.

Here’s the specific code for the feature matrix, which required the amsmath package. (It’s a good
idea to load this before gb4e.)

[N \\ linguist \\

{$\begin{bmatrix}
\text{Case:} & \textsc{nom} \\

\text{Person :} & \text {3} \\

\text{Number :} & \textsc{sg} \\

\end{bmatrix}$}
, name=subj]]

As you can see, just by enclosing it in braces, forest let me just use math-mode as normal.

This can also be useful for adding semantic formulae to trees.
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(37) sings(l,s)
S

le
NP
Liz

λye[sings(y,s)]
VP

λxeλye[sings(y,x)]
V

sings

se
NP

Supernova

\begin{forest}

[${sings(l, s)}$ \\ S

[${l_e}$ \\ NP \\ Liz ]

[${\ lambda y_e [sings(y, s)]}$ \\ VP

[${\ lambda x_e \lambda y_e [sings(y, x)]}$
\\ V \\ sings]

[{${s_{e}}$ \\ NP} [\ textit{Supernova}, roof]]

]]]

\end{forest}

The one thing to be careful of here is to make sure you use braces after the $s, otherwise the square
brackets you use within mathmode (in the semantic formulae) are in danger of being interpreted as
instructions to draw a forest branch.

I think this is pretty much the ‘core’ LATEX you need to do syntax. The rest of the handout explores
some more customization options and shows some advanced LATEX you need for some advanced
syntax.
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3 More advanced forestry

3.1 Editing alignment, and styles
There’s a lot you can do in a style. You can adjust the spacing between nodes and the length of the
branches. For instance, if you want the terminal nodes to be aligned, you can use tier=word.

(38) VP

VP

V

gyre

Conj

and

VP

V

gimble

It doesn’t matter what you call the tier.

\begin{forest}

[VP [VP [V [gyre , tier=word ]]]

[Conj [and , tier=word]]

[VP [V [gimble , tier=word ]]]]

\end{forest}

You can have multiple tiers in one tree and they will all be aligned.

\begin{forest}

[VP [VP [V,tier=head [gyre , tier=word ]]]

[Conj , tier=head [and , tier=word]]

[VP [V, tier=head [gimble , tier=word ]]]]

\end{forest}

(39) VP

VP

V

gyre

Conj

and

VP

V

gimble

If you try and make a node the same tier as a node it dominates, forest will crash. So don’t.

There’s a few important pieces of alignment in forest. These include calign, s sep, and l.

• calign is the alignment of a parent node with respect to its children.
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• s sep is the horizontal spacing between nodes.

• l is a rather complicated beast which is the vertical separation between nodes.

We can mess around with these at the start of a tree with for tree.

(40) a. NP

Det

the

NP

AdjP

Adj

hairy

N

dog

\begin{forest}

for tree={l sep=0}

[NP [Det [the]]

[NP [AdjP [Adj [hairy ]]]

[N [dog ]]]]

\end{forest}

b. NP

Det

the

NP

AdjP

Adj

hairy

N

dog

\begin{forest}

for tree={l sep=2em}

[NP [Det [the]]

[NP [AdjP [Adj [hairy ]]]

[N [dog ]]]]

\end{forest}

We can even change them for a subtree.

(41) NP

Det

the

NP

AdjP

Adj

hairy

N

dog

\begin{forest}

[NP [Det [the]]

[NP

[AdjP ,for tree={l sep=3em}

[Adj [hairy ]]]

[N [dog ]]]]

\end{forest}
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Now let’s look at s sep.

(42) a. NP

Det

the

NP

AdjP

Adj

hairy

N

dog

\begin{forest}

for tree={s sep=0}

[NP [Det [the]]

[NP [AdjP [Adj [hairy ]]]

[N [dog ]]]]

\end{forest}

b. NP

Det

the

NP

AdjP

Adj

hairy

N

dog

\begin{forest}

for tree={s sep=2em}

[NP [Det [the]]

[NP [AdjP [Adj [hairy ]]]

[N [dog ]]]]

\end{forest}

Strictly speaking, s sep does not change the spacing between two nodes. If there are two sibling
nodes [X Y], s sep defines the distance between the right edge of X’s subtree and the left edge of
Y’s subtree. This means you never have to worry about your trees accidentally overlapping when
changing values for s sep.

calign is the most involved. It is the way a parent node is horizontally aligned with its children.
Here is one nice option it can take.

(43) NP

Det

the

NP

AdjP

Adj

hairy

N

dog

\begin{forest}

for tree={

calign=fixed edge angles ,

calign angle = 65}

[NP [Det [the]]

[NP [AdjP [Adj [hairy ]]]

[N [dog ]]]]

\end{forest}

22



The angle between a node and its children will always be 65◦. (This is quite qtree like.) I often
use the following settings. I don’t like the default s sep or l settings for nice empty nodes.

delay ={where content ={}

{shape=coordinate , for siblings ={ anchor=north }}{}} ,

for tree={ calign=fixed edge angles , calign angle=65, l=1em}

This allows me to draw trees like this. But it doesn’t play terrifically nicely with ternary branching.

(44) TP

DP
T vP

v VP

V

These are fairly qtree like, but they still end up being much less wide. There should be enough
here for you to tweak things to your own preference.

3.2 Advanced syntax: multidominance and spanning
Sometimes, syntacticians want to treat one constituent as simultaneously the daughter of two
nodes.

(45) ConjP

S

NP

Sebastián

VP

V
loves

Conj′

Conj
but

S

NP

Mal

VP

V
hates

NP
birds

We already have most of the resources required to do this. The one major addition is phantom.
This spooky command will make a branch invisible. The first VP is actually as in (46) with the left
branch erased. (For ‘mirror theory’ aficionados, phantom is a godsend.)
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(46) VP

V
loves

NP

\begin{forest}

[VP [V \\ loves]

[NP , phantom ]]

\end{forest}

(47) VP

V
loves

forest still pretends there is NP written in the left branch for spacing reasons. That is, if I had
written more, the VP would be wider.

\begin{forest}

[VP [VP [V]

[a really really really long sentence to show you , phantom ]]

[AdvP [Adv]]]

\end{forest}

(48) VP

VP

V

AdvP

Adv

Note that phantom also eradicates the label. If you want to keep the label but just delete the edge,
use no edge instead of phantom.

Now that we have our invisible object NP, we need to link the left VP to the right VP with \draw{}.

(49) ConjP

S

NP

Sebastián

VP

V
loves

Conj′

Conj
but

S

NP

Mal

VP

V
hates

NP
birds

I used {\draw[-](.south) to[out=-45, in=175] (obj.north);} after the first VP bracket,
and named the object NP obj. .south means it will start from the south of that node, i.e., the
bottom of the VP label, and then it will go to the north of the NP label.

\begin{forest}
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[ConjP [S [NP [Sebasti\’{a}n, roof]]

[VP

[V \\ loves] [NP ,phantom]

]

{\draw[-] (. south) to[out=-45, in =175] (obj.north );}

]

[Conj$ ^{\ prime}$ [Conj \\ but] [S [NP [Mal , roof]]

[VP [V \\ hates]

[NP \\ birds , name=obj]]]

]]

\end{forest}

Some syntacticians will use such trees instead of traditional movement dependencies.

(50) S

NP
what

S

Aux
has

S

NP
John

VP

V
read

\begin{forest}

[S [NP \\ what , name=wh]

[S [Aux \\ has]

[S [NP \\ John]

[VP [V \\ read] [\\, name=object [NP , phantom ]]]

]]]

\draw[-] (wh.north) to[out=0, in =180] (object.north );

\end{forest}

Suppose we want a phrase to be displayed off to the side with a connection to the relevant nodes.
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(51) S

S

NP
John

VP

V
read

NP

every book

This is a little more complicated. I used a bunch of phantom sisters to embedded S to set up the
tree. Here is what it looks like without any phantoms.

(52) S

XP

S

NP
John

VP

V
read

XP

XP XP NP

every book

\begin{forest}

[S, calign=midpoint , calign primary child = 1,

calign secondary child = 2

[\\, name=scope [XP ,phantom ]]

[S [NP \\ John] [VP [V \\ read] [\\, name=object ]]]

[XP ,phantom [XP ,phantom] [XP,phantom]

[NP , name=qfier ]]]

\draw[-] (scope.north) to[out=-60, in=150] (qfier.north );

\draw[-] (object.north) to[out=0, in=180] (qfier.north );

\end{forest}

This requires forcing the topmost S node to align horizontally between its invisible left daughter
and its second daughter. Without that, it will try and align to the center of the whole tree. I did this
using calign=midpoint, which aligns the node between its primary and secondary child. The
default takes those to be its first and last child, but I stipulated with calign primary child = 1

and calign secondary child = 2 that it will be the first and second child. So, S will align to
the midpoint of the first and second child.

If we wanted the line to come directly from the VP and S, this is also possible.
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(53) S

S

NP
John

VP

V
read

NP

every book

\begin{forest}

[S, calign=midpoint , calign primary child = 1

calign secondary child = 2, name=scope [XP , phantom]

[S [NP \\ John]

[VP , name=object [V \\ read] [XP , phantom ]]]

[XP , phantom [XP , phantom] [XP, phantom]

[NP , name=qfier [every book , roof ]]]]

\draw[-] (scope.south) to[out=-20, in=170] (qfier.north );

\draw[-] (object.south) to[out=-45, in=180] (qfier.north );

\end{forest}

Some syntacticians also believe in multiple heads being ‘exponed’ by one string, in a ‘span’. For
example, an abstract Tense, verbalizer, and root element might all get together as went.

(54) TP

DP
Tpst vP

v0 √
go

went

This, believe it or not, did not take much work. I added a node, offset from the categorizer head v,
and named it exponent.

\node[align=center , font=\it] at

([ xshift=-6em , yshift=-5em]categorizer )( exponent ){went};

To draw the squiggly lines, I had to add \usetikzlibrary{decorations.pathmorphing}. That
gave me the snake option for \draw{}.

\draw[-, decorate , decoration=snake ]( exponent.north) to (tense );
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Adding decorate and decoration=snake to the options for \draw{} meant that the line that
would otherwise be straight was drawn with squiggles. I made sure to use (exponent.north),
because otherwise, the lines would all leave from different points.

Some people like to indicate spans with brackets. This is a little more involved because trying to
get the xshift and yshift values right requires a lot of trial-and-error.

(55) TP

DP
Tpst

v0
√

go
went

\draw [decorate , decoration ={brace }]

([ xshift =-2.5em, yshift =-0.1em]root.south east) --

([ xshift =-0.5em, yshift =-0.6em]tense.west)

node [pos=0.5, anchor=east ,xshift =0.5em ,

yshift=-1em]{\ textit{went }};

This required \usetikzlibrary{decorations.pathreplacing} for the brace decoration.

It’s worth noting that unless you’re grouping together a bunch of stuff on the same edge (like
above), the brace is no fun to align.

4 Packages used
Here is an easy to reference list for the packages used for all the trees above.

\usepackage[linguistics ]{ forest}

\usepackage{hyperref}

\usepackage{amsmath}

\usepackage{gb4e} %Load after amsmath!

\noautomath %Required for gb4e to work nicely

\usepackage{cgloss} %Load after gb4e!

%Also add cgloss.sty to your project.

\usepackage{movement -arrows}

\usetikzlibrary{decorations.pathmorphing}

\usetikzlibrary{decorations.pathreplacing}

\usetikzlibrary{arrows}
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